

Coordination Support for Heterogeneous Distributed Applications

Chia-Chu Chiang
Department of Computer Science

University of Arkansas at Little Rock
2801 S. University Ave., Little Rock, AR72204-1099, USA

E-mail: cxchiang@ualr.edu

Abstract - We present an approach to supporting the
development of heterogeneous distributed applications for
coordination through Multiparty Interaction (MI) protocol.
A CORBA middleware technology is used as an
underlying communication infrastructure to support
heterogeneous communications. The approach decouples
the applications and their underlying middleware
implementations including coordination protocols by
providing a set of generic interfaces to the applications.

Keywords: Coordination, CORBA, Middleware,
Multiparty Interaction

1. Introduction

 To support the development of heterogeneous
distributed applications for coordination, we augment the
existing middleware technologies to provide collaboration
support through Multiparty Interaction (MI) protocol. An
approach is presented to decouple the applications and
their underlying middleware implementations including
coordination protocols by providing a set of generic
interfaces to the applications.
 Joung and Smolka [4] writes that “A multiparty
interaction is a set of I/O actions executed jointly by a
number of processes, each of which must be ready to
execute its own action for any of the actions in the set to
occur.” N. Francez and I. R. Forman [3] present IP
(Interacting Process) as the basis of specification
languages for multiparty interaction. In IP, a distributed
system is organized into teams. A team is viewed as a
collection of distributed processes that interact with each
other through multiparty interactions. A process can
participate in a multiparty interaction through an
interaction statement of the form a[…], where a is the
interaction name and […] includes the statements to be
executed by this process when the interaction point is
executed.
 In this research, we are not implementing a new
language processor to execute IP specifications. On the
contrary, our intention is to allow IP specifications to be
realized under any general programming environment.
The approach we use is to analyze an IP specification and
generate a multiparty interaction description that is a data

structure to describe the properties of the multiparty
interactions in IP. Our IP language mapping approach
allows a multiparty interaction description written in any
target programming language to be automatically
generated from an IP specification. Application developers
then write a program in the target language to include the
multiparty interaction description in the program. A
function in the coordination library will be invoked to
represent the caller (participating party) to interact with
other participants for coordination. In this paper, we are
focusing on the coordination support in heterogeneous
distributed programming.

2. Coordination support

 Basically, the implementation of our distributed
multiparty interactions consists of three phases:
synchronization, data exchange, and computation. In the
synchronization phase, enabled interactions are detected
and one is selected for execution. In the data exchange
phase, data are exchanged among participating processes
through the underlying middleware. In the computation
phase, upon receiving all the needed data, the processes
participating in an interaction continue their executions on
the interaction bodies. For example, in the dining
philosophers problem shown in Figure 1, Philosopher0,
Fork0, and Fork3 need to synchronize at the interaction
point get_fork0 in the synchronization phase. Next, they
start to exchange data in the data exchange phase. In this
problem, however, there is no need for data exchange
among Philosopher0, Fork0, and Fork3. Following the data
exchange phase, these three participants enter the
computation phase, Philosopher0 needs to execute the
body of get_fork0 by assigning ‘eating’ to s0 which is a
local variable declared in the Philosopher0 process.

DINING_PHILOSOPHERS :: [Philosopher0 || Philosopher1 ||
Philosopher2 || Philosopher3 || Fork0 || Fork1 || Fork2 || Fork3], where

Philosopheri :: i = 0, 3
si := ‘thinking’;
*[si = ‘thinking’ → si := ‘hungry’

 si = ‘hungry’ & get_forki[si := ‘eating’] → release_forki[]
]

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

783

Forki :: i = 0, 3
*[get_forki[] → release_forki[]

 get_fork(i+1) mod 4[] → release_fork(i+1) mod 4[]
]

Figure 1. An IP to the dining philosophers

 Centralized solutions to the implementation of
multiparty interactions work quite well [2]. Our solution
shifts the centralized solutions to a distributed solution.
The work to be done in the three phases is distributed
among participants and their thread managers. Each
participating process creates its own thread manager to
mange its interactions. For an interaction, which the
participating process gets involved in, the thread manager
will create a proxy thread to connect to the interaction.
During the synchronization phase, information about
enablement or disablement of interactions is exchanged.
Once one interaction is selected, the thread manager
notifies the other threads within the participating process
indicating their interactions are not selected, so no one will
be neglected and the whole process is fair. Figure 2 depicts
our solution in the case of four philosophers who are
trying to pick up their forks. The detailed implementation
of coordination support is described in Section 3.

