
An Algorithm for Detecting Z-cycles in Distributed
Computing System

Chin-Lin Kuo and Yuo-Ming Yeh
Fault Tolerance Lab. of National Taiwan Normal University

{ gene, ymyeh }@ice.ntnu.edu.tw

Abstract- The checkpointing approach of rollback-
recovery has been widely used for fault-tolerance in
distributed computing system. There are many com-
munication messages resulting in much dependency
during the time of program running. Once a process
generates faults, many processes that are directly or
indirectly related with the faulting process will be in-
fluenced. These processes in turn rollback to some pre-
viously stored state, respectively. What’s worse, the
rollback action may repeatedly trigger another roll-
back action of other dependent processes. This is what
we know as the domino effect[11]. The main cause of
generating domino effect is Z-cycles[2]. So far there
is no effective method to detect Z-cycles with length
more than two. In this paper, we propose a distributed
algorithm to detect Z-cycles with long length.

Keywords : fault tolerance , checkpoints , domino ef-
fect , Z-cycles , rollback-recovery.

1. Introduction

In distributed computing system, checkpointing
and rollback-recovery[17] is an important mechanism
for fault tolerance. A checkpoint is a stable memory
record of a process state. Each process could take a
checkpoint whenever process favors. The simplest so-
lution for a process to achieve this is to take a check-
point periodically and it will work efficiently in only
one processor. But in messaging passing system with
many processors, such an action are likely to gen-
erate domino effect and waste much time and com-
putation for rollback-recovery. Every process takes
checkpoints independently without considering other
processes. Although this uncoordinated checkpoint
method is easily implemented and allows each process
to flexibly take checkpoints, it must pay much over-
head, such as rollback extent, complex recovery and
garbage collection.

A consistent global recovery line is a set of check-
points, one per process, which form a recovery line.
When there are faults happening on a process or pro-
cesses, the process or processes in question immedi-
ately launch the rollback-recoverymechanism. If there
is no valid recovery line, this action may repeatedly
trigger another rollback action of other dependent pro-
cesses, and the rollback distance may be unbounded

and unpredictable. Many processes may have to roll-
back to their own initial state. This is what we call
”domino effect”, the worst case we would not like to
encounter. In order to determine a consistent global
checkpoint, the processes have to record the dependen-
cies relation among their checkpoints during failure-
free operation. However, processes cannot determine
whether or not specific checkpoints are part of a con-
sistent state.

One of the most serious problems in uncoordi-
nated checkpointing is useless checkpoints. The pro-
cesses may easily take useless checkpoints which are
never part of any global consistent recovery line. Use-
less checkpoints are undesirable and waste much sta-
ble storage space. So applications with frequent out-
put commits are not suitable since they could easily
form many orphan messages between two checkpoints
taken by two different processes and dependency re-
lation between the states of different processes. De-
pendency between many processes may be occurred
by message communication and there have been many
papers[9,12,13] discussed about it. Another disad-
vantage is that determining a consistent state may
be laborious and the rollback mechanism will be-
come more complicated. Therefore most research is
concentrated on coordinated checkpointing[14,15]and
communication-induced checkpointing[4] schemes.

Communication-induced protocols reserves Z-
cycle-free property by inserting forced checkpoints
based on communication events. Hence, minimiz-
ing the number of forced checkpoints is becoming the
most important topic. The main cause of generating
domino effect is attributed to Z-cycles. So far, detect-
ing Z-cycles with long length in distributed computing
system is still a difficult problem. In Taesoon Park
and Heon Y.Yeon’s paper[3], they propose an scheme
of detecting Z-cycles with length two and of taking
forced checkpoints to break them under many special
communication patterns. In this paper, we propose an
distributed algorithm to detect all Z-cycles with long
length and their involved checkpoints.

2. System Model and Background

A distributed computation consists of a finite set
P of n processes {P1, P2, · · · , Pn} that interact by

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1124

means of messages sent over channels which transmis-
sion times are unpredictable but finite. Processes do
not share any common memory and a common clock
value, that is, they are asynchronous. The communi-
cation pattern among these processes in P could be
arbitrary and the communication channel between two
processes is reliable, FIFO(first-in-first-out) and bidi-
rectional(undirectional).

Execution of a process produces a sequence of
events which can be classified as: send events, receive
events, and internal events. An internal statement does
not involve communication. The casual ordering of
events in a distributed execution is based on Lamport’s

happened-before relation[1] denoted by ”
hb→”.

A process may fail, lose its volatile state and stop
execution according to the fail-stop model[16]. A lo-
cal checkpoint records the current process state on sta-
ble storage. The k-th checkpoint in process P i is de-
noted as Ci,k , where k is an non-negative integer
and we assume that each process Pi takes an initial
checkpoint Ci,0 immediately before execution begins.
Let Ii,α denote the interval between the consecutive
checkpoints Ci,α−1 and Ci,α where α = 1, 2, 3, · · · .
In this paper, we assume each process only take local
checkpoints at its own pace (for example, using a pe-
riodic algorithm) without taking forced checkpoints.

A message m sent by Pi to Pj is called an orphan
with respect to a pair (Ci,xi , Cj,xj) iff its receive event
happened before Cj,xj while its send event happened
after Ci,xi . A global consistent checkpoint C is a set
of local checkpoints (C1,x1 , C2,x2 , . . . , Cn,xn) which
no orphan messages exists in any pair of local check-
points belonging to C. The processes are said to roll-
back to the consistent recovery line if there is no or-
phan interval after the rollback-recovery. Sometimes,
the processes have to rollback recursively to reach a
consistent recovery line due to the domino effect and
the rollback distance may be unbounded. In the worst
case, the only consistent recovery line consists of a set
of the initial checkpoints, that is, the total loss of the
computation in spite of checkpointing efforts. So there
are many papers talking about how to prevent domino-
effect[5] or useless checkpoints[6,7].

3. Z-cycle Definition and Properties

First, we recall the Z-path definition introduced by
Netzer and Xu[2].

