
A Retargetable Code Generation Methodology for Embedded Systems﹢

Trong-Yen Lee, Yang-Hsin Fan, Tsung-Hsun Yang, Chia-Chun Tsai,
Wen-Ta Lee, and Yuh-Shyan Hwang

Institute of Computer, Communication, and Control,
National Taipei University of Technology, Taipei, Taiwan ROC.

{tylee, yhfan, thyang, cct, wtlee, hys }@en.ntut.edu.tw

Abstract- The demand for more and more complex
functionalities in embedded systems is rapidly
increasing such as that in portable devices,
automobiles, avionics and others. While developing
embedded software, most researchers face the
problem of transforming C programs into that
suitable for different kinds of embedded systems
because software code needs to be rewritten for
specific microprocessors. A retargetable code
generation methodology, namely RCGES, using XML
tree as an interface for translating C programs into
that appropriate embedded processors. Moreover,
we develop a graphical user interface for
configuring the parameters for different processors
of embedded systems such as various interrupt
vectors and input/output ports. Two embedded
system examples, 8051-based and PIC (Peripheral
Interface Controller)-based: LED display control of
advertisement (LDCA) and four phases stepping
motor control (FPSMC), are used to illustrate the
feasibility of the proposed methodology.

Keywords: retargetable code generation, embedded
software, embedded systems, XML tree.

1. Introduction

Embedded systems have permeated consumer
electronics, communication, and control systems. For
achieving the required performance of execution
time, code size, and power consumption, a low level
language such as assembly program is used to
develop embedded software. By contrast, a high
level language usage such as C program usually has
the advantages of flexibility, efficiency, and
productivity. Hence, embedded software tends to be
developed mostly based on the C language. However,
the prime obstacle in using C for developing
embedded software is that the software needs to be
rewritten when the processor is changed in an
embedded system. Obviously, this hinders flexibility,

efficiency, and productivity. In other words, when
embedded software C code is downloaded to
embedded processors such as 8051 or PIC (Parallel
Interface Controller), designers are required to spend
huge efforts to modify the program embedded code
system to meet system specifications. Generally
speaking, a huge programming effort, far less code
portability, maintainability, dependability, and
retargetable code generation are seen as the mainly
factors that increase the time to market. Leupers [1]
had solved the assembly optimization for embedded
processor successfully, but not retargetable code
generation. In this work, we introduce a retargetable
code generation methodology to solve software
development for retargetable embedded systems.

By exploring retargetable code generation
methods for embedded systems, we propose a
methodology with the following advantages. Firstly,
we develop a friendly graphical user interface to set
the parameters for retargetable processors of
embedded systems. Next, we use an XML tree as
interface for translating C programs for appropriate
embedded processors. Thirdly, we developed an
algorithm of code generation for software synthesis.
Finally, an automatic software synthesis tool is
implemented for retargetable software development
in embedded systems. The proposed methodology is
illustrated via two examples: LED display control of
advertisement (LDCA) and four phases stepping
motor control (FPSMC). Details are given in Section
5.

This paper is organized as follows. Section 2
gives some previous work. Section 3 describes
retargetable code generation methodology. At the
same time, a code generation algorithm is explained
to solve the retargetable code generation problems.
In Section 4, two embedded system examples are
used to illustrate the feasibility of the proposed
methodology. Section 5 concludes the paper and
gives some future work.

2. Previous Work

Due to the retargetable code generation for
embedded systems is a significant issue, several
techniques [1]-[8] were proposed recently.

﹢ This work was supported by research project grant
NSC-93-2215-E-027-006 from National Science
Council, ROC.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

765

Regarding synthesis tools for HSC (Hardware-
Software Codesign), Parkinson et al [2] developed a
tool to translate sections of C code into behavioral
VHDL. Similarly, Rettberg [3] proposed a useful
flowchart based on the state flow models with
multiple input and a single output for code
generation. In 2002, Chung et al [4] not only created
a framework for the optimization of embedded
software but also presented algorithms and a tool
flow to reduce the computational effort of programs.
By using a simple tree pattern matching algorithm
for code generator, Chen [5] used a simple tree
pattern matching algorithm in the code generator to
reduce the matching time by 69% effectively.

Leupers [6] provided a survey of methods and
techniques dedicated to efficient code generation for
embedded processors. Lee [7] had introduced the
Interrupt Time Petri Nets (ITPN) model and the
Interrupt-Based Quasi-Dynamic Scheduling (IQDS)
algorithm to model embedded systems with interrupt
property and find task schedules with time
constraints. However, this work lacks flexibility and
productivity, i.e. except for 8051 micro-controller
code generation for others embedded systems may
fail.

