
Reliable Parallel File System Using RAID Technology

Sheng-Kai Hung
Department of Electrical Engineering
National Tsing-Hua University
phinex@hpcc.ee.nthu.edu.tw

Yarsun Hsu
Department of Electrical Engineering
National Tsing-Hua University

yshsu@ee.nthu.edu.tw

Abstract

Providing data avaliability in a cluster environ-
ment is very important. Most clusters either use
RAID technology or redudant nodes to ensure
reliability. High performance clusters usually
use parallel file systems to increase throughput.
However, when parallel file system is involved
in a cluster system, some mechanism must be
provided to overcome the side-effect of using
striping. PVFS is a popular and open source
parallel file system implementation in the Linux
environment, but provides no fault tolerence.
We propose an idea of using distributed RAID
technology to ensure the reliability of using
striping. We also introduce a concept called
delay write to overcome the write performance
penalty incurred in the traditional RAID tech-
nology. The evaluation of our RPVFS(Reliable
Parallel Virtual File System) shows that the read
performance is almost the same when compared
with that of original PVFS design. As to the
write performance. there only exists a little
performance degradation.

keyword: Reliable Parallel Virtual File
System, Redundent Arrays of Inexpensive Disks,
Cluster, Delay Write

1 Introduction

As the cluster becomes a vehicle for low-cost and
high-performance computing environment, using
clusters to solve scientific problems has become
a useful technique. Where there are off the shelf
commodity hardwares, there are clusters. Linux
operating system with Intel x86 machine becomes
a new platform for implementing cluster systems.
Many freely distributed software packages such
as TCP/IP networking and message passing in-
terface have also been matured and ported to

This work was supported by National Science Council,
ROC under Grants NSC 93-2752-E-007-PAE and NSC 92-
2213-E-007-052

support Linux clusters. People learn to build
clusters, use them, and tune their performance.
However, one area lack of support is the parallel
file system, especially for Linux platform. In the
past, parallel file system was a proprietary prod-
uct belonging to specific commercial machines,
such as PFS to Intel Paragon[1], VESTA[2] to
IBM SP2 machine. Due to lacking support of a
parallel file system, most Linux cluster can just
use network file system (NFS[3]) to perform I/O
access and guarantee a single view of the file sys-
tem. However, NFS is notorious for its perfor-
mance, and not a good solution for I/O intensive
operations.

To the best of our knowledge, PVFS[4] is a
practical remedy for providing high performance
I/O in the Linux environment. It is good at both
providing high throughput I/O and offering an
interface to the legacy applications. However,
experience of using PVFS tells us that its reli-
ability is a big problem even if each node’s disks
in the cluster use RAID technology[5]. This is
because PVFS uses a RAID-0 like strip mecha-
nism across different nodes to enhance I/O per-
formance. Striping is a good technique to al-
low parallel accesses, but lacking reliability sup-
port. Using striping without any fault tolerance
technique, the MTTF(Mean Time To Failure) of
PVFS may be lowered by a factor of 1

N , where N
is the number of I/O nodes in the cluster sys-
tem. In this situation, what will happen if a disk
in one of the nodes fails in the PVFS file system?
All data in the parallel file system can not be ac-
cessed again unless the node comes back to work.
Things become even worse since not only disk
failures must be considered but also other com-
ponents of each node in the cluster may cause a
node to fail.

The reliability of PVFS can be improved by
purchasing additional disks and using either
hardware RAID controllers or software RAID
technique[6]. These techniques have two disad-
vantages, one is the cost incurred, and the other
is the MTTR (Mean Time To Repair) of the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1118

overall parallel file system. The first one is obvi-
ous and all of us tend to reduce the cost of con-
structing a COTS(Commodity Off The Shelf)
cluster system. The second one can be thought
of the failure of nodes. Although using RAID
can provide a better MTTF, this does not help a
lot. The lifetime of a computer component, like
disks nowadays, is shorter than we could expect.
We often upgrade a computer system before its
components are broken. The availability of a sys-
tem can be expressed as MTTF

MTTF+MTTR , this turns
our attention to reduce the MTTR. If one of the
nodes in a cluster system using PVFS fails, even
it uses RAID technology, the striped data within
that node can not be accessed unless we replace
the broken devices with new ones. Using RAID
in each node can just only guarantee the avail-
ability of data within each node, it provides no
ideas as far as the total file system is concerned.
The solution to this condition may use some re-
dundant nodes, and when detecting failures the
redundant nodes can just be used instead. How-
ever, even use redundant nodes, there still ex-
ists detectable MTTR in the total file system.
In some cases, especially for some server farms,
99.999% availability[7] is required and we must
ensure that there only can be a 5 minute down
time in a year. Since fault can not be avoided,
providing a system with low MTTR is a require-
ment to guarantee a 99.999% availability.
In order to provide the data availability of a