Definition 1: A Z-path exists from Ci,x to Cj,y iff there
are messages m1 , m2 , · · · , m�, (� ≥ 1) such that :
1. m1 is sent by process Pi after Ci,x

2. if mk(1 ≤ k < �) is received by process Pr , then
mk+1 is sent by Pr in the same or a later check-
point interval (although mk+1 may be sent before
or after mk is received).

3. m� is received by process Pj before Cj,y .
Definition 2: If there is a Z-path from Ci,x to itself ,
then this is a Z-cycle which the checkpoint Ci,x is in-
volved.
Assertion 1: The length of a Z-cycle(or Z-path) is
� if the Z-cycle(or Z-path) is formed by � messages
m1, m2, · · · , m�.

Consider some process Pi in a Z-cycle. Suppose
that message m and m′ are consecutive two mes-
sages contained in this Z-cycle, and message m is
received by Pi and message m′ is sent by the same

process Pi. If receive(m) hb→ send(m′), we say
the interval between receive(m) and send(m′) on
Pi in this Z-cycle is casual. On the other hand, if

send(m′) hb→ receive(m), we say the interval be-
tween them is non-casual and they must occur in
the same checkpoint interval to satisfy the definition
of Z-cycle. For example, consider figure1. The Z-
cycle is consisted of 4 messages m1, m2, m3, m4. On

P1, receive(m4)
hb→ send(m1) so the interval is ca-

sual. But on P3 , send(m3)
hb→ receive(m2) and

the two events occur at the same checkpoint interval
so it’s a non-casual situation. For a Z-cycle, asso-
ciated with a sequence of messages m1, m2, . . . , m�,
its length is � and has � intervals(� ≥ 2). By defi-
nition of Z-cycle, we can obtain that the interval be-
tween any two events receive(mi) and send(mi+1)
for 1 ≤ i ≤ � − 1 has to be either a casual or
non-casual interval. But there must be at least one
of these intervals to be a non-casual interval[10].
In addition, the interval between receive(m�) and
send(m1) must be a casual interval and the check-
points between them are involved in this Z-cycle.

P1

P2

P3

P4

�
�

�
�

C1,0 C1,1

m1 C2,2

m2

m3

m4

Figure 1.
Assertion 2: For a Z-cycle, there may be more than
one checkpoint involved in this Z-cycle and these
checkpoints may be distributed in one or more pro-
cesses.

Obviously, the length of a Z-cycle must be at least
two. In this condition, Z-cycles with length two are
easy to be detected and destroied[3]. Figure 1 illus-
trates an example of Z-cycle with length 4 and the
checkpoints C1,1 and C2,2 are involved in it. Intu-
itively, the longer Z-cycle is, the more difficult it can
be detected and broken. According to Netzer and Xu’s
theorem, a checkpoint is said to be useless if it is in-
volved in a Z-cycle[2], that is, it can not be included in
any consistent recovery line.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1125

4. Detecting Z-cycles Algorithm

4.1. The notation and data structures

A Z-cycle is formed by a Z-path while starting with
a checkpoint and terminating at the same checkpoint.
From the global view of all processes, Wang[8,9] de-
fines a graph called the rollback− dependency graph
(or R − graph) which shows Z-paths in a distributed
computation that has terminated or stopped execu-
tion. It is easy to find Z-paths from such a graph.
In distributed algorithm, each process only has its lo-
cal memory and knows the (send and receive) events
relative to itself but does not know other messages’
transmission in other processes. Hence a process may
not have ability to accumulate sufficient information
of message transmission to concatenate them into Z-
paths without piggybacked information. So the most
critical problem to detect Z-cycles is how to collect
necessary messages m1, m2, · · · , m� which may have
any possibility of forming a Z-cycle. First, we have to
conceptualize an appropriate data structure to express
Z-path and Z-cycle.

For a single message m, its important four char-
acteristics are the two processes which send, receive
m and the two checkpoint intervals while the sending,
receiving events occurring. There are totally four nat-
ural numbers, send P id, �cout on process send-Pid,
receive P id, and �cin on process receive-Pid to de-
scribe the message m. For example, if there is a mes-
sage m which was sent by process Pi in checkpoint
interval Ii,α and received by process Pj in Ij,β , then
send P id = i, receive P id = j, �cout in Pi is α and
�cin in Pj is β. We use the symbol [i

�,α
, j
β,�

] to ex-

press m. The lower-left � of i and lower-right � of j
mean a checkpoint interval number of a message de-
livery event in Pi and a checkpoint interval number of
another message sending event occurring in P j respec-
tively. These two �s are written out for the purpose of
connecting messages to form a Z-path.
Notation : A message m which is sent by Pi in Ii,α

and received by Pj in Ij,β is denoted by [i
�,α

, j
β,�

].

The symbol � means unknown or not occurred yet
and α, β are natural numbers.

This notation of a single message can completely
express relative information in a Z-path and from that
we can only pay attention to the notation instead of
R − graph.
Lemma 1: For a process Pj , if there are two messages
m1, m2, which are denoted by [i

�,α
, j
β,�

] and [j
�,γ

, k
θ,�

]

respectively ,where α, β, γ, θ ∈ N (natural number),
then we check whether β ≤ γ. If β ≤ γ holds, then
the second condition of Z-path’s definition is satisfied
and so we can merge(connect) these two messages into

a Z-path, represented by [i
�,α

, j
β,γ

, k
θ,�

]

proof : These two messages m1, m2, denoted
by [i

�,α
, j
β,�

] and [j
�,γ

, k
θ,�

] respectively ,where

α, β, γ, θ ∈ N , mean that Pi sends m1 in Ii,α to
Pj in Ij,β and Pj sends m2 in Ij,γ to Pk in Ik,θ .
When β = γ , it means m1 is received by Pj and
m2 is sent by Pj in the same checkpoint interval no

matter receive(m1)
hb→ send(m2) or send(m2)

hb→
receive(m1). The interval between the two events
probably could be casual or non-casual. When β < γ,

it means receive(m1)
hb→ send(m2) and send(m2)

occurs in a later checkpoint interval. So by the second
condition of Z-path’s definition, if one of the above
two conditions(β = γ or β < γ) holds, then m1 and
m2 could be merged into a Z-path [i

