

Construction of BBN Diagrams for Software Process Tailoring

Wan-Hui Tseng and Chin-Feng Fan
Computer Science and Engineering Dept., Yuan-Ze University.

csfanc@saturn.yzu.edu.tw

Abstract -Tailoring industrial standards aims to
reduce costs and/or improve quality for a particular
organization or project. This paper proposes using
Bayesian Belief Network (BBN) analysis to support
tailoring decision-making under uncertainties.
However, there are two major problems associated
with the objectivity of BBNs; that is, the construction
of the causal inference diagrams and the assignment
of probabilities of their dependency relations. We
have developed a method to solve the first problem.
In general, the relations among different activities,
resources, and products addressed in software
standards can be expressed more directly in UML
diagrams than in BBN’s; such relations include
association, aggregation, or inheritance relations.
We have developed a scheme to construct BBNs from
given UML modeling of software standards for
process tailoring purpose. The proposed approach
integrating UML and BBNs can also be used to assist
decision-making in other software project
management activities, such as planning and risk
management.
Keywords : software process tailoring, UML, BBN

1. Introduction

 Different software organizations and projects
have different quality requirements and resource
constraints. Thus, tailoring of software standards is
required to reduce costs and/or improve quality for a
particular organization or project.

This paper proposes using Bayesian Belief
Network (BBN) analysis to support tailoring
decision-making under uncertainties. BBNs have
been widely used to support decision-making under
uncertainties. BBNs provide visible causal
dependency diagrams, mathematical computation of
probabilities, and support the visibility and repetition
of the decision-making process. However, there are
two major problems associated with the objectivity
of BBNs; that is, the construction of the causal
inference diagrams and the assignment of
probabilities of their dependency relations. We have
developed a method to solve the first problem.
Software standards involve resources, processes, and
products, which have various kinds of relations such
as inheritance (is -a), aggregation (part-whole),
input/output, temporal, and associations relations.
They all can be modeled by UML diagrams more

directly than by BBN’s. Thus, we propose to first
model the requirements of the concerned standards in
UML, and then identified the explicit and implicit
cause-consequence relationships in these UML
diagrams to construct related BBNs. This way the
factors considered in BBN diagrams have more
objective bases than those if we directly model
software standards using BBNs. Results of BBN
analysis for what-if questions can then be used for
tailoring decision-making.

The standards used in this research are
IEEE/EIA 12207[3] and ISO/IEC 15504[4]. Section
2 provides a brief background introduction Section 3
shows the UML modeling of general standards such
as IEEE/EIA 12207 and ISO/IEC 15504. Section 4
presents our approach to objective construction of
BBNs from UML diagrams. Section 5 is the inferred
BBNs and a sample tailoring case. Finally, a
conclusion is given.

2. Related Background

Bayesian Belief Network [1] is an acyclic
graph used for modeling and reasoning with
uncertainties. Each node in a BBN represents a
random variable, whose state is usually expressed in
discrete numbers or ranges. Each edge in the graph
represents the causal influence between connected
nodes. A Conditional Probability Table (CPT) is
associated with each node to denote such causal
influence. CPT's are filled by experts or inferred
from statistical data. Once new evidence is obtained,
it can be plugged in the graph to update the states of
the related nodes. The calculation is propagated from
parent nodes to child nodes and vice versa. A BBN
graph can be expanded into an influence diagram by
adding decision nodes and utility nodes. The former
are shown by rectangles; the latter, representing cost
or profit functions, are depicted by diamonds. Figure
1 is a sample BBN example.

Manager capability

Developer capability

Product quality Product performance

Training

Training Cost

Figure 1. BBN Example

Current tailoring techniques are mostly
subjective depending on domain experts. IEEE/EIA

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

908

12207 Annex A and B provide tailoring guidelines.
The concerned factors include: project characteristics,
development model, contract requirements, time and
budget constraints, legal and safety factors. However,
the standard does not provide technical schemes to
use these factors in tailoring.

3. UML Modeling of Software Standards

UML is widely used for modeling at the

object-oriented analysis and design stages. It
provides both the data and behavior modeling of
software systems. Software standards address the
desired practice, resources, and products of software
life cycles. The involved entities have such
relationships as is -a, part-whole, input-output,
temporal, and other associations. For example, the
each individual process is a process (is -a); each
process contains several activities (part-whole);
design documents are inputs and source code is the
output for the implementation stage (input-output);
etc. UML diagrams can better model these entities
and relations directly than BBNs. Besides, using
UML, we can construct the modeling in a
hierarchical way. That is the construction can start
from the most abstract level to the details using
different kinds of UML diagrams.