Linux cluster using parallel file system, we pro-
pose a distributed RAID technique which can
both increase the MTTF and reduce the MTTR
of the overall I/O system. The reliable PVFS
file system can not only provide low cost com-
pared with that using RAID at each node, but
also provide the ability to repair failure to im-
prove the availability. RAID-4 technique is used
in our design to provide high read throughputs.
As to the write problem incurred in RAID-4, we
provide a mechanism called delay write. By us-
ing delay write, the write performance can be im-
proved. We believe that this is a low cost solution
and could be done in the Linux cluster very well.
This paper is organized as follows: the related
research topics are covered in section 2; a quan-
titative analysis of the overall availability will be
presented in section 3; we will show the imple-
mentation and evaluation of our reliable parallel
file system versus the original PVFS in section 4;
finally the future work and conclusions are dis-
cussed in section 5.

2 Related Researches

In this section, we will present some file sys-
tems used in the cluster environment, either

distributed or parallel one. Sun Microsystems’
NFS(network file system) is widely used in the
traditional UNIX environment, but it lacks sup-
port of parallel semantics and the server node is
always a single point of failure. It provides nei-
ther fault tolerance mechanism nor striping tech-
nique. The well known feature of NFS is its easy
use. However, it’s performance is also notorious
when serving many I/O clients. As we know,
some of the clusters in the world still use NFS
as their file system and depend on MPI-IO for
parallel access support.

Swift[8] , like PVFS provides conventional file
access semantics in its striping structure. It also
supports the same parity method used in RAID
level 2 or higher. By the use of parity disks, er-
ror can be recovered as long as the error is not
happened at the metadata server. Like Swift,
Zebra[9] is also such a file system. These two
file systems may be called the ancestors of strip
file system across different I/O nodes. Berke-
ley’s xFS[10] decentralizes Zebra file system and
makes the global file system cache available. xFS
was a good research project, but did not have
further development due to some license restric-
tion. To avoid the failures of nodes, GPFS[11]
and GFS[12] connect disk storages and clients by
interconnection switch. This makes the concept
of servers disappeared and eliminates the failures
caused by servers. However, these proprietary
hardwares cost more and can not be purchased
in the COTS clusters.

CEFT-PVFS[13], like PIOUS[14] and Petal[15]
provides RAID-1 like technique. Since CEFT-
PVFS is based on PVFS and implements RAID-1
on it, CEFT-PVFS can be regarded as a RAID-
10 like parallel file system. Although CEFT-
PVFS extends the original PVFS design and pro-
vides the fault-tolerance mechanism, it has some
problems. The first is the consistency problem.
CEFT-PVFS uses an additional RAID-1 tech-
nique over the original PVFS RAID-0 design. By
doing so, it needs to guarantee data consistency
between working nodes and standby nodes. The
second is incurred by the first. Unlike RAID con-
trollers which use bus to transfer data to indi-
vidual disks, distributed RAID technique relies
on the network to transfer data into individual
nodes. However, network resource is an impor-
tant factor that would impact the performance
of parallel applications. Using CEFT-PVFS, the
network bandwidth would be consumed to some
extent. Furthermore, more disk space is needed
when using CEFT-PVFS. This is because the
original RAID-1 design uses mirroring, and it
wastes 50% of disk space. This may not be a
big problem since the price of disk nowadays is
cheaper than that before.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1119

3 Quantitative Analysis

In this section, we provide the MTTF of three
kinds of mechanisms used when PVFS is involved.
There are: PVFS without any redundant tech-
nique (MTTFPV FS), PVFS with RAID tech-
nique in each node (MTTFPRAID), and our reli-
able PVFS (MTTFRPV FS).
Here, we must define some terms in advance.

Let MTTFD denote the mean time to failure of
a single disk; N denote the number of nodes in a
cluster;MTTFRAID express the MTTF of RAID
disks and MTTFS indicate the MTTF of other
components of a single node in the cluster system.