�,α
, j
β,γ

, k
θ,�

]. But

if β > γ, m1 and m2 could not be merged since these
two checkpoint intervals Ij,β and Ij,γ contradict the
definition 2 of Z-path. �

From above discussion, the length of a Z-path
can gradually increase by merging messages one by
one or merging other Z-paths. Contrarily, a Z-path
[· · · , i···,α, j

β,γ
, k
θ,···

, · · ·] could be decomposed into two

Z-paths, [· · · , i···,α, j
β,�

] and [j
�,γ

, k
θ,···

, · · ·]. The rules

of merging two Z-paths path1 and path2 are to check
(1) whether the last Pid of path1 is equal to the first
Pid of path2 and (2) whether the �cin of the last
Pid of path1 is equal to or smaller than the �cout of
the first P id of path2. If satisfied, then these two
Z-paths could be merged into a single Z-path [· · · ,
i···,α, j

β,γ
, k

θ,···
,· · ·]. We use notation [1

�,b1
, 2

a2,b2
, 3

a3,b3
,

· · · , n
an,bn

, k
ak,�

] to express a Z-path from checkpoint

C1,b1−1 to Ck,ak
. Certainly ai, bi are natural num-

bers and the relation ai ≤ bi must holds for ev-
ery process. If k = 1 and ak ≤ b1 then Z-cycle
(1
a1,b1

, 2
a2,b2

, 3
a3,b3

, · · · , n
an,bn

) forms.

The length of a Z-path is not fixed, so for data
structure representation, the way of utilizing queue can
appropriately express the meaning of Z-path. Each
element of the queue has three integers Pid, �c in
and �c out, where Pid ∈ {1, 2, . . . , n} means pro-
cess ID and �c in,�c out means the checkpoint inter-
val IPid,�c in of the receive event and the checkpoint
interval IPid,�c out of the send event on the same pro-
cess Pid respectively.
Assertion 3:The data structure ”queue of Z-path” we
define can appropriately express the meaning of Z-
path.
Assertion 4:For a Z-path [· · · , i

α,β
, · · ·], where α ≤

β, α and β means the checkpoint interval Ii,α of
event receive(ms) and Ii,β of event send(mt) re-
spectively for some s, t ∈ N . If α = β, then these

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1126

two events, receive(ms) and send(mt), occur in the
same checkpoint interval. If α < β, then there are
β − α checkpoints Ci,α, Ci,α+1, · · · , Ci,β−1 between
receive(ms) and send(mt). For the case α < β, if
the Z-path can form a Z-cycle in the future, then the
checkpoints Ci,α, Ci,α+1, · · · , Ci,β−1 are involved in
this Z-cycle. For example, in figure 1 there is a Z-cycle
(4
1,1

, 1
1,2

, 2
2,3

, 3
1,1

) in which checkpoints {C1,1, C2,2} are

involved.
The following paragraph lists the notations and

data structures used in our algorithm. There are n pro-
cesses and for each process Pi it has

• �ci : an integer and a logical counter which means
current checkpoint interval index between two con-
secutive checkpoints and its initial value is 1.

�Pi
lci = 1

Ci,0

lci = 2

Ci,1

lci = 3

Ci,2

Figure 2.
• Z Queuei : A queue which each element of it is

still a queue z path containing Z-path information,
for example [4

�,2
, 2
2,2

, 1
1,�

]. In a node of z path,

there are three integers which mean process’s id
Pid and its two subscripts below, �c in and �c out.
If one of them are � , it means unknown, which
could only appear at the �c in of the first Pid
and the �c out of the last Pid in a Z-path. The
[1
�,···

, 2···,···, 3···,···, . . .] means Z-path from process P1

to P2 , P3 , · · · · · · . The �c in is smaller or equal
to the �c out. Maybe there are many Z-paths in-
cluded in the Z Queuei. Its structure is as the fol-
lowing figure and its initial value is null.

�

�

�

� � �

� � �

�

Z Quenei

z path 4
�,2

i
2,2

1
1,�

1
�,3

i
1,2

1
2,3

5
3,�

5
�,1

i
2,�

... Figure 3.
• Z Queue buffer1i : A Z-path queue buffer

which stores the Z-path queue piggybacked from
other processes and is used to merge them with its
own Z Queuei.

• Z Queue buffer2i : A Z-path queue buffer
which also stores a queue of Z-paths. If Pi

needs to send z-path request message to other pro-
cesses, then Pi must wait to receive for replying
z-paths from them and store these z paths into
Z Queue buffer2i.

• csni : checkpoint line which is an array of n check-
point sequence numbers(csn) and csn i[j] repre-
sents the largest checkpoint sequence number of

Pj that Pi knows. The value of csni[i] is always
equal to (�ci − 1). Its initial value is [0, 0, · · · , 0].

• Z cyclei : An Z-cycle list which each element
stores a Z-cycle. Initial values are none

4.2. The algorithm

We distinguish two kinds of messages: compu-
tation messages and system messages. Computa-
tion messages are sent for their application purposes.
In our protocol there are two kinds of system mes-
sage, ”z-path request” and ”z-path reply”. This al-
gorithm mainly adopt piggyback approach and re-
quest Z-paths from other processes to accumulate
sufficient information. Then process merges its own
Z-paths with them to check whether Z-cycles form
or not. Not every time Pi has to send z-path
request to collect another process’s Z-paths. When
there were sending events occurred after the latest
checkpoint in Pi and the Pi receives a computation
message (non-casual), Pi needs to do so. By the
definition of Z-cycle formed by m1, m2, · · · , m� ,
the checkpoint interval between m1 and m� must be
casual and there must exist at least one non-casual
interval[10] in a Z-cycle. For our algorithm, the
less number of non-casual intervals, the more ef-
ficient performance we have. So there are briefly
three different cases of Z-cycles(best, worst, average).
The figures 4,5 and 1 illustrate the three situations.

P1

P2

P3

P4

P5

�
�

�
�

�

m1

m2

m3

m4

m5

C1,x

Figure 4 : best case
For the best case like the above figure 4, there is
only one non-casual interval(between m5 and m4)
in the Z-cycle. When P5 receives m4, it checks
there is a computation message m5 sent to P1

in the current checkpoint interval. So, P5 must
send a z-path request message to P1 for obtaining
[5
�,···

, 1···,···, · · ·]. In the best case, most of these in-

tervals are casual and only few processes need to
send z-path request for more Z-path information.

