Fault-tolerant Hamiltonian laceability of bipartite hypercube-like networks

Chun-Nan Hung and Ko-Chen Hu Department of Computer Science and Information Engineering, Da-Yeh University 112 Shan-Jiau Rd, Da-Tsuen, Changhua, Taiwan 51505, ROC {<u>spring@mail.dyu.edu.tw</u>, <u>e9206008@mail.dyu.edu.tw</u>}

Abstract-The fault tolerance for Hamiltonian properties of n-dimensional bipartite hypercube-like graphs X_n are explored. The main result of this paper is that $X_n - F$ is Hamiltonian laceable where F is the faulty edge set with |F| = n - 3.

Keywords: hypercube-like, Hamiltonian laceable, fault tolerance.

1. Introduction¹

The hypercube network is one of the most popular interconnection networks. It has many attractive properties, such as regularity, symmetry, low diameter, simple routing algorithms[2]. The hypercube network also contains some Hamiltonian properties[3].

Let $G = (V_0 \cup V_I, E)$ be a *bipartite* graph where V_0 and V_I are two disjoint vertex sets such that each edge of E consists of one vertex from each set. Two vertices a and b are *adjacent* if $(a, b) \in E$. A *path* is a sequence of adjacent vertices, denoted as $\langle v_1, v_2, ..., v_n \rangle$, where all the vertices $v_1, v_2, ..., v_n$ are distinct. A *Hamiltonian path* is a path that spans G. A *cycle*, written as $\langle v_1, v_2, ..., v_n \rangle$, is a path for $v_1 = v_n$. A *Hamiltonian cycle* is a cycle that traces every vertex exactly once. A *Hamiltonian graph* is a graph that contains a Hamiltonian cycle. A Hamiltonian for E is Hamiltonian for every $F \subset E(G)$ with |F| = k. A bipartite graph G = $(V_0 \cup V_1, E)$ is Hamiltonian laceable if there is a Hamiltonian path between every pair of vertices x and y for $x \in V_0$ and $y \in V_1$. A k edge Hamiltonian laceable graph G is a Hamiltonian laceable graph that G - F is Hamiltonian laceable for every $F \subset E(G)$ with |F| = k. A Hamiltonian laceable graph $G = (V_0 \cup V_1, E)$ is hyper-Hamiltonian laceable if $\forall v \in V_i, i = 0, 1,$ there is a Hamiltonian path of G - v between every pair of vertices of V_{1-i} . In [5], Tsai et al. showed that the hypercube Q_n is (n-2) edge Hamiltonian laceable and (n-3) edge hyper-Hamiltonian laceable.

In [6], Vaidya et al. introduced the class of hypercube-like graphs. The class of HL-graphs contains most of hypercube variants. Park et al. showed that the bipartite HL-graph is Hamiltonian laceable and the non-bipartite HL-graph is Hamiltonian connected[4]. In this paper, we show that the bipartite HL-graph X_n is (n-3) edge Hamiltonian laceable and (n-2) edge Hamiltonian.

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two disjoint graphs with $|V_1| = |V_2|$. The cross edge set $E = \{(v, \phi(v)) \mid v \in V_1, \phi(v) \in V_2 \text{ and } \phi : V_1$ V_2 is a bijection}. Let G_1 G_2 denote $G = (V_1 \cup V_2, E_1 \cup E_2 \cup E)$. Let G be partitionable if G $= G_1$ G_2 for some graphs G_1 and G_2 . For convenience, we denote the neighbor of vertex uas $\phi(u)$ for $(u, \phi(u)) \in E$. The *n*-dimensional HL-graphs HL_n can be defined as:

- (1) $HL_0 = \{G_0\}$, where G_0 is a trivial graph (which has only one vertex).
- (2) $G \in HL_{n+1}$ if and only if $G = G_1 \quad G_2$ for some $G_1, G_2 \in HL_n$.

