
A New Method for Estimating the Testability of Polymorphism in Class
Hierarchy

Jin-Cherng Lin
Department of Computer Science and

Engineering, Tatung University,
Taipei 10451, Taiwan

E-mail: jclin@ttu.edu.tw

Yun-Liang Huang
Department of Computer Science and

Engineering, Tatung University,
Taipei 10451,Taiwan

E-mail: huang.strecker@inventec.com

Abstract-Software testing is one of the most
common ways for assuring quality of software
system, and software testability be also recognized
as new part of the software quality at the same time.
Conventional software testing methods are divided
into two categories: static testing and dynamic
testing. Most of testing methodologies fall into the
category of dynamic test, due to the face that more
information can be derived during programs
execution. On the contrary, in object-oriented
software test, the feature of inheritance and
polymorphism produce new testing obstacle during
dynamic testing. Our research in this paper will
propose a tester perspective to assess the
polymorphism in design stage and this way also
provide useful information for developer to probe
into the fault that is hidden from test in early stage.
In addition, from our polymorphism RATO model,
we recognized a new factor of testability in design
stage that is referred to as reachability.

We think that the main contribution of this paper
is providing an alternative tester perspective for
developer and let developer can estimate the
polymorphic behavior in class inheritance hierarchy
that may cause of test obstacle at design phase. At
the same time, this is first literature to propose the
polymorphism RATO model to model polymorphic
behavior, and use it as basis of analytical unit to
decompose inheritance class hierarchy. Besides, we
overcome the interdiction of lack of testing
information during design stage in the past. The
metric of testability on polymorphism, generated by
the polymorphism RATO model, can reveal defects
that hide at design stage in class hierarchy, it can
provide most early information for developer on
modify, redesign the system and find another way to
fix these defect as well.

Keywords: Descendant path, Dynamic binding,
Inheritance, Polymorphism RATO model,
Reachability, Testability

1. Introduction

The software testing is one of the most common
ways for assuring quality of software system.
Conventional software testing methods are divided
into two categories: static testing and dynamic
testing. In static testing the program is analyzed
without executing it, while in dynamic testing the
program is executed. Most of testing methodologies
fall into the category of dynamic testing, due to the
face that more information can be derived during
programs execution. Functional testing and
structural testing are two major approaches in
dynamic testing. They are also called black-box
testing and white-box testing. In functional testing,
tests are constructed based upon the program’s
functional properties, ignoring its internal structure.
In structural testing, the internal control flow
structure or data dependencies are used to develop
the testing methodology to conduct the testing [6].

As for static test method, most of researches are
through analyzed the program or system structures
to establish its related complexity or other software
metric (e.g. Testability, Dependencies, Coverage
and so on) in order to evaluate whether system or
programs can hide the fault� from test[14][15].
Through software metrics, we can evaluate the
accuracy of design at develop stage or to be used as
basis to establish the adequacy test plan at test stage.

Testing software is a difficult process, in general,
and sufficient resources are seldom available for
testing. From quality standpoint, testing is done
throughout a development effort and is not just an
activity tacked on at the end of a development stage
to see how well the developer did. We see testing as
part of the process that puts quality into a software
system. As a result, we address the testing of all
development products even before any code is
written since it is costly to redesign a system during
implementation or maintenance in order to
overcome a lack of testability. This notion is
discussed in [9] as well.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

933

1.1 Potential test issues in object-oriented
software

Most of people seem to believe that testing
object-oriented software is not much different from
testing procedure-oriented software. While many of
the general approaches and techniques for testing
are the same or can be adapted from traditional
testing approaches and techniques, but our
experiences and current research papers indicated;
in fact, they are different and presented a lot of new
challenges and test obstacles. The polymorphism is
a key feature of object-oriented programming which
showed a new technical challenge to tester.

The power of polymorphism brings the
expressiveness of programming languages. It also
brings a lot of new anomalies and fault types. We
refer to all of these problems as a new obstacle in
object-oriented test. Unfortunately, the techniques
that are used to eliminate faults in procedure-
oriented programs are not as applicable to those
found in object-oriented programs [10].

We know the method calls with polymorphism,
because of the dynamic binding characteristic, the
program code of the actual execution cannot be
predict. It will dynamic be decided at the run time.
We called this polymorphism headache is yo-yo path
phenomenon [1] and illustrates its actual call path
with figure 1. Therefore, it is very difficult to
observe and track executed path in test processes.
Besides, tester also hard to understand polymorphic
behavior meaning for its source code even though
have documented. Consequently, Tester cannot
design adequacy test case to expose hidden errors
that will result in low readability. Hence, tester can
not design the test case of the adequacy to expose
hidden errors. These will lead to low quality of
software. Finally, the inherent complexity of the
relationships found in object-oriented program also
affects testing. There are other potential faults to be
discussed in the past literatures [8], [10] and [13];
we summarized it as follows;
� The interactive complexity between

components.
� The data coupling with intra-class and inter-

class.
� The object dependency between classes.