P1

P2

P3

P4

P5

�
�

�
�

�

C1,x

m1

m2

m3

m4

m5

Figure 5 : worst case

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1127

But in the worst case like figure 5, most of the inter-
vals are non-casual. Hence most processes(P5, P4, P3,
P2) have to send z-path request to other processes for
more Z-path information. The performance would be
decreased. Each time of computation message-passing
occurring the message must bring many Z-paths data,
which may be tremendous, to target process and then
the target process connects these received Z-paths data
with its own. There will generate many new Z-paths in
the connecting action and Z-cycle(s) will be detected.
The following part is the explanation of our algorithm.

Sending a computation message: Pi sends a
computation message to Pj . Let the computation mes-
sage be denoted by [i

�,�ci

, j
�,�

]. For each Z-path in

Z Queuei we only duplicate the front part of the Z-
path, [· · · · · · , i

α,�
], for some α, to merge with [i

�,�ci

,

j
�,�

].Then Pi obtains a new Z-path [· · · · · · , i
α,�ci

, j
�,�

],

where α ≤ �ci. There probably are many such new
Z-paths and all of them piggyback the computation
message forwarding to Pj .

Reception of a computation message and pig-
gybacked information: When Pi receives a compu-
tation message M and piggybacked information(Z-
paths) from Pk, each of them as [· · · , k···,···, i

�,�
],

the first step Pi must do is to write �ci into them,
[· · · , k···,···, i

�ci,�
]. Pi can update csni by these piggy-

backed Z-paths. That is, Pi can move checkpoint line
forward to the latest checkpoint index which P i can
know. After updating csni, Pi can also prune these
piggybacked Z-paths. In Z Queuei if there exists
Z-paths like [· · · , i

···,�ci

, j
�,�

], which means there is a

computation message sending from Pi to Pj in the
current checkpoint interval of index �c i, then Pi has to
send a z-path request for Pj in order to obtain suffi-
cient information of Z-path as [i

�,�ci

, j
···,···

, · · ·]. Then

Pi can connect [· · · , k···,···, i
···,�ci

, j
�,�

] with [i
�,�ci

, j
···,···

,

· · ·] into [· · · , k···,···, i
···,�ci

, j
···,···

, · · ·]. If there is any

Z-cycle formed due to the message [k
�,···

, i
�ci,�

], then

we can detect the Z-cycle containing it.
Procedure PruneZ-path(csni,Z Queuei):The

data of csni in Pi means the checkpoint line that Pi

already knows. When the csni is updated, Pi checks
each Z-path in Z Queuei whether its �c out of first
Pid is equal to or smaller than csni[Pid]. That is,
the event send(m) of the first message m in the Z-
path occurred before checkpoint CPid,csni[Pid], the
left side of the checkpoint line csni. If so, it implies
that there could not be any messages received by PPid

at that checkpoint interval in the future. Then the first
message of the Z-path should be deleted. Repeat such
pruning action till the �c out of first Pid in this Z-path

is larger than csni[Pid].
When Pi receives a z-path request([q

�,�cq

, i
�,�

])

from Pq: If Pi receives such z-path request and its
parameter [q

�,�cq

, i
�,�

], it means that there was a com-

putation message sent by Pq to Pi. But Pq doesn’t
know the checkpoint interval index of the computation
message arrived at Pi. For Pi there must be a Z-path
[· · · , q

···,�cq

, i
α,β

, · · ·] in Z Queuei, for some α, β. We

duplicate the back part, [q
�,�cq

, i
α,β

, · · ·] and reply them

for Pq. After collecting such Z-paths, [q
�,�cq

, i
α,β

, · · ·],
Pq can connect them with its own Z-paths, [· · · , q

···,�
].

So Pq can check whether Z-cycles form or not. We
demonstrate our algorithm by an example.

Example : In this example figure 6, there are totally
two Z-cycles,{m3, m5, m1} and {m4, m3, m5, m2}.
The checkpoints involved are {C2,1, C3,2} and {C1,2,
C3,2} respectively. So we can observe that messages
m3 and m5 are associated with these two Z-cycles
simultaneously.

P1

P2

P3

P4

C3,1

C1,1

C2,1

C1,2

C3,2

�
�

	

�

�
m1 m2

m3

m4

m5

Figure 6.
We illustrate this example by the order of messages
occurring time and present the csn and Z Queue data
of Z-paths for all processes at the time of sending, re-
ceiving and checkpointing. The concatenation of two
Z-paths is expressed by path1 + path2 ⇒ · · · .
send(m1) :
P1: csn1 : (0000) ; empty
P2: csn2 : (0000) ; empty
P3: csn3 : (0000) ; empty
P4: csn4 : (0000) ; [4

�,1
, 2
�,�

]

receive(m1): [4
�,1

, 2
1,�

] piggybacked to P2

P1: csn1 : (0000) ; empty
P2: csn2 : (0000) ; [4

�,1
, 2
1,�

]

P3: csn3 : (0000) ; empty
P4: csn4 : (0000) ; [4

�,1
, 2
�,�

]

P3 takes C3,1 , csn3 : (0010); empty
P1 takes C1,1 , csn1 : (1000); empty
send(m2):
P1: csn1 : (1000) ; empty
P2: csn2 : (0000) ; [4

�,1
, 2
1,�

]

P3: csn3 : (0010) ; empty
P4: csn4 : (0000) ; [4

�,1
, 2
�,�

] and [4
�,1

, 1
�,�

]

receive(m2): [4
�,1

, 1
2,�

] piggybacked to P1

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1128

P1: csn1 : (1000) ; [4
�,1

, 1
2,�

]

P2: csn2 : (0000) ; [4
�,1

, 2
1,�

]

P3: csn3 : (0010) ; empty
P4: csn4 : (0000) ; [4

�,1
, 2
�,�

] and [4
�,1

, 1
�,�

]