¹ This work was supported in part by the National Science Council of Republic of China under NSC 92-2213-E-212-025

In this paper, we focus on bipartite HL-graphs. Let X_n denote an arbitrary bipartite *n*-dimensional HL-graph. The two subgraphs of X_n denote with X_{n-1}^0 and X_{n-1}^1 . Let *F*, F_0 and F_1 be the faulty edge sets of X_n , X_{n-1}^0 and X_{n-1}^1 , respectively.

2. Hamiltonian laceability of the bipartite HL-graphs.

In this section, we will show the bipartite HL-graphs X_n is hyper-Hamiltonian laceable.

Theorem 1. Every n-dimensional bipartite *HL*-graph is hyper-Hamiltonian laceable.

Proof. The proof is by induction on *n*.

It is trivial for $n \le 2$. By induction hypothesis, the two subgraphs X_{n-1}^{0} and X_{n-1}^{1} of X_n are hyper-Hamiltonian laceable. Let *s* and *t* be red nodes and *w* be a blue node. We will construct a Hamiltonian path of X_n - *w* between *s* and *t* in the following cases.

Case 1. s, t and w are in the same subgraph.

Without loss of generality, we can assume that *s*, *t* and *w* are in X_{n-1}^{0} . Since X_{n-1}^{0} is hyper-Hamiltonian laceable, there exists a Hamiltonian path P_0 from *s* to *t* in $X_{n-1}^{0} - w$. Let P_0 contain the edge (u, v) where vertex *u* is blue and vertex *v* is red. We can write the path P_0 as $\langle s \ P(s, u) \ u, v \ P(v, t) \ t \rangle$. Since X_{n-1}^{1} is Hamiltonian-laceable, there exists a Hamiltonian path P_1 from $\phi(u)$ to $\phi(v)$. We can construct the Hamiltonian path from *s* to *t* as $\langle s \ P(s, u) \ u, \phi(u) \ P_1 \ \phi(v), v \ P(v, t) \ t \rangle$, as illustrated in Fig. 1(a).

Case 2. s and *t* are in the same subgraph, *w* is in another subgraph.

Without loss of generality, we can assume that *s* and *t* are in X_{n-1}^{0} , and *w* is in X_{n-1}^{1} . Let vertex *p* in X_{n-1}^{0} be blue, and *v* be adjacent to *p* in X_{n-1}^{0} . Since X_{n-1}^{0} is hyper-Hamiltonian laceable, there exists a Hamiltonian path P_0 , denoted as $\langle s P(s, u) u, v P(v, t) t \rangle$, from *s* to *t* in $X_{n-1}^{0} - p$ where (u, v) is an edge of P_0 . Since X_{n-1}^{1} is hyper-Hamiltonian laceable, there exists a Hamiltonian laceable, there exists a Hamiltonian laceable, there exists a Hamiltonian laceable of P_0 . Since $X_{n-1}^{1} - p$ where (u, v) is an edge of P_0 . Since $X_{n-1}^{1} - p$ where P_1 from $\phi(u)$ to $\phi(p)$ in $X_{n-1}^{1} - p$.

w. We can construct the Hamiltonian path from *s* to *t* in $X_n - w$ as $\langle s \ P(s, u) \ u, \phi(u) \ P_1 \ \phi(p), p, v \ P(v, t) \ t \rangle$, as illustrated in Fig. 2(b).

Case 3. s and t are in different subgraphs.

Without loss of generality, we can assume that *s* and *w* are in X_{n-1}^{0} , and *t* is in X_{n-1}^{1} . Since X_{n-1}^{0} is hyper-Hamiltonian laceable, there exists a Hamiltonian path P_0 denoted as $\langle s P(s, p) p \rangle$ from *s* to *p* in $X_{n-1}^{0} - w$, where *p* is red. Since X_{n-1}^{1} is Hamiltonian-laceable, there exists a Hamiltonian path P_1 from $\phi(p)$ to *t*. We can construct the Hamiltonian path from *s* to *t* in $X_n - w$ as $\langle s P_0 p, \phi(p) P_1 t \rangle$, as illustrated in Fig. 2(c).

