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Abstract-The fault tolerance for Hamiltonian 
properties of n-dimensional bipartite 
hypercube-like graphs Xn are explored. The main 
result of this paper is that Xn – F is Hamiltonian 
laceable where F is the faulty edge set with |F| = 
n – 3. 
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1. Introduction1 
 

The hypercube network is one of the most 
popular interconnection networks. It has many 
attractive properties, such as regularity, 
symmetry, low diameter, simple routing 
algorithms[2]. The hypercube network also 
contains some Hamiltonian properties[3]. 

Let G = (V0 ∪ V1, E) be a bipartite graph 
where V0 and V1 are two disjoint vertex sets such 
that each edge of E consists of one vertex from 
each set. Two vertices a and b are adjacent if (a, 
b) ∈ E. A path is a sequence of adjacent vertices, 
denoted as 〈v1, v2, …, vn〉, where all the vertices 
v1, v2, …, vn are distinct. A Hamiltonian path is a 
path that spans G. A cycle, written as 〈v1, v2, …, 
vn〉, is a path for v1 = vn. A Hamiltonian cycle is a 
cycle that traces every vertex exactly once. A 
Hamiltonian graph is a graph that contains a 
Hamiltonian cycle. A Hamiltonian graph G is k 
edge Hamiltonian if G – F is Hamiltonian for 
every F ⊂ E(G) with |F| = k. A bipartite graph G 
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= (V0 ∪ V1, E) is Hamiltonian laceable if there is 
a Hamiltonian path between every pair of 
vertices x and y for x ∈ V0 and y ∈ V1. A k edge 
Hamiltonian laceable graph G is a Hamiltonian 
laceable graph that G – F is Hamiltonian 
laceable for every F ⊂ E(G) with |F| = k. A 
Hamiltonian laceable graph G = (V0∪V1, E) is 
hyper-Hamiltonian laceable if ∀ v ∈ Vi, i = 0, 1, 
there is a Hamiltonian path of G – v between 
every pair of vertices of V1-i. In [5], Tsai et al. 
showed that the hypercube Qn is (n–2) edge 
Hamiltonian laceable and (n–3) edge 
hyper-Hamiltonian laceable. 

In [6], Vaidya et al. introduced the class of 
hypercube-like graphs. The class of HL-graphs 
contains most of hypercube variants. Park et al. 
showed that the bipartite HL-graph is 
Hamiltonian laceable and the non-bipartite 
HL-graph is Hamiltonian connected[4]. In this 
paper, we show that the bipartite HL-graph Xn is 
(n–3) edge Hamiltonian laceable and (n–2) edge 
Hamiltonian. 

Let G1 = (V1, E1) and G2 = (V2, E2) be two 
disjoint graphs with |V1| = |V2|. The cross edge 
set E = {(v, φ(v)) | v ∈ V1, φ(v) ∈ V2 and φ : V1 
→ V2 is a bijection}. Let G1⊕G2 denote G = (V1 
∪ V2, E1 ∪ E2 ∪ E). Let G be partitionable if G 
= G1⊕G2 for some graphs G1 and G2. For 
convenience, we denote the neighbor of vertex u 
as φ(u) for (u, φ(u)) ∈ E. The n-dimensional 
HL-graphs HLn can be defined as: 
 
(1) HL0 = {G0}, where G0 is a trivial graph 

( which has only one vertex ). 
(2) G ∈ HLn+1 if and only if G = G1⊕G2 

for some G1, G2 ∈ HLn. 
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In this paper, we focus on bipartite HL-graphs. 
Let Xn denote an arbitrary bipartite 
n-dimensional HL-graph. The two subgraphs of 
Xn denote with Xn-1

0 and Xn-1
1. Let F, F0 and F1 

be the faulty edge sets of Xn, Xn-1
0 and Xn-1

1, 
respectively. 
  

2. Hamiltonian laceability of the 
bipartite HL-graphs. 
 

In this section, we will show the bipartite 
HL-graphs Xn is hyper-Hamiltonian laceable. 

 
Theorem 1. Every n-dimensional bipartite 

HL-graph is hyper-Hamiltonian laceable. 
 

Proof. The proof is by induction on n. 
It is trivial for n ≤ 2. By induction hypothesis, 

the two subgraphs Xn-1
0 and Xn-1

1 of Xn are 
hyper-Hamiltonian laceable. Let s and t be red 
nodes and w be a blue node. We will construct a 
Hamiltonian path of Xn - w between s and t in the 
following cases. 