P2 takes C2,1, csn2 : (0100) ; [4
�,1

, 2
1,�

]

send(m3):
P1: csn1 : (1000) ; [4

�,1
, 1
2,�

]

P2: csn2 : (0100) ; [4
�,1

, 2
1,�

] + [2
�,2

, 3
�,�

] ⇒
[4
�,1

, 2
1,2

, 3
�,�

] piggybacked to P3

P3: csn3 : (0010) ; empty
P4: csn4 : (0000) ; [4

�,1
, 2
�,�

] and [4
�,1

, 1
�,�

]

P1 takes C1,2, csn1 : (2000) ; [4
�,1

, 1
2,�

]

receive(m3): [4
�,1

, 2
1,2

, 3
2,�

] piggybacked to P3

P1: csn1 : (2000) ; [4
�,1

, 1
2,�

]

P2: csn2 : (0100) ; [4
�,1

, 2
1,2

, 3
�,�

]

P3: Update csn3 : (0110) ; [4
�,1

, 2
1,2

, 3
2,�

]

P4: csn4 : (0000) ; [4
�,1

, 2
�,�

] and [4
�,1

, 1
�,�

]

send(m4):
P1: csn1 : (2000) ; [4

�,1
, 1
2,�

] + [1
�,3

, 2
�,�

] ⇒
[4
�,1

, 1
2,3

, 2
�,�

] which piggybacks m4

P2: csn2 : (0100) ; [4
�,1

, 2
1,2

, 3
�,�

]

P3: csn3 : (0110) ; [4
�,1

, 2
1,2

, 3
2,�

]

P4: csn4 : (0000) ; [4
�,1

, 2
�,�

] and [4
�,1

, 1
�,�

]

receive(m4): [4
�,1

, 1
2,3

, 2
2,�

] piggybacked to P2

P1: csn1 : (2000) ; [4
�,1

, 1
2,3

, 2
�,�

]

P2: Update csn2 : (2100) ; sends request([2
�,2

, 3
�,�

])

to P3 to get [2
�,2

, 3
2,�

].

So [4
�,1

, 1
2,3

, 2
2,�

] + [2
�,2

, 3
2,�

] ⇒ [4
�,1

, 1
2,3

, 2
2,2

, 3
2,�

]

and [4
�,1

, 2
1,2

, 3
�,�

] + [2
�,2

, 3
2,�

] ⇒ [4
�,1

, 2
1,2

, 3
2,�

]

P3: csn3 : (0110) ; [4
�,1

, 2
1,2

, 3
2,�

]

P4: csn4 : (0000) ; [4
�,1

, 2
�,�

] and [4
�,1

, 1
�,�

]

P3 takes C3,2 , csn3 : (0120). [4
�,1

, 2
1,2

, 3
2,�

]

send(m5):
P1: csn1 : (2000) ; [4

�,1
, 1
2,3

, 2
�,�

]

P2: csn2 : (2100) ; [4
�,1

, 1
2,3

, 2
2,2

, 3
2,�

]

and [4
�,1

, 2
1,2

, 3
2,�

]

P3: csn3 : (0120) ; [4
�,1

, 2
1,2

, 3
2,�

] + [3
�,3

, 4
�,�

] ⇒
[4
�,1

, 2
1,2

, 3
2,3

, 4
�,�

] which piggybacks m5

P4: csn4 : (0000) ; [4
�,1

, 2
�,�

] and [4
�,1

, 1
�,�

]

receive(m5): [4
�,1

, 2
1,2

, 3
2,3

, 4
1,�

] piggybacked to P4

P1:csn1 : (2000);[4
�,1

, 1
2,3

, 2
�,�

]

P2:csn2 : (2100);[4
�,1

, 1
2,3

, 2
2,2

, 3
2,�

] and [4
�,1

, 2
1,2

, 3
2,�

]

P3: csn3 : (0120) ; [4
�,1

, 2
1,2

, 3
2,3

, 4
�,�

]

P4: Update csn4 : (0120) ; [4
�,1

, 2
1,2

, 3
2,3

, 4
1,�

]+[4
�,1

, 2
�,�

]

⇒[4
�,1

, 2
1,2

, 3
2,3

, 4
1,1

, 2
�,�

]

[4
�,1

, 2
1,2

, 3
2,3

, 4
1,�

]+[4
�,1

, 1
�,�

]⇒[4
�,1

, 2
1,2

, 3
2,3

, 4
1,1

, 1
�,�

]

Since there are [· · · , 2
�,�

] and [· · · , 1
�,�

], P4 sends

request([4
�,1

, 2
�,�

]) to P2 to get [4
�,1

, 2
1,2

, 3
2,�

].

P4 sends request([4
�,1

, 1
�,�

]) to P1.When

P1 receives the request,P1 plans to reply
[4
�,1

, 1
2,3

, 2
�,�

].But there is [· · · , 2
�,�

], P1 has to send

request([1
�,3

, 2
�,�

]) to P2 to get [1
�,3

, 2
2,2

, 3
2,�

]. In P1,

[4
�,1

, 1
2,3

, 2
�,�

]+[1
�,3

, 2
2,2

, 3
2,�

]⇒[4
�,1

, 1
2,3

, 2
2,2

, 3
2,�

]. So P1

replies [4
�,1

, 1
2,3

, 2
2,2

, 3
2,�

] for P4’s request.

Then P4 has the following action :
[4
�,1

, 2
1,2

, 3
2,3

, 4
1,1

, 2
�,�

]+[4
�,1

, 2
1,2

, 3
2,�

]

⇒ [4
�,1

, 2
1,2

, 3
2,3

, 4
1,1

, 2
1,2

, 3
2,�

]

[4
�,1

, 2
1,2

, 3
2,3

, 4
1,1

, 1
�,�

]+[4
�,1

, 1
2,3

, 2
2,2

, 3
2,�

]

⇒ [4
�,1

, 2
1,2

, 3
2,3

, 4
1,1

, 1
2,3

, 2
2,2

, 3
2,�

]. So Z-cycles

(4
1,1

, 2
1,2

, 3
2,3

) ,(2
2,2

, 3
2,3

, 4
1,1

, 1
2,3

) will be detected and in-

volved checkpoints are {C2,1, C3,2}, {C3,2, C1,2} re-
spectively.