Philosopher0

Fork0 Fork3

get_fork0

Mfork0

Fork1 Fork2

Mfork1 Mfork2 Mfork3

MPhilosopher0

Philosopher1 Philosopher2 Philosopher3

MPhilosophe1 MPhilosopher2 MPhilosopher3

get_fork1 get_fork2 get_fork3

TPhilosopher0,0 TPhilosophe1,1 TPhilosophe2,2 TPhilosopher3,3

Tfork0,1 Tfork1,1 Tfork1,2 Tfork2,2 Tfork2,3 Tfork3,3 Tfork3,0Tfork0,0

Figure 2. A distributed solution to the dining
philosophers problem

 After synchronization, data exchange takes place.
Thread managers inform their participating processes
which interactions have been selected for execution. The
participating processes exchange the data they are
responsible for with their corresponding thread managers

by means of PutData(INOUT &OperationArgumentBuffer)
and GetData(INOUT, &OperationArgumentBuffer).
GetData() and PutData() transmit data through the
invocation of CORBA functions. At this moment, no
participating processes can continue until they all have
completed data exchanges. The detailed descriptions of the
coordination support can be found in [1].

3. Implementation of the coordination
support

 The heart of the design and implementation of
multiparty interactions is the distributed guard scheduling
problem described as follows:

Given n multiparty interactions Ii (i=1,…, n), each of
which has li parties to be participated by distinct
processes form m participating processes Pj (j=1,…,m)
whose identifiers are not know until run-time, the
guard scheduling problem is to select at subset of the
multiparty interactions for execution, subject to the
following constraints,
1. Each interaction selected for execution must have

all its parties participated by distinct processes.
2. No process can participate in executions of more

than on interaction.
3. If there are interactions which can be selected for

execution, the selection must be finished in finite
time.

Constraints 1 and 2 above are the safety requirement and
Constraint 3 the liveness requirement of the problem.
 For each interaction Ii, we create an interaction process
also denoted Ii. If Pj is ready to participate in k interactions
Ii1, ..., Iik, we create (1) thread manager Mj and (2) one
proxy thread Tj,ir for each of Ii1, ..., Iik. Our algorithm
consists of three protocols for proxy thread Tj,ir , thread
manager Mj, and interaction process Iir . Each of the
protocols is a finite state machine which uses input
message as event for state transition. The proxy thread Tj,ir

is used to communicate with interaction process, Iir.
Thread manager Mj serves as the manager of all the proxy
threads Tj,i1, … Tj,ik which it spawns.
 The basic idea of the protocol for Tj,ir is as follows: It
sends message Request to Iir to notify its intension to
participate. When Iir receives all the Requests needed, it
sends back a message All-Met to Tj,ir , telling Tj,ir that Iir is
ready to be activated. After receiving message All-Met,
Tj,ir may do one of the following three tasks: (1) if none of
the other Tj,ir’ has committed, Tj,ir may proceed to commit
itself to Iir by sending a Commit message to it and makes
transition to “commit” state (2) if a Tj,ir’ with higher
priority has committed to Iir’, Tj,ir withdraw its participation
by sending a Withdraw message to Iir and makes transition
to “re-try” state, or (3) if a Tj,ir’ with lower priority has
committed to Iir’, Tj,ir makes transition to “pending” state
waiting to commit in case the commitment of Tj,ir’ does
not realize the actual activation of Iir’ (due to withdrawals

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

784

of other participants of Iir’). The information about the
commitment or pending of all proxy threads is stored in a
shared array accessed through critical sections. Once in
“commit” state, Tj,ir is waiting for Succeed message from
Iir when it receives commitment from all of its participants.
After Tj,ir receives Succeed message, it sends a Finish
message to thread manager Mj to register the activation of
Iir and make transition to “success” state. The state
diagram of the protocol of thread Tj,ir is shown in Figure 3.
The transitions are represented by arcs labeled with
event/action pairs.