We first model the general software processes,
products, and resources based on IEEE/EIA 12207.
For tailoring purpose, we also consider the
developer’s process capability levels as indicated in
ISO/IEC 15504.

Process, product, and resources are the three
major groups of concerned entities. Moreover,
software project management also deals with
pragmatic aspects such as personnel issues and
particular project’s characteristics. Here we isolate
personnel from resources. Therefore, we group the
major concerned factors into the following six
categories: (1) process, (2) product (3) resources (4)
process capability levels, (5) personnel, and (6)
project characteristics. Figure 2 shows details of
these categories using UML package diagrams.
Then these six categories are expanded into details
using appropriate UML diagrams. They are
mentioned below.

For activities, we use an activity diagram to
show the temporal, input-output, and quality factors
among different activities. Since whether IV&V
(Independent Verification and Validation) should be
used is an issue in our case study, we also add IV&V
to our consideration. The resulting UML activity
diagram is shown in Figure 3. Moreover, the
structural relations of development and supporting
processes can be represented using class diagrams as
those shown in Figure 4.

For products, we consider different documents,
their related quality and relations.

For resources, we consider organization support,
budget, schedule, and tools. These are shown in

Figure 5.
For capability levels, we refer to ISO/IEC 15504

and consider capability level, process attributes under
each level, management practice of each process
attribute, base practice of each management practice,
and work practice of each management practice. This
is shown in Figure 6.

For pragmatic concerns, we consider personnel
types, experience, capability, team performance
factor as well as project characteristics. These are
shown in Figure 7.

As shown above, the desired software practice
and related products and resources addressed in a
general standard can be successfully modeled by
UML diagrams in a hierarchical way.

4. Construction of BBNs Based on UML

Diagrams

 Once the UML modeling has been built, BBNs
can be derived. The potential BBN nodes and their
cause consequence relations need to be inferred or
extracted from given UML diagrams. The causal
relations we considered include the following:
l logical relations : logical relations between

attributes and between classes/objects
l input/output relations: input affects processing,

and processing affects output
l part-whole relations: parts affects the whole
l temporal relations: predecessors affect

successors

We first define by the following UML notations:
1. Attribute }.,...,.,.{. 21 nattCattCattCattC = ：where C.att

is the attribute set of class C.
2. Generalization relation RGen=(C,CGen)：where C

is a superclass, CGen is the set of its subclasses
3. Aggregation relation RAgg=(C, CAgg)：where

CAgg is the set of parts of class C.
4. Association relation RAss=(C,CAss)：where

classes CAss and C have association relation.
5. Dependency relation RDep=(CDep, CDep1)：

where class CDep depends on class CDep1.
6. C. implied refers to one of C’s implicit properties,

not represented by C’s attributes. Similarly,
State.implied refers to one of State’s implicit
properties related factors.

For BBNs, we define the acyclic graph= (N, E,

r), where N is the sets of nodes, E is the set of edges,
and r is the causal relations among nodes.
If NNbaerEe ×∈=∧∈),()(, then a is called the
parent node, and b the child node of the causal
relation.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

909

Process

Development quality

Supporting quality
Supporting
process

Development
process

Process
capability

Project
characteristics

Resources

Personnel
factors

Team
performance
factors

Pragmatic
factors

Personnel

Product quality

Figure 2. Major entity categories

Requirement Analysis

Analysis V&V

Design

Design V&V

Code

Code V&V

Test

Test V&V

[Analysis Quality
Low]

[Requirements
Change]

[Design Quality
Low]

[Code Quality
L o w]

[Test Quality
Low]

[Analysis Quality Ok]

[Design Quality
Ok]

[Code Quality Ok]

[Test Quality Ok]

[Requirements
Change]

[Requirements
Change]

[Requirements Change]