In other words, from the test perspective, the
object-oriented programming with polymorphism is
hard to produce an adequacy test case because you
don’t know which type of object will be executed in
runtime and you can’t analyze the testability of
program code in static test as well because you don’t
know which fragment of code will be executed. An
object-oriented program with polymorphism, from
test viewpoint, it is very difficult to produce a test
procedure no matter when it is on software test or

measurement of testability. Therefore, that’s why we
say object-oriented software have potential testing
issues.

1.2 Goal of this research

This paper will present a model for the
appearance and realization of object-oriented faults
in polymorphism and discusses specific categories of
inheritance and polymorphic faults. The model and
categories can be used to support empirical
investigations of object-oriented testing techniques,
to inspire further research into object-oriented
testing and analysis, and to help improve design and
development of object-oriented software. Finally, we
will base on this model, and then we will provide a
technique to measure polymorphism testability
during design stage. The situation of object-oriented
design can’t be assess can be overcome through our
research. This is what all object-oriented software
measures can not do it before. This research
addresses the metric of polymorphism for object-
oriented program measure in design stage.

2. Polymorphism RATO Model

We will show a simple type and class hierarchy
diagram in figure 2 to illustrate the mechanics of
polymorphism RATO (reference attachment to
object) model. Although the model is called a class
diagram, we thought of it as a type diagram from
type-oriented perspective, and therefore each of
rectangles in the figure will represents a type. In this
example, each of polymorphic method call can be
modeled by RATO model (see figure 3.). To
understand these, consider the class hierarchy
diagram shown in figure 2. We use type declaration
and definition to create class hierarchy and then all

Figure 1. Yo-Yo p a t h h ea d a c h es

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

934

of polymorphic behavior can be mapped to
polymorphism RATO model in figure 3 [13].

Figure 2. S im p l e t y p e a n d c l a s s d ia gra m

Figure 3. P ol y m orp h is m R A T O m od el
Follow the polymorphism RATO model, if a

statement base on figure 1 and declared as below;
Derived2 derived2 = new Derived2()�
This statement declares an explicitly classed
reference variable, derived2, and attaches that
reference variable to a newly created Derived2 class
object. The top panel in figure 2 depicts the
Derived2 reference variable as a set of portholes,
through which the underlying Derived2 object can
be viewed. There is one hole for each Derived2
method. The actual Derived2 object maps each
Derived2 method to appropriate implementation
code. What is problem here? For example, the
Derived2 object maps overrides the m1()
implementation in class Base. As far as the
reference variable derived2 is concerned, that code
is reachless. That is meaning that some
implementation code may be inaccessible under test
when polymorphism occurred. There is

polymorphism declaration base on figure 2 class
diagram. If the statement declaration is
Base base= derived2�
There is absolutely no change to the underlying
Derived2 object or any of the method mappings,
though methods m3() and m4() are no longer
accessible through the Base reference. These also
mean that some implementation code may be
inaccessible under test when polymorphism occurred.
This polymorphism RATO model illustrates the
shielding effect on polymorphism. From tester
perspective, we thought these fragment codes are
easily hiding fault from test and hard to produce
adequate test case that will affect the testability and
quality of software system. We also define a concept
of descendant path base on polymorphism RATO
model. Using the concept of descendant path, we
can enumerate all of polymorphism possibility and
decompose a class hierarchy to analyze polymorphic
behavior, in which we recognize descendant path as
primary building block of polymorphism in class
inheritance hierarchy. From polymorphism RATO
model, we know that sometimes methods in object
will hide from different reference variable
attachment. This shielding effect never discussed in
any literatures of polymorphism measurement and it
will affect tester to produce the test case. Basically,
this effect will decrease software testability. We
recognize this phenomenon as new factor of DFT
(Design for Testability) for polymorphism issue.
This new factor is addressed as reachability. In the
past researches, polymorphic complexity was
measure by number of method overridden. In this
paper, we use this new factor and descendant path’s
complexity to improve the testability of
polymorphism measurement. It differs greatly from
controllability and observability that are key factors
in testability measurement previously.

3. Polymorphism measures in class
hierarchy

From the polymorphism RATO model, we
understand and use the concept of the descendent-
path as basis for observing all polymorphic behavior
on the class hierarchy diagram. What is descendant
path? We define the descendant path as follows:
Definition: Descendant path (DP). In the class
hierarchy, a descendant path is the set of classes
crossed by a path going from the root class to a leaf
class.