Case 1. s, t and w are in the same subgraph. 
Without loss of generality, we can assume 

that s, t and w are in Xn-1
0. Since Xn-1

0 is 
hyper-Hamiltonian laceable, there exists a 
Hamiltonian path P0 from s to t in Xn-1

0 – w. Let 
P0 contain the edge (u, v) where vertex u is blue 
and vertex v is red. We can write the path P0 as 
〈s→ P(s, u)→ u, v→ P(v, t)→ t〉. Since Xn-1

1 is 
Hamiltonian-laceable, there exists a Hamiltonian 
path P1 from φ(u) to φ(v). We can construct the 
Hamiltonian path from s to t as 〈s→ P(s, u)→ u, 
φ(u)→ P1→ φ(v), v→ P(v, t) → t〉, as illustrated 
in Fig. 1(a). 

Case 2. s and t are in the same subgraph, w 
is in another subgraph. 

Without loss of generality, we can assume 
that s and t are in Xn-1

0, and w is in Xn-1
1. Let 

vertex p in Xn-1
0 be blue, and v be adjacent to p in 

Xn-1
0. Since Xn-1

0 is hyper-Hamiltonian laceable, 
there exists a Hamiltonian path P0, denoted as 〈 
s→ P(s, u)→ u, v→ P(v, t)→ t 〉, from s to t in 
Xn-1

0 – p where (u, v) is an edge of P0. Since Xn-1
1 

is hyper-Hamiltonian laceable, there exists a 
Hamiltonian path P1 from φ(u) to φ(p) in Xn-1

1 – 

w. We can construct the Hamiltonian path from s 
to t in Xn – w as 〈s→ P(s, u) → u, φ(u)→ P1→ 
φ(p), p, v→ P(v, t)→ t〉, as illustrated in Fig. 
2(b).  

Case 3. s and t are in different subgraphs. 
Without loss of generality, we can assume 

that s and w are in Xn-1
0, and t is in Xn-1

1. Since 
Xn-1

0 is hyper-Hamiltonian laceable, there exists 
a Hamiltonian path P0 denoted as 〈s→ P(s, p)→ 
p〉 from s to p in Xn-1

0 – w, where p is red. Since 
Xn-1

1 is Hamiltonian-laceable, there exists a 
Hamiltonian path P1 from φ(p) to t. We can 
construct the Hamiltonian path from s to t in 
Xn – w as 〈s→ P0→ p, φ(p)→ P1→ t〉, as 
illustrated in Fig. 2(c).□ 

 
3. Fault-tolerant Hamiltonian 

laceability of the bipartite 
HL-graphs. 

 
In this section, we will prove an 

n-dimensional bipartite HL-graph Xn is (n-3) 
edge Hamiltonian laceable and (n-2) edge 
Hamiltonian. 
 

Lemma 1. The graph X3 is 1 edge 
Hamiltonian laceable. 
 

Proof. In [4], Tsai et al. show that the 
hypercube Q3 is 1 edge Hamiltonian laceable. 
The bipartite HL-graph X3 is isomorphic to Q3. 
Thus X3 is also 1 edge Hamiltonian laceable. □ 
 

Lemma 2. The graph X4 is 1 edge 
Hamiltonian laceable. 
  

Proof. Let X3
0 and X3

1 be the two disjoint 
subgraphs of X4. Let vertex s be red and vertex t 
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be blue. 
Case 1. s and t are in the same subgraph. 

Without loss of generality, we can assume 
that s and t are in X3

0. Since X3
0 is 1 edge 

Hamiltonian laceable, there exists a Hamiltonian 
path P0 from s to t in X3

0. Let (u, v) be an edge of 
P0 such that the edges (u, φ(u)) and (v, φ(v)) are 
fault-free. We can write the path P0 = 〈x→ P(x, 
u)→ u, v→ P(v, t)→ t〉. Since subgraph X3

1 is 1 
edge Hamiltonian laceable, there exists a 
Hamiltonian path P1 from φ(u) to φ(v) in X3

1 . 
We can construct the Hamiltonian path from s to 
t in X4 as 〈s→ P(s, u)→ u, φ(u)→ P1→ φ(v), v→ 
P(v, t)→ t〉, as illustrated Fig. 2(a). 

Case 2. s and t are in different subgraphs. 