Analysis IV&V

Design IV&V

Code IV&V

Test IV&V

Figure 3. Activities and their relations

a n a l y s i s d e s i g n c o d e

+ T e s t _ P l a n ()
+ T e s t _ R e p o r t ()

t e s t

+ f u n c t i o n a l _ s p e c i f i c a t i o n s ()
+ i n t e r f a c e ()
+ q u a l i f i c a t i o n _ r e q u i r e m e n t s ()
+ s a f e t y _ s p e c i f i c a t i o s ()
+ s e c u r i t y _ s p e c i f i c a t i o n s ()
+ h u m a n - f a c t o r s _ e n g i n e e r i n g ()
+ d a t a _ d e f i n i t i o n _ d a t a b a s e _ r e q u i r e m e n t s ()
+ a c c e p t a n c e _ r e q u i r e m e n t s ()
+ u s e r _ d o c u m e n t a t i o n ()
+ u s e r _ o p e r a t i o n ()
+ u s e r _ m a i n t e n a n c e ()

s o f t w a r e r e q u i r e m e n t s a n a l y s i s

i n t e g r a t i o n

Q u a l i f i c a t i o n t e s t i n gC o d i n g a n d t e s t i n g

a r c h i t e c t u r a l d e s i g n

D e v e l o p m e n t p r o c e s s

(a) Development processes

Quality assurance

configuration management

Documentation AuditProblem resolutionJoint review

IV&VV&V

+Plan()
+Report()

Verfication implementation

+Contract verification()
+Process verification()
+Requirement verification()
+Desing verification()
+Code verification()
+Intergration verification()
+Documentation verification()

Verfication

+Plan()
+Report()

Validation implementation

+Test()
+Validation()

Validation

Supporting Process

(b) Supporting processes
Figure 4. Composition relations of activities

Budget ScheduleOrganization Support Tool

Resource

Figure 5. Resource factors

1

0..2

1
3..5

-ID
-Name

Process capability

-Name
-ID
-Outcome
-Description

Process attribute

+Document()
+Do()
+evaluation()

-ID
-Description
-Item

Management practice

+Do()
+Document()

-ID
-Type
-Characteristic

work product

+plan()
+Do()
+Document()
+check()
+generate defect()

-ID
-Name
-purpose

base practice

process

outputinput

Figure 6. Capability related concerns

-Team size
-Workload

Team performance factor

-Time pressure
-Budget pressure

Pragmatic factor

+Generate Document()

+capcbility
+experience
+productivity

personnel

-defect generation rate

requirement analyst

-defect generation rate

designer

-defect generation rate

parogammertester reviewerproof anysist

Figure 7. Personnel types and personnel quality

Our inference method can be categorized into
structural relations and behavior relations. For
structural relations, the following rules can be used:

Rule 1 derives potential causal relations
between attributes of a class. However, the class may
not explicitly model some of the desired attributes.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

910

For example, the type of a project may affect the
project complexity; while the complexity may not be
modeled. Then it will be added as implied factors in
the resulting BBN causal diagrams. Figure 8 shows
the inferred BBN causal relations from UML class
attributes and implied attributes. Similarly, in
inheritance hierarchy, there may exist dependencies
among inherited attributes and new attributes of child
classes.

- C . a t t
- C . a t t
- . . .
- C . a t t

C

1

2

N

(a) UML class

C.att2

C.att1 C.atti

C.attj

(b) Possibly inferred BBNs(case1)
C.att2

C.att1 C.atti

C.implied

(c) Possibly inferred BBNs(case2)
Figure 8. Causal Relations between attributes

C

C A g g C A g g C A g g1 2 N

(a) UML classes with aggregation relation

CAgg2

CAgg1

C.implied

CAggN

(b) Converted BBN

Figure 9. Part-of relations
Rule 2 deals with “part-of” relations between

classes. The aggregation relations show in UML class
diagrams can be converted to BBNs’ causal relations:
the parts depend on the whole. This is shown in
Figure 9.
 UML class diagrams also express various kinds
of relations between two classes. The UML
association relations and dependency relations are the
most obvious ones that may be directly modeled in

BBNs. The potential derivations from UML’s
association and dependency relations to BBNs’
causal relations are shown in Figures 10 and 11,
respectively.
 For behavior modeling, temporal and I/O
relations can be derived from UML state transition
diagrams or statcharts. Two states in the state
transition diagrams may have temporal, input/output
or data relations. The predecessors may affect the
successors; the input may affect the output. For
example , the quality of design state’s output may
affect the quality of coding process. The possible
state transitions and the inferred BBN are shown in
Figure 12. Note that the original state diagrams may
have cycles; however, BBNs cannot have cycles.
Similarly, BBNs may be generated from activity
diagrams.
 The above rules can assist us to construct BBNs
systematically. If the given UML diagrams faithfully
and completely model the examined standards, it is
highly possible that the derived BBNs can also
faithfully express the standards. Then tailoring of
software standards can then be proceeded on the
resulting BBNs.