Hsiung [8] proposed a Time-Extended Quasi-
Static Scheduling algorithm (TEQSS) to synthesize
real-time embedded software code through a set of
Time Complex-Choice Petri Nets. TEQSS mainly
focused to meet memory and time constraints but did
not address retargetable code generation for
embedded systems. In 2004, Lee and Hsiung [9]
proposed an Embedded Software Synthesis and
Prototyping (ESSP) methodology to solve the
software synthesis, software verification, code
generation, and system emulation.

Manohar and Bhatia [10] proposed a tool for
automated code generation in designing user
interfaces on character terminals and designed a user
interface tool for designer to solve problems on
complex library call. This tool lacks of facilitation
because it did not support mouse events. Charot and
Messe [11] proposed a flexible code generation
framework for the design of application specific
programmable processors and used library modules
to achieve flexible compilation passes such as code
generation and scheduling. The framework consists
of two levels, one was retargeting modules that
defined compilation flow, and the other allowed user
to select and link modules from the library for
building a compiler. Unfortunately, the library was
incomplete when the paper was published.

3. Retargetable Code Generation

Methodology

The increased applications of embedded systems
have resulted in code generation becoming more and
more important. In order to cope with the variety of

applications, retargetable code generation for
embedded systems is seen as the most significant
issue that most researchers are eager to solve.
However, many programs are still written in
assembly code to meet constraints such as execution
time, code size, and power consumption. But there is
no doubt that assembly code lacks flexibility,
efficiency, and productivity. As solution, we
proposed a translation methodology that combined
XML (eXtensible Markup Language) tree and Binary
tree to develop retargetable embedded software. The
proposed methodology was successfully applied to
8051-based and PIC-based embedded processors as
described the following sections.

3.1. Design Flow of Retargetable Code

Generation for Embedded System

The RCGES design flow is shown in Fig. 1.
There are six design steps in RCGES which are listed
as following:
Step (1), Initialization: choosing the type of

processor in target embedded system,
initialization and setup input/output ports for
embedded processor.

Step (2), Parsing: parsing syntax, variables,
keywords, operator and operand.

Step.(3),\Set Parameters: design a user friendly
interface for setting interrupt vector, timer and
I/O interface in retargetable embedded processors.

Step.(4),.Translate the source C code into the
embedded C code by RCGES algorithm for target

Parsing of
the C code

Generation
of target

code

Verification

Initialization

Set
parameters

Test

correct

- Target Selection
- Port, Subroutine
 initialization etc.

- Set timer mode
- Interrupt vector
- I/O control

Figure 1. Design Flow of RCGES

- Algorithm
- Translation method

error

Open file

End

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

766

processor in embedded system.
Step.(5), Test: the output code from code generation

algorithm of RCGES be tested by Keil C
Compiler [12] and HI-Tech compiler [13]
depending on 8051-based and PIC-based
embedded systems, respectively.

Step (6) Verification: we use two kinds of emulation
platform, 8051 and PIC16F of WINICE [14]
series, to verify the two generation codes,
respectively.

3.2. Translation Method

We propose a translation method to transform a
source C code into a embedded C code. The
proposed translation method combines XML tree and
Binary tree. The main reason of choosing XML tree
for translation method in this work is that XML is a
language for describing others language. Therefore,
an ANSI C code can be translated into a XML tree.

XML is an eXtensible Markup Language that
designed to improve the functionality of the Web by
providing more flexible and adaptable information
identification. In other words, XML is a kind of
markup language to help different types of document
to describe its data structure and facilitates data
exchange among variety of systems.

A specific definition of XML tree is shown as
below and an example of XML tree is provided in
Figure. 2.

 Root Node: a node without any parent
nodes in a tree map, such as node A.

 Leaf Node: a node without any child nodes,
such as nodes D, E, F, G, H, I, J, and K.

 Non-terminal Node: meaning non-leaf Node,
such as node B and C.

 Degree: the number of child node in a node.
For example, the degree of B Node is 2.

 Level: the total of levels from Root Node
level to Leaf Node level. For example, A
Node is in level 1, B to G Node are in level
2, and H to K are in level 3.

 Height (Depth): the maximum level number
of a tree. For example, the height in Fig. 2 is
3.