meeting

all-met

success

recv Request &
nReq = q

recv Commit &
nC = q

recv Commit/Withdraw/
Abort &

nC+nW < q

recv Request/Abort &
nReq < q

recv Commit/
Withdraw/Abort &

nC+nW = q

init

re-try

recv
TryAgain/

req-sent

/send
Requestready-

to-die recv Stop/
send Abort

recv Stop/

pending

/send Withdraw
send Retry

commit-
sent

success

recv Succeed/
send Finish

recv Continue/
send Commit

recv Stop/
send Withdraw recv All-Met/

a[...]=0/
send

Commit

recv Fail/
send Continue

send Retry

Figure 4. State diagram of interaction process Iir

 The protocol for thread manager Mj is to coordinate its
all the proxy threads. It also intercepts and relay messages
between proxy threads and its corresponding interaction
process. In particular, it will discard all the messages to
Tj,ir after it is killed by Mj. The main function of Mj

 is to
synchronize the transitions of Tj,i1, … Tj,ik. After it spawns
the proxy threads Tj,i1, …, Tj,ik, it waits for either Re-try
message or Finish message from each of them. Upon
receiving a Finish message from Tj,ir, it sends Stop
message to all the other proxy threads so that they can
send Withdrawal or Abort message to its corresponding
interaction manages before make transition to ‘ready-to-
die” state. If all proxy threads send Re-try message, Mj

sends “start-over” message back and allow them to start
the next round of coordination. The state diagram of
thread Mj is shown in Figure 5. Thread Mj maintains a
counter, nRetry, to synchronize all the proxy threads
before entering into the next round of coordination. The
next round of coordination should not start until all the k
proxy threads Tj,ir (r = 1, …, k) fail.

Figure 3. State diagram of thread Tj,ir

 The protocol for interaction process, Iir, is a simple
two-phase locking protocol with three states: “meeting”,
“all-met” and “success”. In the “meeting” state, Iir receives
Request message or Abort message from its participants,
incrementing or decrementing its request counter,
respectively. When the request counter reaches the total
number of participants, Iir sends All-Met message to all of
the participants, and makes transition to “all-met” state. In
the “all-met” state, it waits for either a Commit,
Withdrawal or Abort message from each of its participants.
A commit counter and a withdrawal counter are used to
track the numbers of the corresponding participants to
decide whether it can transit to “success” state (when all
participants committed) or “meeting” state to start over
again for the next round of coordination (when all
responded, but the number of committed falls short of the
total number of participants). The state diagram of Iir is
shown in Figure 4. Process Iir maintains three counters,
nReq, nC, and nW, for the number of Request()s,
Commit()s, and Withdraw()s received, respectively.

init

working

finishing

success

recv Finish/
send Stop

recv Retry/
if (nRetry = p)

 send TryAgain

recv ReadyToDie/
send Kill

Figure 5. State diagram of thread Mj

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

785

4. Correctness and complexity

 In this section, we prove the correctness and analyze
the message complexity of the guard scheduling algorithm
presented in the previous section. A solution to the guard
scheduling problem for coordinating first-order multiparty
interactions must satisfy the requirements of safety,
liveness, and progress.

4.1 Safety

 The safety requirement of the guard scheduling
problem defined in Section 3.3 demands that

• no interaction be selected to execute unless all its
parties are participated by distinct processes
(interaction safety), and

• no process participates in more than one interaction
at a time (process safety).

The interaction safety requirement can be derived from the
protocol of Iir directly. In particular, process Iir will not
enter into state ‘all-met’ unless it receives the requests for
participation from q (i.e. lir) processes. Furthermore, it will
not enter into state ‘success’ unless it receives the
commitments from all these processes.
 The process safety is ensured by Theorem 1 as follows.

Theorem 1. Among the proxy threads Tj,i1, …, Tj,ik,
started by Pj, only one can enter into state ‘success’.
Proof: Thread Tj,ir can enter into state ‘success’ only from
state ‘commit-sent’. It can enter into state ‘commit-sent’
either from state ‘pending’ or state ‘request-sent’. Thread
Tj,ir moves from state ‘request-sent’ to state ‘commit-sent’
only when all the bits of bit map a[] are 0. If it moves into
state ‘pending’, it will not enter into state ‘commit-sent’
until another thread sends it a Continue after leaving state
‘commit-sent’. Therefore, there is only one thread in state
‘commit-sent’ at any time. After the thread enters into
state ‘success’, all other threads will be killed.