C

C A s s

C A s s

1

N

(a) UML classes with association

CAss1

CAssN

C

C

CAss1

CAssN

 (b) Possible BBNs

 Figure 10. Association relations

CDep CDep1

(a) UML classes with dependency

CDep1 CDep

(b) Converted BBN

Figure 11. Dependency relation

Rule 2: Aggregation relations among classes
If RAgg=(C, CAgg) where }1|{ niiCAggCAgg ≤≤=
in UML,
Then, there potentially exits an edge e in BBN,
where).,(impliedCiCAgge = for ni ≤≤1

Rule 3: Association among classes
If RAss=(C,CAss) }1|{CAss, niiCAss ≤≤= in UML, Then

there potentially exits an edge e in BBN, where
),(CiCAsse = or),(iCAssCe = for ni ≤≤1

Rule 4: Dependency relations among classes
If RDep=(CDep, CDep1) in NUL,
Then there exits an edge e in BBN,
where),1(CDepCDepe =

...

...

...

...
...

Rule 1: attribute
If }1|.{. niiattCattC ≤≤= in UML,

Then there potentially exits an edge e in BBN in the
following cases:
Case 1: e = (C.atti, C.attj) for nji ≤≤ ,1

Case 2: e = (C.atti, C.implied)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

911

S t a t e 1

Sta te2 S t a t e 3

S t a t e 4

(a) UML state transition diagram

State1.implied

Stat2.implied Stat3.implied

Stat4.implied

(b) Potential BBN
Figure 12. Temporal and I/O relations

5. BBNs for Process Tailoring

In this section, we will present the constructed
BBNs using our approach and a tailoring sample.

5.1. BBNs Derived from UML diagrams

Using the rules presented above, we may infer
potential BBN causal relations from the UML
diagrams in Section 3 and generate related BBNs.
The generated BBNs represent process, product, and
resource requirements as well as pragmatic concerns
of the examined standards for tailoring. For example,
the developer’s capability factors, based on ISO/IEC
15504, depicted in Figure 6 may be converted to the
BBN figure in Figure 13. Resource concerns shown
in Figure 5 may be transformed to the BBN in Figure
14; the personnel attributes in Figure 7 may generate
the BBN in Figure 15.

In general, the BBNs representing the quality of
each development phase may be inferred from the
UML diagrams in Sec. 3 and may look like the one
shown in Figure 16.

After the BBNs have been constructed, the CPT
(conditional probability tables) of each node needs to
be assigned. In this research, we only provided a
systematic way to construct BBN influence diagrams.
The associated probabilities yet have to be assigned
by experts. Multiple experts can be consulted and
then Delphi approach can be used to get the average
of majority opinions and trim the extreme ones.

base practice

Process attribute

Capability Level

Management practice

work product

Process

Figure 13. Capability Level BBN

Budgeet

 tool

 organization support

schedule

 Resource

Figure 14. Resource BBN

Avg_Capability

Avg_Experience

Defect generation rate

Avg_Productivity

Team performance

Team size

Work load

Time pressure

Budget pressure

Pragmatic factors

Figure 15. Personnel BBN

5.2. Process Tailoring using BBNs

Process tailoring can be performed on the
derived BBNs. Different scenarios can be analyzed
using different data. We have performed
experiments with the following tailoring issues using
Hugin, a popular tool [2]:

1. Whether to perform IV&V at design and
coding stages

2. Whether to prepare test plans for module
testing

3. Whether to add people during different
stages

4. How to choose among testing, review, and
analysis under different manpower,
personnel experience, and capability levels .

Scenarios with different input quality, resource
constraints, project types, V&V/IV&V team
capabilities, and timing factors are considered. The
BBN results of these sample runs are helpful for
tailoring decisions. Details can be found in [5].