For example, there is a for-loop in ANSI C code

which includes three parameters: initialization,
condition, and step statement. The for-loop code will
be translated into XML tree which is shown in
Figure 3. Regarding to the operation statement, it
will be translated into Binary Tree. For example, a
statement A=B*(C+D) be represented by a Binary
tree which is shown in Figure 4. Figure 5 shows the
combination of XML and Binary Tree. Then, front,
main program and subroutine are essential to be
translated into trees. A GUI will be used to set the
input/output port parameters depending on target
embedded systems. Finally, an XML tree will be
constructed automatically as shown in Figure 6.

3.3. Code Generation Algorithm

In the process of developing the software, the

Level 1

Level 2

Level 3

Figure 2. A Simple XML Tree

A

B C D E F G

H I J K

for

= <= +=

A * A 50 A 1

B +

C D

Figure 5. for Statement Combination XML
Tree and Binary Tree

=

*

+

D

A

B

C

Figure 4. statement Code of Binary Tree

initialization

Figure 3. for-loop XML Tree

condition step

for

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

767

program code is automatically generated based on
the different target embedded systems. Therefore, the
system designers will only be required to import an
ANSI C code and the retarget embedded C code will
be generated by our proposed code generation
algorithm. The difference of ANSI C code and
embedded C code is that the former needs to add
some parameter setting such as input/output port,
timer, interrupt.

The code generation algorithm of RCGES is
shown in Table 1. The purpose of code generation
algorithm is automatically generation embedded C
code from ANSI C code. In Table 1, step (1) opens
the source file and assigns a name for output file.
Step (2) is to set the initial condition of embedded

system such as input/output initial value, interrupt
and timer enable/disable, etc. Step (3) is the
parameter setting of interrupt, time, and input/output
depending design requirement. The core of parsing
program is performed in step (4) to step (6). The
algorithm has to check what kind of the token such
as keyword, comment, head file of the C code, etc.,
or a variable. In step (7), we transfer token into
equation or flow control equation. For example a = b
+ c, where a, b, c, =, and + are also a token. Step (8)
is mapping parameters, such as interrupt, timer,
variable type, input/output and subroutine of
interrupt or timer, into a program code. Step (9) is a
function of translation. During the period of
translation of ANSI C code into embedded C code,
both XML tree and Binary tree is used to build for
RCGES which handles some statements between
variables of ANSI C code and input/output port of
embedded C code, such as variables mapping,
selection, and loop functions.

3.4. Graphical User Interface of RCGES

In our RCGES methodology, a graphical user

interface (GUI) is supported for the selection of an
embedded processor and the setting of parameters.
The GUI of 8051-based and PIC-based embedded
systems is shown on Figure 7 and Figure 8,
respectively. The main operation has three steps
which are described as follows:
Step.(1) is to open a file and select the target

processor: designers should open a source code
from the menu ‘File’ and select target processor.

Step.(2) is to set the initial condition of embedded
processor including the parameter of interrupt,
timer, input/output port. Interrupt mode includes
int0, int1 and trigger by low-level or negative-
edge. In timer0 and timer1, designers can also set
timer priority and the amount of counter.

Step.(3) is to generate and display retargetable
embedded software.

4. Embedded System Examples

In this section, we use two embedded system
examples to illustrate our translating methodology:
LED display control of advertisement (LDCA) and
four phases stepping motor control (FPSMC). The
experiment environment of embedded system include
three parts which are GUI on Figure 7 and Figure 8
for parameter setting of embedded systems, two
compiler namely Keil C compiler and PIC C
compiler for producing executable specification code
and WINICE emulation board with 8051 and PIC for
testing embedded software functionality. The
WINICE emulation board specification includes a
80(C)51/52 CPU (Central Processing Unit), 16MHz
working frequency, 64 K-byte program memory, 64
K-byte data memory and parallel transmission port

Table 1. Code Generation Algorithm
Procedure Code_Generation
Begin
Open_file(); (1)
Initialization(); (2)
Parameter_Setting();//Set the interrupt, vector, timer,

I/O port type, etc. (3)
While(file is not ending) (4)
GetToken(); //get the variable from the file (5)
if(token = = keyword)//include, int, char, while for (6)

{if(Token= = Selection) //if, case, else…etc.
Selection (); //parsing if, else, and get the condition

 else if(Token= = Loop) //while, for …
Loop (); //get the loop times, and ending condition

 else if (Token= = HeadFille) //include
 Headfile(); //get the head file

else if (Token = = Declare)
 Declare (); //store the variable, array, and

subroutine,
 else Comment ();

}// end of if
else Variable ();
End;//end of While (7)
Statement (); (8)
Translation (); (9)
End;//end of Begin
End;//end of Procedure

Variables declare

Figure 6. C Code Translation to XML Tree

Include header

C code

Main function

Statement list

Function list

input/output port

XML tree

Root Node

Leaf
N d

Level 2

Level 1

Non-
terminal
Node

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

768

interface. The specification of PIC emulation board
is 16F877 CPU, 20MHz working frequency and 8 k-
word memory. In this experiment, timer, interrupt
and input/output port functionality is tested when
system is in initialization state. When all of
functionality is work correctly, two embedded
system examples are illustrated by RCGES.