Since MTTFPV FS just uses striping without
any fault tolerance mechanism, the MTTF of this
type can be expressed as

MTTFPV FS= 1/(
N

MTTFD
+

N

MTTFS
)

By the analysis of RAID technique in the
paper[5], we can know that the MTTF of using
RAID disks can be expressed as

MTTFPRAID= 1/(
N

MTTFRAID
+

N

MTTFS
)

MTTFRAID =

(MTTFD)
2

(D + C ∗n G) ∗ (G+ C − 1) ∗MTTR

• D is the total number of data disks

• G means the data disks in a group

• C is the number of check disks (disks contain
parity information) in a group

• nG denotes the number of groups (each
group has a check disk at least)

In a cluster system using distributed RAID-4
technique, each I/O node can be used as a parity
node or a data node. This tells us that D+C ∗n
G = (G + C) ∗n G = N. Using this equation we
can rewrite the above equation as.

MTTFRAID =
(MTTFD)

2

N ∗ (NnG − 1) ∗MTTR

Thus we can express MTTFPRAID as,

1/(
N2 × (NnG − 1)×MTTR

(MTTFD)2
+

N

MTTFS
)

= 1/(
N2 × (NnG − 1)×MTTR

(MTTFD)2

+
1

MTTFPV FS
− N

MTTFD
)

≤ 1/(
1

MTTFPV FS
− N

MTTFD
)

=
MTTFPV FS ∗MTTFD

MTTFD −N ∗MTTFPV FS

=
MTTFD

MTTFD −N ∗MTTFPV FS
×MTTFPV FS

Besides, by using MTTFRAID shown in the
above, we can also get the MTTF of our reliable
parallel virtual file system, which can be shown
in the following equation.

MTTFRPV FS=
(MTTFNode)

2

N ∗ (NnG − 1) ∗MTTR

=

⎛⎜⎝ 1
1

MTTFD
+

1

MTTFS

⎞⎟⎠
2

N ∗ (NnG − 1) ∗MTTR

Using the above two equations, we can obtain

MTTFRPV FS =
N2 ∗ (MTTFPV FS)

2

N ∗ (NnG − 1) ∗MTTR

=
N ∗ n G

(N − nG)
× (MTTFPV FS)

2

MTTR

≥ N ∗ nG

N
× (MTTFPV FS)

2

MTTR

= nG× (MTTFPV FS)
2

MTTR

In the real case MTTF or MTTR is usually
measured by hours. If we could make MTTR
as small as possible(such as 1 hour), we could
rewrite the above equation as.

MTTFRPV FS ≥ nG ∗MTTF 2PV FS

This means that our reliable parallel virtual
file system(RPVFS) can provide a much better
MTTF than the original PVFS. Besides, we can
also increase nG to improve the MTTF of our
RPV FS more. Increasing nG is helpful when the
number of nodes in a cluster becomes larger and
lager sinceMTTFPV FS is inversely proportional
to the number of nodes in a cluster system.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1120

4 Implementation and Eval-
uation

As an extension module of PVFS, we implement
the fault tolerance mechanism within the PVFS.
This implementation includes three parts: par-
ity striping, fault detection, and on-line recovery.
We will discuss them in this section. The origi-
nal striping mechanism of PVFS does not support
parity, just like a RAID level 0. It is easier to im-
plement RAID 10 (RAID 0 + RAID 1) in PVFS
just like CEFT-PVFS did, but its disk efficiency
is limited to just 50%. RAID 5 technology has
been proven as the best trade-offs between perfor-
mance and efficiency, and naturally be taken into
our consideration when implementing RPVFS.
However, to simplify our design we use RAID
4 instead. The difference between RAID-5 and
RAID-4 is only the write performance, especially
for concurrent write to the parity disk. This prob-
lem can be solved in our design because of the use
of delay write. We would describe the delay write
in the following paragraph.

Metadata Server

SIO

IO Node

IOD

MGR

IO Node

IOD

IO Node

IOD

IO Node

IOD...

Data
Message

SHM

Figure 1: Normal Operation

Figure 1 shows the normal operation of our
modified PVFS. In our RPVFS, the metadata
server is used as a spare io node. The spare
io node stores the parity information calculated
whenever a file is created in the system. The SIO
means the spare io daemon which comes from the
original IOD daemon. SIO is the modified version
of IOD to let the MGR daemon directly commu-
nicate with the SIO without going through the
Ethernet. Besides, we must guarantee that the
spare io is just used to store the parity informa-
tion and can not communicate with other IOD
daemons in the cluster system. The SHM(SHare
Memory) block in figure 1 is the mechanism we
mentioned before, called delay write. In a RAID
technology with parity support, each write pro-
cess must recalculate the parity and thus need to
read the whole data set and rewrite the new data
along with parity. If several writes come together,
the process of recalculating and rewriting parity
is not necessary, since the newly written one over-

writes the old one. In our design, whenever a
write operation is performed in the client node,
the corresponding io node would send the differ-
ence of data (the result of XOR) to the metadata
server to indicate that the parity must be recalcu-
lated. The metadata server would store the data
getting from the io nodes in the share memory
region(SHM block). The metadata server would
perform parity recalculation whenever there is an
io node failure or the corresponding io node calls a
file close function. Using this technique can have
two advantages. The first is the protection of
data loss between successive writes, since each in-
formation is stored in the share memory between
every write. The second is the number of parity
recalculation needed could be lowered. This in
turn saves the computing power in the metadata
server.