Without loss of generality, we can assume 
that s ∈ X3

0 and t ∈ X3
1. Let p be a blue node in 

X3
0 such that (p, φ(p)) is fault-free. Since X3

0 and 
X3

1 are 1 edge Hamiltonian laceable, there exists 
a Hamiltonian path P0 from s to p in X3

0 and the 
Hamiltonian path P1 from φ(p) to t in X3

0 and X3
1, 

receptivity. We can construct the Hamiltonian 
path from s to t in X4 as 〈s→ P0→ p, φ(p)→ P1→ 
t〉, as illustrated Fig. 2(b).                 □ 

 
In [4], Park et al. show the following lemma. 
 
Lemma 3. For given two red vertices s, v 

and two blue vertices t, u, we can construct two 
vertex-disjoint paths P1 and P2, which cover all 
vertices of Xn, while P1 joins s and u, and P2 
joins t and v.  

 
Lemma 4. If Xn-1 is (n-4) edge Hamiltonian 

laceable and (n-3) edge Hamiltonian, then Xn is 
(n-3) edge Hamiltonian laceable, for n > 4. 
 

Proof. Let s and t be two arbitrary vertices 

such that s is red and t is blue. And let F be the 
faulty edge set of Xn with |F| = n-3. 

 
Case 1. F ⊂ Xn-1

0 or F ⊂ Xn-1
1 

Without loss of generality, we can assume 
that F ⊂ Xn-1

1. 
Case 1.1. s, t ∈ Xn-1

0  
Since Xn-1

1 is (n-3) edge Hamiltonian, there 
exists Hamiltonian cycle C1 in Xn-1

1 – F. Let 
(φ(u), φ(v)) be an edge of C1, where φ(u) is blue 
and φ(v) is red. We can write the cycle C1 as 
〈φ(u)→ P0→ φ(v), φ(u)〉. Applying Lemma 3, 
we can construct two spanning vertex-disjoint 
paths P(s, u) and P(v, t) in Xn-1

0, where u is a 
blue node and v is a red node. Therefore, there 
exists a Hamiltonian path 〈s→ P(s, u)→ u, 
φ(u)→ P1→ φ(v), v→ P(v, t)→ t〉 in Xn, as 
illustrated in Fig. 3(a).             

Case 1.2. s ∈ Xn-1
0 and t ∈ Xn-1

1  
Since Xn-1

1 is (n-3) edge Hamiltonian, there 
exists a Hamiltonian cycle C1, denote as 〈t→ 
P1→ φ(p), t〉, in Xn-1

1, where (t, φ(p)) is an edge 
of C1. In Xn-1

0, there exists a Hamiltonian path P0 
from s to p. Thus, 〈s→ P0→ p, φ(p)→ P1→ t〉 
forms a Hamiltonian path from s to t, as 
illustrated in Fig. 3(b). 

Case 1.3. s, t ∈ Xn-1
1  

Since Xn-1
1 is (n-4) edge Hamiltonian 

laceable, there exist two spanning vertex-disjoint 
paths P(s, u) and P(v, t) for some edge (u, v) in 
Xn-1

1 – F. In Xn-1
0, there exists a Hamiltonian 

path P0 from φ(u) to φ(v). Thus, 〈s→ P(s, u)→ u, 
φ(u)→ P0→ φ(v), v→ P(v, t)→ t〉 forms a 
Hamiltonian path from s to t, as illustrated in Fig. 
3(c). 

 
Case 2. F ⊄ Xn-1

0 and F ⊄ Xn-1
1 

Since |F ∩ Xn-1
0| ≤ n – 4 and |F ∩ Xn-1

1| ≤ n – 
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4, both Xn-1
0 – F and Xn-1

1 – F are Hamiltonian 
laceable. 

Case 2.1. s and t are in the same subgraph.  
Without loss of generality, we can assume 

that s, t ∈ Xn-1
0. Since Xn-1

0 is (n-4) edge 
Hamiltonian laceable, there exists a Hamiltonian 
path P0 from s to t with 2n-1 – 1 edges. Since 
⎡(2n-1 – 1)/2⎤ > n - 3 for n > 4, there exists an 
edge (u, v) in path P0, such that both edges (u, 
φ(u)) and (v, φ(v)) are fault-free. Since Xn-1

1 is 
(n-4) edge Hamiltonian laceable, there exists a 
Hamiltonian path P1 from φ(u) to φ(v). We can 
construct the Hamiltonian from s to t as 〈s→ P(s, 
u)→ u, φ(u)→ P1→ φ(v), v→ t〉, as illustrated in 
Fig. 4(a). 