5. Proof of correctness

5.1. Theorem : Our algorithm can detect all Z-cycles
in distributed computing system.

For Z-cycle detection algorithm, the crucial ques-
tion is that a process should accumulate necessary and
sufficient information of messages passing and merge
these data to check Z-cycle.
proof : Without losing generality, we assume there
is a Z-cycle associated with a sequence of messages
m1, m2, . . . , m� and the representation of the Z-cycle
is [1

�,b1
, 2
a2,b2

,· · · , �
a�,b�

, 1
a1,�

], where � ≥ 2. We prove

this theorem by induction on the length � of Z-cycle.
When � = 2, the figure of such Z-cycle is as figure 7.

�

P1

P2

m2
m1

�c2 = α

C1,q�c1 = q �c1 = q + 1

Figure 7.
For P2, when m2 is sent to P1 at I2,α, m2 = [2

�,α
,

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1129

1
�,�

] is placed in Z Queue2. Till P1 receives m2

from P2, m2 is piggybacked to P1 and P1 can fill
�c1 = q value into m2, that is, m2 = [2

�,α
, 1
q,�

] in

Z Queue1. After P1 taking a checkpoint C1,q , P1

sends m1 = [1
�,q+1

, 2
�,�

] to P2. Before the send-

ing event, P1 merges m1 with Z Queue1 and then
there will be a Z-path [2

�,α
, 1
q,q+1

, 2
�,�

] generated in

Z Queue1. When m1 arrives P2, it piggybacks the
Z-path to P2 and so P2 can fill �c2 = α into the lower-
left � of 2

�,�
. Then there is a Z-path [2

�,α
, 1
q,q+1

, 2
α,�

]

contained in Z Queue2. So P2 can detect the Z-cycle
[2
�,α

, 1
q,q+1

, 2
α,�

],that is (2
α,α

, 1
q,q+1

). By this notation

we can also induct that the checkpoint C1,q is involved
in this Z-cycle.
Suppose when � = k, the theorem is true. That is, a
Z-cycle associated with k messages m1 , m2 , · · · ,
mk denoted by [1

�,b1
, 2
a2,b2

, · · · , k
ak,bk

, 1
a1,�

] can be de-

tected at process Pi, for some i.
Then when � = k + 1, we must show a Z-cycle as-
sociated with k +1 messages m1, m2, · · · , mk, mk+1

could be detected at some process. Let m1 and mk

be the neighbor messages of mk+1 and the Z-cycle is
{· · · , mk, mk+1, m1 ,· · · }. According to the time of
events mk, mk+1, m1 occurring, there are four cases.
Assume Ps receives mk and sends mk+1 , and Pt re-
ceives mk+1 and sends m1 to Pr.

case I : For Ps, receive(mk) hb→ send(mk+1) and

on Pt, receive(mk+1)
hb→ send(m1). That is, Ps is

casual and Pt is also casual.

�
�

�

Ps

Pt

Pr

mk

mk+1

m1

Figure 8.
For Ps, when Ps receives mk, it contains

[1
�,b1

, · · · , s
as,�

] in Z Queues. Since receive(mk) hb→
send(mk+1), so when the event send(mk+1) occurs,
the Z-path will be merged with [s

�,bs

, t
�,�

] and then

becomes [1
�,b1

, · · · , s
as,bs

, t
�,�

] which will be piggy-

backed to Pt. For Pt, it receives [1
�,b1

, · · · , s
as,bs

, t
�,�

]

and it can fill at = �ct into the lower-left �
of Pt. Since receive(mk+1)

hb→ send(m1),
so when Pt sends m1,denoted by [t

�,�ct

, r
�,�

],

[1
�,b1

, · · · , s
as,bs

, t
at,bt

, r
�,�

], where bt = �ct, will be

piggybacked to its target process Pr. For Pr, when Pr

receives m1, it can have [1
�,b1

, · · · , s
as,bs

, t
at,bt

, r
ar ,�

] in

Z Queuer. So by our algorithm, the message mk+1

could be completely inserted into the Z-cycle which
could be detected.
case II : On Ps, receive(mk) hb→ send(mk+1) and

on Pt, send(m1)
hb→ receive(mk+1). That is, Ps is

casual and Pt is non-casual.

�
�

�

Ps

Pt

Pr

mk

mk+1

m1

Figure 9.
By case I, when Pt receives mk+1, Z Queuet con-
tains [1

�,b1
, · · · , s

as,bs

, t
at,�

], where at = �ct. But

m1 has already been sent, so Z Queuet contains
[t
�,at

, r
�,�

] and after merge action, Z Queuet will

generate [1
�,b1

, · · · , s
as,bs

, t
at,at

, r
�,�

], in which there are

two � symbols at process r. So Pt will send a request
message for Z Queuer to obtain [t

�,at

, r
ar,···, · · ·] from

Pr. And then Pt merges again, Z Queuet will get
[· · · , s

as,bs

, t
at,at

, r
ar,br

, · · ·]. So the message mk+1

could be also inserted into the Z-cycle.

case III : For Ps, send(mk+1)
hb→ send(mk) and for

Pt, receive(mk+1)
hb→ send(m1). That is, Ps is non-

casual and Pt is casual.

�

�
�

Ps

Pt

Pr

mk

mk+1

m1

�cs = α

Figure 10.a

�

�
�

Ps

Pt

Pr

mk

mk+1

m1

�cs = α

Figure 10.b
For Ps, since send(mk+1)

hb→ receive(mk), so
Z Queues contains [· · · , s

�,α
, t
�,�

]. When Ps re-

ceives mk, Z Queues will contains [· · · , s
α,�

]. So

they will be merged into [· · · , s
α,α

, t
�,�

]. Because there

are two � symbols in Pt, Ps will send Pt a request and
then merges with Z Queues to obtain [· · · , s

α,α
, t
β,�

].