We also propose an algorithm here for finding
descendant path in class inheritance hierarchy. This
algorithm use breadth-first searching (BFS)
algorithm to traverse every class in hierarchy from
root node to leaf node.

Base

+ m1():String
+ m2():String

Derived1

+ m1():String
+ m3():String

Derived2

+ m2():String
+ m4():String

Object
(Actual parameter)

Class
(implementation)

Reference
 (Formal parameter)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

935

Algorithm for finding descendant path
Input����a class hierarchy
Output����descendant path
Step 1����build a class inheritance hierarchy data
structure and initiated each θdp. Such as,
θdp={node | !∃ node ∈ Root class node}
Step 2����use BFS algorithm to traverse all root class
nodes, from root to leaf node, in the process of
traverses, descendant node will be add into its
descendant path(θdp).
Step 3����Unite every descendant path (θdp) on leaf
node will get final descendant path set.

U
nbLeaf

i

dpdp i
1

)(
=

=Θ θ ; suppose that the total number of leaf

node is nbLeaf.
Using the notion of descendant path as building

block, we can decompose class hierarchy and assess
its testability in design stage. The mathematical
formula is given by:
Definition: The complexity of descendant path
with respect to inheritance. Let DP be descendant
path and h be the height of DP, the complexity for
DP is�

() () 21−×= hhDPCP Eq. 1
Definition: Polymorphic metric for each
descendant path. Let P is a path involved in the
polymorphism. A1,…..,AnbAttach are each of
polymorphic behavior in polymorphism RATO
Model. The polymorphic metric for each descendant
path is given by�

() ∑
=

+=
nbAttach

i

ii APoHMAPoPMPPolyMetric
1

)()(Eq. 2

Next, let A is a polymorphism reference attachment
to object combination. The probability of
polymorphic method on each polymorphic behavior
is given by:

NOM
NOVM

APoPM =)(Eq. 3

Where NOM denotes number of object method and
NOVM denotes number of overridden method.
Moreover, the probability of hidden method on each
polymorphic behavior is given by:

NOM
NRMNOM

APoHM
−

=)(Eq. 4

Where NOM denotes number of object method and
NRM denotes number of reference method.
Definition: Testability of polymorphism in
inheritance hierarchy. Let IH be an inheritance
hierarchy and P1,…, PnbDP are the path involved in
the polymorphism. The testability of polymorphism
in IH is given by�

() ∑
= ×

=
nbDP

i ii DPCPPPolyMetric
IHToP

1)()(
1 Eq. 5

4. Conclusion

Most of people know that the purpose of the

software test is used to improve software quality.
However, the method and concepts of the traditional
programming language test have no longer applied
on test of the object-oriented system. From the
research thesis of the object-oriented system that
have announced, we understand that test of the
object-oriented system polymorphism is the most
difficult process, and furthermore its related
research for announcing was few in the past.
Generally� speaking,� it is easy to obtain more testing
information during the period of dynamic test. On
the contrary, polymorphism testing broke this rule.
The tester has a new challenge in polymorphism test
that is due to its dynamic binding characteristic.
Moreover, the polymorphic behavior also confuses
developer, that is to say, polymorphism is easy to
hide the fault from testing and hard to produce an
appropriate test case. Consequently, the
polymorphism becomes an obstacle in test process
and affects the software quality in final. For
resolving these problems, in this paper we propose a
another kind of developer’s standpoint, through the
polymorphism RATO model accurate understanding
polymorphic behavior, moving the testability
estimated of test stage to design stage. Thus, the
developer can evaluate system testability on design
stage. Furthermore, developer can use these
information thinking whether developer redesign
the system or improve software testability by
program skill during implementation. We believe
that there are no other ways to fully cover the test of
polymorphism in dynamic testing or static testing.
We also believe that our research point out a new
direction of polymorphism test.

We think main contribution of this paper is to
provide alternative tester perspective to developer
and let developer can estimate the polymorphic
behavior in class inheritance hierarchy that may
cause of test obstacle at design phase. At the same
time, this is first literature to propose the
polymorphism RATO model to modeled
polymorphic behavior, and use it as basis of
analytical unit to decompose inheritance class
hierarchy. Besides, we overcome the interdiction of
lack of testing information during design stage in
the past. The metric of ToP(IH)(Eq.5), generated by
the polymorphism RATO model, can reveal defect
that hide at design stage in class hierarchy, it can
provide most early information to developer on
modify or redesign the system or find another way to
fix these defect as well. Nevertheless, notion of
descendant path is unique technique to be used to
analyze object interaction in object-oriented test.
Our paper makes other contribution is the
polymorphism RATO model reveal mechanism of
polymorphism in which developer can truly
understand the polymorphic behavior. Developer
can get some hints of polymorphism to resolve