Case 2.2. s and t are in different subgraphs. 
Without loss of generality, we can assume 

that s ∈ Xn-1
0 and t ∈ Xn-1

1. Let z be a blue vertex 
in Xn-1

0 such that (z, φ(z)) is fault-free. Since 
Xn-1

0and Xn-1
1 is (n-4) edge Hamiltonian laceable. 

There exist Hamiltonian paths P(s, z) and P(φ(z), 
t) in Xn-1

0and Xn-1
1, respectively. We can 

construct the Hamiltonian path from s to t as 
〈s→ P(s, z)→ z, φ(z)→ P(φ(z), t)→ t〉, as 
illustrated in Fig. 4(b).                   □ 
 

 
Lemma 5. If Xn-1 is (n-4) edge Hamiltonian 

laceable and (n-3) edge Hamiltonian, then Xn is 
(n-2) edge Hamiltonian, for n > 3. 

Proof. Let F be the faulty edge set in Xn with 
|F| = n - 2. Both two subgraphs Xn-1

0 and Xn-1
1 are 

(n-4) edge Hamiltonian laceable and (n-3) edge 
Hamiltonian. 

Case 1. F ⊂ Xn-1
0 or F ⊂ Xn-1

1 
Without loss of generality, we can assume 

that F ⊂ Xn-1
1. Since Xn-1

1 is (n-3) edge 
Hamiltonian, there exists a Hamiltonian path P(x, 

y) in Xn-1
1 – F for some edge (x, y) of Xn-1

1. There 
also exists a Hamiltonian path P(φ(x), φ(y)) 
between φ(x) and φ(y) in Xn-1

0. Thus, 〈x→ P(x, 
y)→ y, φ(y)→ P(φ(y), φ(x))→ φ(x) , x〉 forms a 
Hamiltonian cycle of Xn – F, as illustrated in Fig. 
5(a). 

Case 2. F ⊄ Xn-1
0 and F ⊄ Xn-1

1 
Without loss of generality, we can assume 

that |F0| ≤ |F1|. Thus, Xn-1
0 – F0 is Hamiltonian 

laceable and Xn-1
1 – F1 is Hamiltonian. Let C1 be 

the Hamiltonian cycle in Xn-1
1 – F. Since 

⎡(2n-1-1)/2⎤ > n – 2 for n > 3, there exists an edge 
(x, y) of C1 such that both (x, φ(x)) and (y, φ(y)) 
are fault-free. We can write the cycle C1 as 〈x→ 
P(x, y)→ y, x〉. Since Xn-1

0 – F is Hamiltonian 
laceable, there exists a Hamiltonian path P(φ(y), 
φ(x)) in Xn-1

0 – F0. Hence, 〈x→ P(x, y)→ y, 
φ(y)→ P(φ(y), φ(x))→ φ(x), x〉 forms a 
Hamiltonian cycle in Xn – F, as illustrated in Fig. 
5(b).                                 □ 

 

Theorem 2. The n-dimensional bipartite 
HL-graph Xn is (n-3) edge Hamiltonian laceable, 
and (n-2) edge Hamiltonian, for n ≥ 3. 

Proof. We will prove this theorem with 
induction on n. The base case: Lemma 1 shows 
X3 is 1 edge Hamiltonian laceable. Thus X3 is 
also 1 edge Hamiltonian. We show X4 is 1 edge 
Hamiltonian in Lemma 2. Applying Lemma 5, 
we can prove X4 is 2 edges Hamiltonian. The 
induction step can be proved with Lemma 4 and 
Lemma 5.                            □ 
 

4. Concluding remarks 
 

In [5], Tsai et al. showed that the hypercube 
Qn is (n-2) edge Hamiltonian laceable and (n-3) 
edge hyper-Hamiltonian laceable. The HL-graph 
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is more general than hypercube graph. In this 
paper, we show that every n-dimensional 
bipartite HL-graph is hyper-Hamiltonian 
laceable, (n-3) edge Hamiltonian laceable and 
(n-2) edge Hamiltonian. It is worthwhile to 
investigate other fault tolerance Hamiltonian 
properties of hypercube-like graphs. 
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