Fig. 1. (a) Case 1: s,t and $w\in X_{n,t}^{a}$ (b) Case 2: s, $t\in X_{n,t}^{a}$ and $w\in X_{n,t}^{a}$. (c) Case 3: s $\in X_{n,t}^{a}$ and t $\in X_{n,t}^{a}$

3. Fault-tolerant Hamiltonian laceability of the bipartite HL-graphs.

In this section, we will prove an n-dimensional bipartite HL-graph X_n is (n-3) edge Hamiltonian laceable and (n-2) edge Hamiltonian.

Lemma 1. The graph X_3 is 1 edge Hamiltonian laceable.

Proof. In [4], Tsai et al. show that the hypercube Q_3 is 1 edge Hamiltonian laceable. The bipartite HL-graph X_3 is isomorphic to Q_3 . Thus X_3 is also 1 edge Hamiltonian laceable.

Lemma 2. The graph X_4 is *l* edge Hamiltonian laceable.

Proof. Let X_3^0 and X_3^1 be the two disjoint subgraphs of X_4 . Let vertex *s* be red and vertex *t*

be blue.

Case 1. s and t are in the same subgraph.

Without loss of generality, we can assume that *s* and *t* are in X_3^0 . Since X_3^0 is 1 edge Hamiltonian laceable, there exists a Hamiltonian path P_0 from *s* to *t* in X_3^0 . Let (u, v) be an edge of P_0 such that the edges $(u, \phi(u))$ and $(v, \phi(v))$ are fault-free. We can write the path $P_0 = \langle x \quad P(x, u) \quad u, v \quad P(v, t) \quad t \rangle$. Since subgraph X_3^1 is 1 edge Hamiltonian laceable, there exists a Hamiltonian path P_1 from $\phi(u)$ to $\phi(v)$ in X_3^1 . We can construct the Hamiltonian path from *s* to *t* in X_4 as $\langle s \quad P(s, u) \quad u, \phi(u) \quad P_1 \quad \phi(v), v$ $P(v, t) \quad t \rangle$, as illustrated Fig. 2(a).

Case 2. s and t are in different subgraphs.

Without loss of generality, we can assume that $s \in X_3^0$ and $t \in X_3^1$. Let *p* be a blue node in X_3^0 such that $(p, \phi(p))$ is fault-free. Since X_3^0 and X_3^1 are 1 edge Hamiltonian laceable, there exists a Hamiltonian path P_0 from *s* to *p* in X_3^0 and the Hamiltonian path P_1 from $\phi(p)$ to *t* in X_3^0 and X_3^1 , receptivity. We can construct the Hamiltonian path from *s* to *t* in X_4 as $\langle s P_0 p, \phi(p) P_1$ $t \rangle$, as illustrated Fig. 2(b).

In [4], Park et al. show the following lemma.

Lemma 3. For given two red vertices s, v and two blue vertices t, u, we can construct two vertex-disjoint paths P_1 and P_2 , which cover all vertices of X_n , while P_1 joins s and u, and P_2 joins t and v.

Lemma 4. If X_{n-1} is (n-4) edge Hamiltonian laceable and (n-3) edge Hamiltonian, then X_n is (n-3) edge Hamiltonian laceable, for n > 4.

Proof. Let s and t be two arbitrary vertices

such that *s* is red and *t* is blue. And let *F* be the faulty edge set of X_n with |F| = n-3.

Case 1.
$$F \subset X_{n-1}^{0}$$
 or $F \subset X_{n-1}^{1}$

Without loss of generality, we can assume that $F \subset X_{n \cdot I}^{l}$.