The first example is a LED display control of
advertisement that system function is 8 LED turning
on sequentially from left to right or from right to left
controlled by interrupt or timer in embedded system.
Therefore, system designer firstly edit an ANSI C
code as main program which is shown in Table 2.
Then designer use our proposed graphical user
interface to set parameter such as initialization,
interrupt, timer mode or input/output value for
system constraints. Applying the RCGES to generate
code for 8051-based embedded system is shown on
Figure 7. The same method is applied to PIC-based
embedded system then the generation code is shown
on Figure 8. Main program define a set of table for
either P1 base on 8051 or PROTD base on PIC
output which waiting for interrupt or timer mode. If
interrupt is ‘0’, then LED will turn on from left to
right sequentially. In contrast, if Timer mode set to
‘0’, LED will turn on from right to left. The partial
embedded C code of the first example for 8051-
based and PIC-based system is shown in Table 3 and
Table 4, respectively. Furthermore, initial values,
interrupts and timer mode are also generated by
RCGES.

Another example is a four phase stepping motor
control (FPSMC). The function of FPSMC is using
interrupt and Timer to control the direction of motor.
If Timer mode set to ‘0’, the motor turns clockwise.
If interrupt is ‘0’, the motor turns counterclockwise.
Because the page limited, we show the partial
generation code in Table 5 and Table 6 for 8051-
based and PIC-based embedded system, respectively.

The output embedded C code from RCGES is
compiled using Keil C and Hi-Tech C to generate
execution code for 8051-based processors and PIC-
based processors, respectively. WINICE emulation
board of 8051 and PIC-16/17 are used to verify

include < stdio.h >
include < stdlib.h >
void delay(int) ;
main()
{int i,temp;
char table[8]={0xe7,0xc3,0x81,0x00,0x81,0xc3,0xe7,
0xff} ;
while (1)
{ for(i=0;i<=7;i++)

 {temp=table[i] ;
delay (10000) ;}}}

void delay(int count)
{int i,j;

for(i=0;i<count;i++)
 for(j=0;j<1500;j++) ;
…}

Table 2. ANSI C code for LED Display Control
of Advertisement

Figure 8. GUI for PIC-based Embedded
Systems

#include <reg51.h>
void delay (int) ;
int k=2000;
char OUT=0x80;
P1=11111111;
main()
{ET1=1;PT1=1;TMOD=0x02;TH0=(256-250);
TL0=(256-250);
TR1=1;EX0=1;PX0=1;IE0=1;int i , temp ;
char table [8]={ 0xe7 , 0xc3 , 0x81 , 0x00 , 0x81 , 0xc3 ,
0xe7 , 0xff } ;
while (1)
{for (i = 0 ; i <= 7 ; i ++)
{P1 = table [i] ;delay (10000) ;}}}

Table 3. Partial Embedded C Code of LDCA
for 8051-based Embedded Systems

#include <pic.h>
#include "cnfig877a.h"
void delay(int) ;
void main(void)
{TRISD=0x00;
PORTD=0b00000001;
T2CON=0b01111110;
TMR2IE=1;
PEIE=1;
GIE=1;
PR2 = 155;
char table[8]={0xe7,0xc3,0x81,0x00,0x81,0xc3,0xe7,
0xff} ;
while (1){for(i=0;i<=7;i++)
{PORTD=table[i] ;delay (10000) ;}}}

Table 4. Partial Embedded C Code of LDCA
for PIC-based Embedded Systems

Figure 7. GUI for 8051-based Embedded
Systems

Step (3)

Step (1) Step (2)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

769

RCGES feasibility.
The experiment result has shown that the

generation embedded C codes by RCGES can be
checked the correction through SW compiler
verification or emulation board such as 8051 and PIC
of WINICE. In case of external circuit examples, we
not only download the generation code of RCGES
into retargetable embedded systems, but also verify
circuit functionality.