For Pt, when Pt receives mk+1, Z Queuet contains
[s
�,α

, t
β,�

], for some beta. Later when Pt sends m1 to

Pr, Z Queuet contains [t
�,β′

, r
�,�

], where β′ ≥ β. So

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1130

Pt could have [s
�,α

, t
β,β′

, r
�,�

]. When Pr receives m1,

[s
�,α

, t
β,β′

, r
θ,�

], for some θ, will be obtained. As figure

10, there are two distinct situations.

If receive(m1)
hb→ receivr(mk), as figure 10.a,

then Z Queues has [· · · , s
α,�

] and [s
�,α

, t
β,β′

, r
θ,···

,· · ·]
after requesting Pt. So Ps could obtain [· · · , s

α,α
, t
β,β′

,

r
θ,···

,· · ·].
If receive(mk) hb→ receivr(m1), as figure 10.b,

then Z Queuer has [s
�,α

, t
β,β′

, r
θ,�

]. When Pr receives

m1, it sends a request for some process Pu to get
[u
�,···

,· · · , s
α,�

]. So after connection, Pr could ob-

tain [u
�,···

,· · · , s
α,α

, t
β,β′

, r
θ,�

]. For the two conditions,

[· · · , s
α,α

, t
β,β′

, r
θ,�

,· · ·] could be obtained in Ps(figure

10.a) or Pr(figure 10.b). So mk+1 could also be in-
serted into the Z-cycle.

case IV : For Ps, send(mk+1)
hb→ receive(mk) and

for Pt, send(m1)
hb→ send(mk+1). That is, Ps and Pt

are non-casual.

�

�
�

Ps

Pt

Pr

mk

mk+1

m1

�cs = β

�ct = α

Figure 11.
For Pt, when Pt sends m1 to Pr. Z Queuet contains
[t
�,α

, r
�,�

].When Pt receives mk+1, Z Queuet con-

tains [s
�,β

, t
α,�

]. So after merge action, Z Queuet

could contain [s
�,β

, t
α,α

, r
�,�

] and then Pt requests

Pr and merges again to obtain [s
�,β

, t
α,α

, r
γ,γ′

,· · ·],
for some γ ′. For Ps, when Ps receives mk,
Z Queues could have [· · · , s

β,�
]. And Z Queues

already contains [s
�,β

, t
�,�

]. So after merge action

Z Queues would contains [· · · , s
β,β

, t
�,�

]. Since

there are two � symbols, Ps requests Z Queuet,
which already contains [s

�,β
, t
α,α

, r
γ,γ′

,· · ·], to merge

again. So in Z Queues there will be a Z-cycle
[· · · , s

β,β
, t
α,α

, r
γ,γ′

,· · ·]. Hence mk+1 could also be in-

serted into the Z-cycle.
From above discussion of four distinct cases, the

theorem still holds when the length of Z-cycle is k+1.
By induction the proof is completed. �

6. Conclusions

The task of detecting Z-cycles has never been im-
plemented before, so there is not any evaluation of
such a scheme as this. In this paper, we innovate
an appropriate data structure expressing Z-path and
detecting algorithm in distributed computing system.
Although the algorithm demands much piggybacked
Z-paths information, we can detect Z-cycles and in-
volved checkpoints accurately. By Netzer,Xu’s the-
orem and this algorithm we can distinguish useless
checkpoints(involved in a Z-cycle) from other check-
points. Hence the objective of breaking Z-cycles could
be accessible by inserting minimal number of forced
checkpoints. In the future, we can eliminate useless
checkpoints or rearrange their position to make Z-
cycle free for decreasing the number of forced check-
points to destroy Z-cycles is still an important issue.

7. References

[1] L.Lamport. Time, Clocks and the Ordering of
Evevts in a Distributed System. Comm. ACM,
vol.21, no.7, pp.558-565, 1978

[2] R.H.B Netzer and J. Xu. Necessary and Sufficient
Conditions for Consistent Global Snapshots. IEEE
Trans. on Parallel and Distributed Systems, vol.6,
no.2, pp.165-169, 1995

[3] Taesoon Park. Heon Y. Yeon. Application
Controlled Checkpointing Coordination for Fault-
Tolerant Distributed Computing Systems. Dept of
Computer Engineer Sejong University. Parallel
Computing, vol.26, no.4, pp.467-482, 2000

[4] D. Manivannan and M. Singhal. Quasi-
Synchronous Checkpointing: Models, Character-
ization, and Classification. IEEE Trans. on Paral-
lel and Distributed Systems, vol.10, no.7, pp.703-
713, 1999

[5] D. Briatico, A. Ciuffoletti and L. Simoncini, A
distributed domino-effect free recovery algorithm.
In Proc. of the IEEE 4th Symp. on Reliability in
Distributed Software and Database Systems, pp.
207-215 , 1984

[6] J.M. Helary et al. Communication-based preven-
tion of useless checkpoints in distributed computa-
tions. Distributed Computing, vol.13, no.1, pp.29-
43, 2000

[7] R.Baldoni, F. Quaglia, and B. Ciciani. A VP-
accordant checkpointing protocol preventing use-
less checkpoints. In the 17th IEEE Symposium on
Reliable Distributed Systems, pp.61-67. 20-23 Oct.
1998

[8] Yi-Min Wang. Maximum and Minimum Consis-
tent Global Checkpoints and their Applications. In
the 14th IEEE Symposium on Reliable Distributed
Systems , pp.86-95. 13-15 September, 1995

[9] Yi-Min Wang. Consistent Global Checkpoints
that Contain a Given Set of Local Checkpoints.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1131

IEEE Transactions on Computers, vol.46, no.4,
pp.456-468, 1997.

[10] Jane-Feng Chiu and Ge-Ming Chiu. Placing
Forced Checkpoints in Distributed Real-Time Em-
bedded Systems. IEEE Computing & Control En-
gineering Journal, vol.13, issue 4, pp.197-205 Aug
2002

[11] B. Randell. System structures for software
fault-tolerance. IEEE Transactions on Software
Eng.,vol.1 no.2, pp.220-232, June, 1975

[12] R. Baldoni, J. M. Helary, and M. Raynal.
Rollback-dependency trackability: Visible charac-
terizations. In 18th ACM Symposium on the Prin-
ciples of Distributed Computing(PODC’99), At-
lanta(USA), pp.33-42, May 1999

[13] I. C. Garcia and L. E. Buzato. On the minimal
characterization of rollback-dependency trackabil-
ity property. In Proceedings of the 21th IEEE Int.