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

936

design issues by way of polymorphism RATO model.
They also can use these kinds of information to
increase system testability by concept of abstract
class and control a number of methods overridden to
avoid its complexity to grow up too fast. Carefully
using the concept of abstract/virtual class in
hierarchy design will dramatically reduce
complexity of class hierarchy. In addition, the
polymorphism RATO model also provides a lot of
information to create the guideline for developer
that can assist developer to avoid violated design
rules of natural. Finally, we recognize a new
testability factor in DFT that is never find in the past,
reachability, it differs from exist factors of testability
on testability measurement or previously definition.
Most of factors in DFT are qualitative because it is
not easily to do quantitative analysis but we make it
possible. In the paper, we used different perspective
mining the implicitly factor that is embedded in
object-oriented design and propose a unique notion
to model and decompose the class hierarchy and
then accumulated related data to generate a
quantitative metric. The quantitative metric can help
developer significant reduced the defect of design to
be implemented into the software system. Not
everything discussed above all can be doing
effectively in the past. Well, the developer was not
afraid of polymorphism design because of they can
use this research to get most early design
information to assess its defect in object-oriented

5. Future work

In addition to above-mentioned matter, we will
try to find other barrier in the way of object-oriented
test. Otherwise, design pattern and template is also a
new testing obstacle in object-oriented programming.
In addition, the concept of coupling relation between
subroutine in testing procedure-oriented program or
the dependencies relation between software
components also adapt to estimate the relationship
between objects in object-oriented software. Using
control flow structure and data dependencies
between objects’ interaction that maybe is a way to
find other metrics to assess polymorphism in design
stage. Furthermore, we will keep research and
announce our studies in this field.

References
[1] Roger T. Alexander, A. Jefferson Offutt, “Criteria for

Testing Polymorphic Relationships”, 11th International

Symposium on Software Reliability Engineering
(ISSRE ’00), pages 15-23, San Jose CA, October 2000.

[2] Roger T. Alexander, A. Jefferson Offutt, “Analysis
techniques for testing polymorphic relationships.” In
Thirtieth international conference on Technology of
Object-Oriented Languages and Systems (TOOLS30),
pages 104-114, Santa Barbara, CA, 1999.

[3] James Bach, “Attributes of Software Testability”,
VeriTest.com Tester’s Network,
http://www.veritest.com/.

[4] Benoit Baudry, Yves Le Traon, and Gerson Sunyé,
“Testability Analysis of a UML Class Diagram”,
Proceedings of the Eighth IEEE Symposium on
Software Metrics (METRICS.02), 4-7 June 2002,
Page(s): 54-63

[4] Robert V. Binder, “Design for Testability in Object-
Oriented Systems”, COMMUNICATIONS OF THE
ACM September 1994/Vol.37, No.9

[6] Chi-Ming Chung, Ming-Chi Lee, “Object-Oriented
Programming Testing Methodology”, Software
Engineering and Knowledge Engineering, 1992
Proceeding., Fourth International Conference on, 15-
20 June 1992., Page(s):378-385

[7] Chi-Ming Chung, Ming-Chi Lee, “Inheritance-Based
Object-oriented Software Metrics”, TENCON ’92.
Technology Enabling Tomorrow: Computers,
Communications and Automation towards the 21st
Century 1992 IEEE Region 10 International
Conference, 11-13 Nov. 1992, Page(s):628-632 vol. 2

[8] B.H. Liskov and J.M. Wing, “A Behavioral notion of
subtyping”, ACM Transactions on Programming
Languages and Systems. Vol. 16, No. 6, November
1994. Pages 1811-1841.

[9] John D. McGregor, David A. Sykes, “A Practical
Guide to Testing Object-Oriented Software”,
Addison-Wesley, 2001.

[10]Jeff Offutt, Roger Alexander, “A Fault Model for
Subtype Inheritance and Polymorphism”, The Twelfth
IEEE International Symposium on Software
Reliability Engineering (ISSRE ’01), pages 84-95,
Hong Kong, PRC, November 2001.

[11]William E. Perry, “Effective Methods for Software
Testing-Second Edition”, Published by Wiley & Sons,
Inc.

[12]Bret Pettichord, “Design for Testability”, Pacific
Northwest Software Quality Conference, Portland,
Oregon, October 2002

[13]Wm. Paul Rogers, “Reveal the magic behind subtype
polymorphism “,
http://www.javaworld.com/javaworld/jw-04-2001/jw-
0413-polymorphp.html, April 2001

[14]Jeffery Voas, Larry Morell, Keith Miller, “Predicting
Where Faults Can Hide from Testing”, IEEE Software.
March 1991, pp.41-48.

[15]Jeffery M. VOAS, Keith W. MILLER, “Software
Testability: The New Verification”, IEEE Software,
Vol. 12, No.3: May 1995 pp. 17-28.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

937