Metadata Server

IOD

IO Node

IOD

MGR

IO Node

IOD

IO Node

IOD

IO Node

IOD...

Data
Message

SIO SHM

Figure 2: Failure Operation

Whenever there is a node failure, the metadata
server would start a normal IOD daemon within
it and regards it as the substitution of the broken
one. All file operations remain and the io clients
would not see any difference. Figure 2 shows the
operation of this condition. The reconstruction of
the broken data could be performed whenever the
data is needed or when the failure is discovered
by the metadata server. We call the former as
passive recovery and the latter as active recovery.
Using passive recovery would save the computing
power in the metadata server but may increase
the response time and the MTTR. With active
recovery, the metadata server may be busy with
reconstructing the broken data when a fault is
discovered, but the overall MTTR could be lower.
To simplify our design, we use passive recovery
method in the current study.
Table 1 indicates the platform hardwares used

in the evaluation experiments. Each node has
a single AMD Athlon XP 2400+, except for the
metadata server node. The metadata server node
has a dual AMD Athlon XP 2400+ inside. The
operating system is Redhat Linux 7.3 with ker-
nel version 2.4.20 in each node. In our evalu-
ation platform, eight io nodes are used with a

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1121

single io client. Each test is based on the tra-
ditional TCP/IP network with 100 Mbps Eth-
ernet card. We use the file system benchmark
bigbonnie[16] to perform the test, each test use
traditional UNIX file semantics. During the tests,
data size is increased from 1 MB to 8192MB, the
striping size is based on the data size and can be
computed as Data Size8 .

Table 1: Evaluation Platform

Disk Memory

Metadata 160G SCSI 1 GB

IO node 4G IDE 512 MB

Client node 4G IDE 512 MB

Figure 3 shows the performance evaluation of
read performance. During this test, we measure
the block read performance of each of the file sys-
tems. From the figure, we know that the read per-
formance is almost the same either in the original
PVFS design or in our RPVFS. The CPU utiliza-
tion of the test can be shown in Figure 4. The
higher utilization of RPVFS may be caused by
the modified MGR daemon, which needs to de-
tect node failures and starts the new IOD daemon
when failure occurs.

Data Paylod (MB)
0 2000 4000 6000 8000

M
B/

Se
c

6

8

10

12

14

16

RPVFS
PVFS

Figure 3: Read Performance

Data Payload (MB)
0 2000 4000 6000 8000

C
P

U
 U

til
iz

at
io

n(
%

)

0

2

4

6

8

10

12

RPVFS
PVFS

Figure 4: CPU Ultilization when Reading

Figure 5 is the result of block write perfor-
mance test. In this figure, we compare the write
bandwidth of original PVFS, our RPVFS with-
out delay write, and RPVFS with delay write,
denoting as PVFS, RPVFS and RPVFSDW re-
spectively. From the data we get, when data pay-
load is smaller than 512 MB, the results show that
the write bandwidth of RPVFS with delay write
is higher than that of PVFS. This may be caused
by the buffer effect of each io node, since each io
node has a 512 MB memory within it.

Data Payload(MB)
0 2000 4000 6000 8000

M
B/

Se
c

7

8

9

10

11

12

RPVFS
PVFS
RPVFSDW

Figure 5: Write Performance

Data Payload (MB)
0 2000 4000 6000 8000

C
PU

 U
til

iz
at

io
n

(%
)

0

1

2

3

4

5

6

7

RPVFS
PVFS
RPVFSDW

Figure 6: Utilization of Block Write

The CPU utilization of block write is also mea-
sured. As we can expect, PVFS needs the least
CPU power, RPVFSDW is the next and RPVFS
needs more computation power in order to cal-
culate the parity each time when data is altered.
These can be shown in the figure 6.