Conf. on Distributed Computing Systems, pp.0342-
0349. 16-19 April 2001

[14] K. M. Chandy and L. Lamport. Distributed snap-
shots: determining global states of distributed sys-
tems. ACM Trans. on Computer Systems,vol.3,
no.1, pp.63-75, Feb, 1985

[15] R. Koo and S. Toueg. Checkpointing and
Rollback-recovery for distributed systems. IEEE
Trans. on Software Eng., vol.13, no.1, pp.23-31,
Jan, 1987

[16] R.D. Schlichting and F.B. Schneider. Fail-
Stop Processors: an Approach to Designing Fault-
Tolerant Computing Systems. ACM Trans. on
Computer Systems, vol.1, no.3, pp.222-238, 1983

[17] E.N. Elnozahy, D.B. Johnson and Y.M. Wang.
A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Computing Sur-
veys(CSUR), vol.34, issue 3, pp.375-408, Sep.
2002

Appendix :

The section illustrate our algorithms detailed and we typeset them with one column.
Actions taken when Pi sends a message M to Pj

1: for each Z-path in Z Queuei do
2: Duplicate the front part [· · · · · · , i

α,�
], where α ≤ �ci to merge [i

�,�ci

, j
�,�

] into a new Z-path [· · · · · · , i
α,�ci

, j
�,�

] and copy them

into Z Queue buffer1i;
3: end for
4: Send (Z Queue buffer1i and M) to Pj ;
5: Clear Z Queue buffer1i; // end

Actions taken when Pi receives a message (M , Z Queue buffer1k) from Pk

1: Store Z Queue buffer1k into Z Queue buffer1i ;
2: for each Z-path [· · · · · · , k·,α, i

�,�
] in Z Queue buffer1i do

3: Write �ci into it, [· · · · · · , k·,α, i
�ci,�

]

4: end for
5: Update(csni , Z Queue buffer1i);
6: PruneZ-path(csni , Z Queue buffer1i);
7: for each [· · · , i

···,�ci

, j
�,�

] appears in Z-path of Z Queuei do

8: Send Z-path request([i
�,�ci

, j
�,�

]) to Pj to obtain the back part [i
�,�ci

, j
···,···

, · · ·] of Z-paths in their Z Queuej ;

9: Obtain Z-paths [i
�,�ci

, j
···,···

, · · ·] from other processe js and connect them with [· · · , i
···,�ci

, j
�,�

] into

[· · · , i
···,�ci

, j
···,···

, · · ·];
10: PruneZ-path(csni , Z Queuei);
11: end for
12: for each z − path in Z Queue buffer1i do
13: Take the front part [· · · , k···,···, i

α,�
], where α = �ci

14: for each z − path containing [· · · , i
···,�ci

, · · ·] in Z Queuei do

15: Connect [· · · , k···,···, i
α,�

] with [i
�,�ci

, · · ·] and then generate a new Z-path [· · · , k···,···, i
α,�ci

, · · ·];
16: CheckZ-cycle(this new Z-path, [k

�,···
, i
�ci,�

]);

17: end for
18: end for
19: Clear Z Queue buffer1i and Z Queue buffer2i;
20: Processing M ; // end

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1132

Actions taken when Pi takes a basic checkpoint

1: Pi takes a checkpoint Ci,�ci
;

2: �ci := �ci + 1;
3: csni[i] := �ci;
4: PruneZ-path(csni , Z Queuei); // end

Actions taken when Pi receives a Z-path request([q
�,�cq

, i
�,�

]) from Pq

1: for each Z-path of Z Queuei do
2: Cut the back part [q

�,�cq

, i···,···, · · · · · ·] of the Z-path;

3: if the Z-path is as [q
�,�cq

, i···,···, · · · , r
...,α

, s
�,�

] then

4: Send Z-path request([r
�,α

, s
�,�

]) to all processes s to obtain back part [r
�,α

, s···,···, · · · · · ·] of z-paths in their Z Queue and wait

for reply;
5: Collect Z-paths [r

�,α
, s···,···, · · · · · ·] from other processes and connect with [q

�,�cq

, i···,···, · · · , r
...,α

, s
�,�

] , then update this Z-path

[· · · , q
�,�cq

, i···,···, · · · , r
...,α

, s···,···, · · ·] ;

6: Store [q
�,�cq

, i···,···, · · · , r
...,α

, s···,···, · · ·] into Z Queue buffer1i

7: else
8: Store the Z-path [q

�,�cq

, i···,···, · · · · · ·] into Z Queue buffer1i;

9: end if
10: end for
11: Send Z Queue buffer1i back to Pq for reply.
12: Update(csni;Z Queue buffer1i);
13: PruneZ-path(csni , Z Queuei);
14: Clear Z Queue buffer1i , Z Queue buffer2i; // end

Procedure Update(csn , Z Queue)

1: for each z − path in Z Queue do
2: for each Pid.�c out do
3: csn[Pid] = max(csn[Pid], P id.�c out − 1);
4: end for
5: end for // end

Procedure PruneZ-path(csn , Z Queue)

1: for each Z-path in Z Queue do
2: while first Pid.�c out ≤ csn[Pid] do
3: Delete the first element of the z-path; // The sending of the first message occurred at the left side of checkpoint line ,so first ele-

ment(message) is useless.
4: end while
5: end for // end

Procedure CheckZ-cycle(z − path, [k
�,α

, i
β,�

])

1: if there exists m in z − path [· · · , m···,out
, · · · , k···,α, i

β,···
, · · · , m

in,···
, · · ·] such that in ≤ out then

2: if there exists at least one Pid such that �c in < �c out in the cycle [m
�,out

, · · · , k···,α, i
β,···

, · · · , m
in,�

] then

3: Z-cycle [m
�,out

, · · · , k···,α, i
β,···

, · · · , m
in,�

] forms and save it;

4: end if
5: end if // end

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1133