4.2 Liveness

 The liveness requirement of the guard scheduling
problem demands that there be no deadlock in the system
comprising all the threads and processes running the
protocols of Tj,ir, Mj, and Iir. In particular, no process or
thread is allowed to stay in a waiting state indefinitely.
 After Iir receives all the Iir requests it needs and enters
into state ‘all-met’, it will receive the same number (li) of
Commit(), Withdraw() or Abort(), provided that each
thread Tj,ir involved is live and responds eventually. After
that, Iir will enter either into state ‘meeting’ again for the
next round of coordination or into state ‘success’. In other
words, Iir is live as long as each thread Tj,ir with which it
communicates is live.
 Similarly, if every thread Tj,ir (1 ≤ r ≤ k) is live, thread
Mj is also live. In particular, thread Mj will remain in state

‘working’ and start the next round of coordination if all
the k proxy threads Tj,ir (r = 1, …, k) are successful. If one
thread succeeds, Mj will receive Finish() from it and enter
into state ‘finishing’. Mj will further receive (k-1)
ReadyToDie()s from the remaining proxy threads and
enters into state ‘success’. Therefore, the liveness of the
entire system hinges on the liveness of the protocol of Tj,ir.
The following lemma is used to prove the liveness of Tj,ir.

Lemma 1. If a proxy thread Tj,ir is in state ‘pending’
indefinitely, there must be another proxy thread Tj,ir’ of Pj
such that r < r’ in state ‘commit-sent’ indefinitely.
Proof: a[r] = 1 only if Tj,ir is in state ‘commit-sent’ or
‘pending’, but the first thread Tj,ir with a[r] = 1 must be in
state ‘commit-sent’. To simplify the notation, we rename
Tj,ir to be T’j,r. Let us assume that T’j,r stays in state
‘pending’ indefinitely.
 When thread Tj,ir enters into state ‘pending’,
a[(r+1)…k] ≠ 0 must be held. Let a[u1], …, a[uv] (r+1 ≤ u1
< … < uv ≤ k) be all the bits that either are 1 when T’j,r
enters into state ‘pending’ or ever become 1 when T’j,r is
in state ‘pending’ (indefinitely).
 Thread T’j,uv must be in state ‘commit-sent’ when T’j,r
enters into state ‘pending’. Other threads T’j,u1, …, T’j,uv-1
must be in state ‘pending’ first. We want to prove that
based on the assumption above at least one of T’j,u1, …,
T’j,uv must be in state ‘commit-sent’ indefinitely.
 Consider thread T’j,uv first. If it does not stay in state
‘commit-sent’ indefinitely, it must receive a Success() or a
Fail in finite time. If it receives a Success(), T’j,r would
leave state ‘pending’ in finite time. This would contradict
the assumption above. If it receives a Fail, thread T’j,uv-1
will enter into state ‘commit-sent’ in finite time. The same
procedure will also apply to threads T’j,uv-1, …, T’j,u1.
Therefore, if none of T’j,u1, …, T’j,uv can stay in state
‘commit-sent’ indefinitely, T’j,r will leave state ‘pending’
in finite time. This proves the lemma.
 There are four waiting states in the protocol of Tj,ir:
‘req-sent’, ‘commit-sent’, ‘pending’, and ‘re-try’. The
waiting of Tj,ir in state ‘req-sent’ is to ensure interaction
safety and should not be considered as a problem for
liveness. Tj,ir in state ‘re-try’ will enter into state ‘init’ after
all the threads started by Pj send Withdraw()s to their
interactions. Therefore, for the liveness of the protocol of
Tj,ir, we only need to prove that no thread Tj,ir will stay in
state ‘commit-sent’ or ‘pending’ indefinitely. This is done
in the following theorem.

Theorem 2. It is impossible for any proxy thread Tj,ir in
the system to stay in state ‘commit-sent’ or ‘pending’
indefinitely.
Proof: According to Lemma 1, we only need to prove that
it is impossible for any proxy thread Tj,ir to stay in state
‘commit-sent’ indefinitely.
 Let us assume that there is a proxy thread Tj1,i1 staying
in state ‘commit-sent’ indefinitely. This means that Tj1,i1

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

786

 According to the protocol, a thread Tvj,ui (1 ≤ j ≤ y, 1 ≤
i ≤ w) can send Withdraw() only in two states: ‘req-sent’
and ‘pending’. But, based on the assumption above, it is
impossible for Tvj,ui to send Withdraw() in state ‘pending’.
This is because otherwise it must receive a Stop from Mvj
and therefore there must be a thread Tvj,ui’ (1 ≤ i’ ≤ w) that
succeeds in its coordination. This would imply that Iui’
enters into state ‘success’.