 To demonstrate how the inferred BBNs can be
used for process tailoring, we present one case here.
We used the simplified portion of Figure 16 to
consider whether IV&V should be performed. The
considered BBN is shown in Figure 17. Appropriate
CPT’s are given using domain experts’ knowledge.
Assuming that the internal V&V quality is good. The
Hugin results for the cases without performing IV&V,
is shown in Figure 18. The one using IV&V is shown
in 19. The latter case shows slight improvement in
product quality. According to this result, IV&V may
not be needed in the case that internal V&V has high
quality.

The above constructed BBNs can thus be used
to support the evaluation of different scenarios to
assist process tailoring. However, BBNs can only
provide a general indication. For detailed interaction
or numerical information, a process simulator can be
used for tailoring purpose. We have constructed a
software process simulator based on the derived
BBN factors and relations. Details can be found in
[5].

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

912

6. Conclusion

 This research combined the advantages of
UML’s modeling power and BBNs’ treatment of
uncertainties for software process tailoring. A
systematic way was presented to use UML to model
requirements of industrial standards, and then BBNs’
causal diagrams can be derived from these UML

diagrams for process tailoring consideration. Thus, it
alleviates the frequently criticized problem of
subjective construction of BBN’s causal dependency
diagrams. Our proposed approach integrating UML
and BBNs can further be used to assist
decision-making in other software project
management activities, such as planning and risk
management.

D. V&V toolD. V&V organization support

Project type

Size

Complexity

D. V&V Avg_Capability

D. V&V Avg_Experience

D. V&V Avg_Productivity

D. V&V Team size

D. V&V Work load

D. V&V Time pressure

D. V&V Pragmatic factors

Project characteristics

D. V&V team performance

D. V&V process quality

D. V&V Schedule

D. V&V Budget

D. V&V resource

D. V&V Budget pressure

D. V&V Process

D. V&V work product

D. V&V Management practice

D. V&V process capability

D. V&V Process attribute

D. V&V base practice

D. base practice

D. Process attribute

D. process capability

D. Management practice

D. work product

D. Process

D. Budget pressure

D. resource

D. Budget

D. Schedule

D. process quality

D. team performance
D. Pragmatic factors

D. Time pressure
D. Work load

D. Team size

D. Avg_Productivity

D. Avg_Experience

D. Avg_Capability

D. organization support

D. tool

D. IV&V base practice

D. IV&V Process attribute

D. IV&V process capability

D. IV&V Management practice

D. IV&V work product

D. IV&V Process

D. IV&V Budget pressure

D. IV&V resource

D. IV&V Budget

D. IV&V Schedule

D. IV&V process quality
D. IV&V team performance

D. IV&V Pragmatic factors

D. IV&V Time pressure

D. IV&V Work load

D. IV&V Team size

D. IV&V Avg_Productivity

D. IV&V Avg_Experience

D.IV&V Avg_Capability

D. IV&V organization support
D. IV&V tool

Design product quality

D. error generation rate

Req. analysis process quality

D. IV&V process
Figure 16. BBN diagrams with design phase factors expanded

Project characteristics

D. process quality

Req. anlaysis process quality

D. V&V resource

Design product quality

D. V&V process quality

D. IV&V process quality

Design IV&V process

D. process capability

D. V&V process capability

D. resource

D. team performance
D. V&V team performance

Figure 17. Whether to perform Design IV&V

Figure 18. Not performing Design IV&V when

Internal V&V quality high

Figure 19. Perform IV&V when internal V&V

quality high

Acknowledgements

This research has been partly supported by
National Science Council and Nuclear Energy
Council, Taiwan, under the grant number
NSC91-2623-7-155-001-NU.

References

[1] F. V. Jensen, An Introduction to Bayesian

Networks, Springer, 1996.
[2] HUGIN EXPERT, HUGIN API Reference

Manual , Version 5.2, June 2001.
[3] IEEE Std 12207, IEEE Standard for Information

Technology- Software Life Cycle Processes,
March 1998.

[4] International Organization for Standardization,
ISO/IEC TR 15504: Software Engineering –
Software Process Assessment, Part 1 to Part 9,
ISO/IEC Technical Report, 1998

[5] Wan-Hui Tseng, Development and Application of
Software Process Tailoring Techniques, M.S.
Thesis, Computer Science and Engineering
Dept., Yuan-Ze University. Taiwan. 2003

Design V&V quality

Design IV&V quality

Requirement quality

Project characteristics

Design quality

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

913