5 Conclusions and Future
Work

We have successfully designed and implemented
a reliable parallel virtual file system (RPVFS)
which can continue to supply data to a request-
ing client even if one of the IO nodes fails due to
any reason. Our RPVFS design can provide al-
most the same read performance compared with

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1122

PVFS. As to the write performance, with the con-
cept of delay write, the write performance is also
acceptable. When compared with CEFT-PVFS,
the disk efficiency of our RPVFS is much bet-
ter, and we do not have the consistency problem.
However, our current design has a single point of
failure, that is the metadata server as in PVFS
version 1. We do not provide any fault tolerance
mechanism in the metadata server node. The rea-
son is that we can just use a mirroring node to
continuously backup the data of metadata server.
And if errors happen in the metadata server, the
backup one can be used instead. The mirroring
technique is widely used in today’s cluster system,
especially for server node. Using a single mirror-
ing node has little consistency problem and we
think this is a simple solution.
We plan to use distributed technique to over-

come the single point of failure mentioned be-
fore. If this could be done, we can also implement
RAID-5 in our RPVFS and compare its write
performance with our RAID-4 based delay write
one. We also plan to implement active recovery
method and evaluate its impact on performance
in the future.

References

[1] Intel Supercomputer System Division,
Paragon User’s Guide, Jun 1994.

[2] S. J. Baylor P. F. Corbett and D. G. Fei-
telson, “Overview of the vesta parallel file
system”, in IPPS ’93 Workshop on I/O in
Parallel Computer System, April 1993, pp.
1—16.

[3] S. Kleiman D. Walsh R. Sandberg, D. Gold-
berg and B. Lyon, “Design and implementa-
tion of the sun network filesystem”, in Proc.
Summer USENIX Technical Conf., 1985, pp.
119—130.

[4] Robert B. Ross Philip H. Carns, Walter B.
Ligon III and Rajeev Thakur, “PVFS: A
parallel le system for linux clusters”, in Pro-
ceedings of the 4th Annual Linux Showcase
and Conference, Atlanta GA, 2000, pp. 317
— 327, USENIX Association.

[5] Garth Gibson. Randy H. Katz David A. Pat-
terson, “A case for redundant arrays of inex-
pensive disks (raid)”, in International Con-
ference on Management of Data (SIGMOD),
1988, pp. 109—116.

[6] Jenwei Hsieh, Christopher Stanton, and
Rizwan Ali, “Performance evaluation of soft-
ware RAID vs. hardware RAID for paral-
lel virtual file system”, in 9th International

Conference on Parallel and Distributed Sys-
tems, December 2002, pp. 307—313.

[7] Brown. A. and D. A. Patterson, “Embrac-
ing failure: A case for recovery-oriented com-
puting (ROC)”, in 2001 High Performance
Transaction Processing Symposium, Asilo-
mar, CA, October 2001.

[8] Luis-Felipe Cabrera and Darrel D. E. Long,
“Swift: Using distributed disk striping to
provide high I/O data rates”, Computing
Systems, vol. 4, no. 4, 1991.

[9] John H.Hartman and John K.Ousterhout,
“The zebra striped network le system”, in
Proceedings of the Fourteenth ACM Sympo-
Sium on Operating Systems Principles, 1993,
pp. 29—43.

[10] Curtis Anderson Wei Hu Mike Nishimoto
Adam Sweeney, Doug Doucette and Geo
Peck, “Scalability in the xfs file system”,
in USENIX 1996 Annual Technical Confer-
ence, 1996.

[11] Frank Schmuck and Roger Haskin, “GPFS:
A shared-disk file system for large comput-
ing clusters”, in Proceedings of the Con-
ference on File and Storage Technologies
(FAST ’02), Jan. 2002, pp. 231—244.

[12] K. Preslan M. O’Keefe S. Soltis, G. Er-
ickson and T. Ruwart, “The global file
system: A system for shared disk storage”,
http://citeseer.nj.nec.com/soltis97global.html,
1997.

[13] Yifeng Zhu, Hong Jiang, Xiao Qin, Dan
Feng, and David R. Swanson, “Design, im-
plementation and performance evaluation of
a cost-effective, fault-tolerance parallel vir-
tual file system”, in International Workshop
on Storage Network Architecture and Paral-
lel I/O, Sept. 2003.

[14] S. A. Moyer and V. S. Sunderam, “PIOUS: A
scalable parallel I/O system for distributed
computing environments”, in Proceedings
of the Scalable High-Performance Comput-
ing Conference, 1994, pp. 71—78.

[15] Edward K. Lee and Chandramohan A.
Thekkath, “Petal: Distributed virtual
disks”, in Proceedings of the Seventh In-
ternational Conference on Architectural Sup-
port for Programming Languages and Oper-
ating Systems, 1996, pp. 84 — 92.

[16] Textuality, “Bonnie”,
http://www.textuality.com/bonnie/.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1123