receives neither Success() nor Fail in finite time.
Therefore, none of the threads coordinating interaction Ii1
ever sends a Withdraw() or an Abort() to it. Furthermore,
there is at least one of these threads that does not ever send
a Commit() either. Let this thread be Tj2,i1. According to
the protocol, Tj2,i2 from the same process Pj2 such that it
stays in state ‘commit-sent’ indefinitely and i1 < i2.
Continuing this way, we will have an infinite series

Tj1,i1, Tj2,i1, Tj2,i2, …, Tjk,ik-1, Tjk,ik, … To simplify the notation, Pvj, Iui, and Tvj,ui are renamed
P’j, I’i, and T’j,i, respectively. Consider I’w first. Because it
enters into state ‘meeting’, it must have received at least
one Withdraw() from, say T’j1,w (1 ≤ j1 ≤ y). According to
Lemma 2, there must be a thread T’j1,i1 that has sent a
Commit() to I’i1 such that i1 < w. Since I’i1 also enters into
state ‘meeting’, it must have received a Withdraw() from
say, T’j2,i1 (1 ≤ j2 ≤ y). By using Lemma 2 again, we can
find another thread T’j2,i2 that has sent a Commit() to I’i2
such that i2 < i1. Continuing this way, we will have an
infinite series

such that Tjk,ik (1 ≤ k) and Tjk,ik-1 (2 ≤ k) are indefinitely in
states ‘commit-sent’ and ‘pending’, respectively, and i1 <
i2 < … < ik < …. On the other hand, there are only a finite
number (m) of interactions and we must have i1 < i2 < … <
ik < … < m. Therefore, the series above cannot be infinite.
We have reached a contradiction.

4.3 Progress

 We have proved the liveness of the system. The next
question is whether the system can make progress in
selecting interactions. The liveness of the system
guarantees that an interaction process in state ‘all-met’ will
enter into state ‘meeting’ or state ‘success’ in finite time.
The progress requirement demands that at least one of
those interactions in state ‘all-met’ enter into state
‘success’. This requirement is satisfied in our algorithm. In
order to prove this, we need the lemma as follows.

T’j1,w, T’j1,i1, T’j2,i1, …, T’jk,ik, T’jk+1,ik, …
such that … < ik < … < i1 < w. On the other hand, there
are only a finite number (w) of interactions involved and
we must have 1 < … < ik < … < i1 < w. Therefore, the
above series cannot be infinite. We have reached a
contradiction.

4.4 Message complexity

Lemma 2. If thread Tj,ir sends Withdraw() to Iir in state
‘req-sent’ and enters into state ‘re-try’, there must be
another thread Tj,ir’ of Pj in state ‘commit-sent’ such that r’
< r.

 In our algorithm, Iir will re-try in the next round of
coordination if it is not selected. Theorem 3 shows that at
least one selectable interaction will be selected in each
round of coordination. For a particular interaction selected
eventually, the cost is obviously the number of rounds of
coordination it has gone through times the number of
messages required in each round of coordination.
According to the protocols of our algorithm, 4lir messages
between interaction Iir and its lir participating processes are
required in each round of coordination.

Proof: Thread Tj,ir in state ‘req-sent’ sends a Withdraw()
to Iir only if it finds a[1..(r-1)] ≠ 0. Let r’ be the largest
integer such that r’ < r and a[r’] = 1. According to the
protocol, thread Tj,ir’ is either the first thread in state
‘commit-sent’ or a past pending thread which has been
woken up by another thread and entered into state
‘commit-sent’. The average number of rounds of coordination

required to select an interaction depends on many factors.
First of all, it depends on the number of interactions
connected through processes in conflict (processes ready
to participate in more than one interactions) in the bipartite
graph [1]. The larger is this number, the more rounds of
coordination are needed. Secondly, the larger is the
average number of interactions in which processes in
conflict participate, the faster drops the number of
selectable interactions. As a result, the average number of
rounds of coordination required to select selectable
interactions would be smaller. The third factor is the non-
deterministic nature of the algorithm. Figure 6 shows two
possible scenarios of selection of interactions I0 (P0, F0,
and F3) and I2 (P1, F0, and F1) in Figure 1. Ii represents the
multiparty interactions, get_forki, of the fork processes
Forki, Fork(i-1) mod 4, and Philosopheri (we assume that
index arithmetic is cyclic, i.e., 0 – 1 = 3 and 3 + 1 = 0).

 The following theorem shows that in each coordination
at least one selectable interaction will be selected. This
ensures the progress of our algorithm.