5. Conclusion and Future Work

A retargetable code generation methodology,

namely RCGES, was proposed to solve automatically
generation embedded C code and provide a GUI for
the parameter setting of embedded processors. The
XML tree and Binary tree were successfully used as
an interface for translating C programs for
appropriate embedded processors in RCGES. We
have shown the feasibility through two embedded
system examples, LED display control of

advertisement (LDCA) and four phases stepping
motor control (FPSMC), on WINICE emulation
board. In the future, we will focus on the automatic
code generation of ARM-based and DSP embedded
systems.

References

[1] R. Leupers, “Code Generation for Embedded

Processors,” In Proceedings of the 13th International
Symposium on System Synthesis, pp. 173-178, Sep.
2000.

[2] M. F. Parkinson, P. M. Taylor and S. Parameswaran,
“C to VHDL Converter in a Codesign Environment,”
Spring Conference on VHDL International Users
Forum, pp. 100-109, 1994.

[3] A. Rettberg, E. Erpenbach, J. Tacken, C. Rust and B.
Kleinjohann, “Compilation of Flow Diagrams into
Target Code for Embedded Systems,” In
Proceedings of the Second International Workshop
on Compiler and Architecture Support for Embedded
Systems (CASES'99), Washington, D.C. USA, 1999.

[4] E.Y. Chung, L. Benini, G. DeMicheli, G. Luculli and
M. Carilli, “Value-Sensitive Automatic Code
Specialization for Embedded Software,” IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp.1051-1067, 2002.

[5] T.S. Chen, F. Lai and R. J. Shang, “A Simple Tree
Pattern Matching Algorithm for Code Generator,” In
Proceedings of the 9th Annual International
Computer Software and Applications Conference,
COMPSAC, pp. 162-167, Aug. 1995.

[6] R. Leupers, “Compiler design issues for embedded
processors,” Journal of Design & Test of Computers,
IEEE, vol. 19, no 4, pp. 51-58, 2002.

[7] T.-Y. Lee, P.-A. Hsiung, I-M. Wu, C.-C. Tsai, and
W.-T. Lee, “The Design of a Synthesis Tool for
Interrupt-based Real Time Embedded Software,” In
Proceeding of the International Conference on
Informatics Cybernetics and Systems (ICICS’2003,
Kaohsiung, Taiwan), pp. 1284-1289, Dec. 2003.

[8] P.-A. Hsiung, T.-Y. Lee, and F.-S. Su, “Formal
Synthesis and Code Generation of Real-Time
Embedded Software Using Time-Extended Quasi-
Static Scheduling,” In Proceedings of the 9th Asia-
Pacific Software Engineering Conference (APSE’02),
IEEE Computer Society Press, pp. 395-404, Dec.
2002.

[9] T.-Y. Lee and P.-A. Hsiung, “Embedded Software
Synthesis and Prototyping,” IEEE Transactions on
Consumer Electronics, vol. 50, no. 1, pp. 386-392,
Feb. 2004.

[10] N. Manohar, M. P. S. Bhatia, “A tool for automated
code generation for designing user interfaces on
character terminals,” In IEEE Proceedings
SoutheastCon 2001, pp. 155-159, Mar.-Apr. 2001.

[11] F. Charot and V. Messé, “A flexible code generation
framework for the design of application specific
programmable processors,” In Proceedings of the
Seventh International Workshop on
Hardware/Software Codesign, pp. 27-31, Mar. 1999.

[12] http://www.keil.com/c51/.
[13] http: //www.htsoft.com.
[14] http://www.microtime.com.tw/product/product.htm.

Table 6. Partial Embedded C Code of FPSMC
for PIC-based Embedded Systems

void delay(int count){
int i,j;
for(i=0;i<count;i++)

for(j=0;j<1500;j++){ ; }}
void interrupt isr_Sevr (void){

TMR2IF=0;
if (--k=0)
 {k=100; PORTD=step;
 if (step==0x10)
 {step=0x01; k=100;
 while(--k=0)
 {PORTD=step; step>>=1;
 if (step==0x10)
 {step=0x01;

}}}}}

void T0_int(void) interrupt 1
{TH0=(65536-5000) / 256 ;

TL0=(65536-5000) % 256 ;
if(--k=0){k=100;

P1=step;
if(step==0x10)

 step=0x01;
 k=100;

 while(--k=0)
 {P1=step;
 Step>> =1;

if(step==0x10)
 step=0x01;}}}
void delay (int count){…}

Table 5. Partial Embedded C Code of FPSMC
for 8051-based Embedded Systems

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

770