Theorem 3. Let Iu1, …, Iuw be the subset of all the
interactions that enter into state ‘all-met’ after receiving all
the requests they need. Then, at least one of them will
enter into state ‘success’.
Proof: Let Pv1, …, Pvy be all the processes involved to
make Iu1, …, Iuw enter into state ‘all-met’. Without loss of
generality, we also assume Iu1 < … < Iuw, i.e. u1 < … < uw.
Due to the liveness of the system, every interaction of
Iu1, …, Iuw will receive a response, Commit(), Withdraw(),
or Abort(), from each of its participating processes from
Pv1, …, Pvy and enter into either state ‘meeting’ or state
‘success’. Let us assume that none of Iu1, …, Iuw enters
into state ‘success’.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

787

 As a matter of a fact, the scenario shown above in
Figure 6(a), (b), and (c), is the worst case that can ever
happen, where each process in conflict connects only two
(the lowest) interactions in the bipartite graph and only
one interaction is selected in every round of coordination.
This gives us the upper bound of the number of
coordinations for an interaction to be selected: [w/2],
where w is the number of interactions connected through
processes in conflict in the bipartite graph. This leads to
the following theorem about the message complexity of
our algorithm.

Labels C or W of an edge shows that the process has sent
Commit() or Withdraw(), respectively, to the
corresponding interaction. Label P indicates that the
process is in state ‘pending’ after it receives All-Met from
the corresponding interaction. Label R indicates that the
process has sent a Request() to the interaction, but cannot
receive All-Met from it.

P0 F0 P1 F1 P2 F2 P3 F3

C C CW C CW C W C W C

I0 I1 I2 I3

Theorem 4. Given an l-party interaction I, the maximum
number of inter-process messages required for I to be
selected for execution is 4l[w/2], where w is the maximal
number of interactions connected through processes in
conflict in the bipartite graph of the problem.

(a)

P1 F1 P2 F2 P3

R R R RC C C

I1 I2 I3

5. Summary

 First-order multiparty interaction is one of the
abstractions in the distributed programming model, called
Interacting Processes, proposed by N. Francez and I. R.
Forman [3]. In this paper, we presented an algorithm for
coordinating first-order multiparty interactions on demand
with the middleware support. In this algorithm,
middleware serves as the underlying communication
infrastructure. Data exchanges are done by middleware.
Application developers can develop distributed
applications without concerning about the issues of
heterogeneity such as data marshalling/unmarshalling and
data formats. Applications in different programming
languages running on different machines can exchange
information across different network systems. In addition,
no specific language processor needs to be implemented in
order to execute the applications using IP. Our approach
allows the applications in any target language to be
executed in any general programming environment.

(b)

P1 P3

I1 I3

R R

(c)

P0 F0 P1 F1 P2 F2 P3 F3

C C CW P CC C W C W C

I0 I1 I2 I3
(d)

Figure 6. Progress of non-deterministic selection

 Figure 6(a) shows one possible situation where only
interaction I0 is about be selected. The selection of I0
leaves only I2 still selectable in the second round of
coordination. Figure 6(b) shows how I2 is selected in the
second round of coordination. Note that I1 and I3 cannot
receive Request()s from F0 and F3 (TF1,1 and TF3,3, to be
exact)., respectively, because they are not available
anymore. Figure 6(c) shows the situation after I2 is
selected.

References

[1] C.-C. Chiang and P. Tang, ‘Middleware Support for

Coordination in Distributed Applications,’ Proceedings of
the Fifth IEEE International Symposium on Multimedia
Software Engineering (MSE 2003), December 10-12, 2003,
Taichung: Taiwan, ROC, pp. 148-155.

[2] R. Corchuelo and D. Ruiz, M. Toro, and A. Ruiz,
‘Implementing Multiparty Interactions on a Network
Computer,’ Proceedings of the XXVth Euromicro
Conference, Milan, Italy, September 1999, pp. 458-465. Let us go back to the situation shown in Figure 6(a)

again. If the All-Met of I2 reached thread TF1,2 of F1 before
the All-Met of I1 reached thread TF1,1 of F1, we would like
have the situation shown in Figure 6(d). Both I0 and I2
would be selected in the first round of coordination and
the system would move to the situation shown in Figure
6(c) immediately.

[3] N. Francez and I. R. Forman, Interacting Processes,
Addison-Wesley, 1996.

[4] Y.-J. Joung and S. Smolka, ‘A Comprehensive Study of the
Complexity of Multiparty Interaction,’ Journal of the ACM,
Vol. 43, No. 1, January 1996, pp. 75-115.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

788