Case 1.1. $s, t \in X_{n-1}^{0}$

Since X_{n-1}^{I} is (n-3) edge Hamiltonian, there exists Hamiltonian cycle C_1 in $X_{n-1}^{I} - F$. Let $(\phi(u), \phi(v))$ be an edge of C_1 , where $\phi(u)$ is blue and $\phi(v)$ is red. We can write the cycle C_1 as $\langle \phi(u) \quad P_0 \quad \phi(v), \phi(u) \rangle$. Applying **Lemma 3**, we can construct two spanning vertex-disjoint paths P(s, u) and P(v, t) in X_{n-1}^{0} , where u is a blue node and v is a red node. Therefore, there exists a Hamiltonian path $\langle s \quad P(s, u) \quad u, \phi(u) \quad P_1 \quad \phi(v), v \quad P(v, t) \quad t \rangle$ in X_n , as illustrated in Fig. 3(a).

Case 1.2. $s \in X_{n-1}^{0}$ and $t \in X_{n-1}^{1}$

Since X_{n-1}^{l} is (n-3) edge Hamiltonian, there exists a Hamiltonian cycle C_{I} , denote as $\langle t P_{I} \ \phi(p), t \rangle$, in X_{n-1}^{l} , where $(t, \phi(p))$ is an edge of C_{I} . In X_{n-1}^{0} , there exists a Hamiltonian path P_{0} from *s* to *p*. Thus, $\langle s P_{0} \ p, \phi(p) \ P_{I} \ t \rangle$ forms a Hamiltonian path from *s* to *t*, as illustrated in Fig. 3(b).

Case 1.3. $s, t \in X_{n-1}^{l}$

Since X_{n-1}^{l} is (n-4) edge Hamiltonian laceable, there exist two spanning vertex-disjoint paths P(s, u) and P(v, t) for some edge (u, v) in $X_{n-1}^{l} - F$. In X_{n-1}^{0} , there exists a Hamiltonian path P_0 from $\phi(u)$ to $\phi(v)$. Thus, $\langle s P(s, u) u, \phi(u) P_0 \phi(v), v P(v, t) t \rangle$ forms a Hamiltonian path from *s* to *t*, as illustrated in Fig. 3(c).

Case 2. $F \not\subset X_{n \cdot I}^{0}$ and $F \not\subset X_{n \cdot I}^{1}$ Since $|F \cap X_{n \cdot I}^{0}| \le n - 4$ and $|F \cap X_{n \cdot I}^{1}| \le n - 4$

4, both $X_{n-I}^{0} - F$ and $X_{n-I}^{1} - F$ are Hamiltonian laceable.

Case 2.1. s and t are in the same subgraph.

Without loss of generality, we can assume that $s, t \in X_{n-1}^{0}$. Since X_{n-1}^{0} is (n-4) edge Hamiltonian laceable, there exists a Hamiltonian path P_0 from s to t with $2^{n-1} - 1$ edges. Since $\lceil (2^{n-1} - 1)/2 \rceil > n - 3$ for n > 4, there exists an edge (u, v) in path P_0 , such that both edges $(u, \phi(u))$ and $(v, \phi(v))$ are fault-free. Since X_{n-1}^{-1} is (n-4) edge Hamiltonian laceable, there exists a Hamiltonian path P_1 from $\phi(u)$ to $\phi(v)$. We can construct the Hamiltonian from s to t as $\langle s P(s, u) = u, \phi(u) = P_1 - \phi(v), v = t \rangle$, as illustrated in Fig. 4(a).

Case 2.2. s and t are in different subgraphs.

Without loss of generality, we can assume that $s \in X_{n-1}^0$ and $t \in X_{n-1}^{-1}$. Let *z* be a blue vertex in X_{n-1}^0 such that $(z, \phi(z))$ is fault-free. Since X_{n-1}^0 and X_{n-1}^{-1} is (n-4) edge Hamiltonian laceable. There exist Hamiltonian paths P(s, z) and $P(\phi(z), t)$ in X_{n-1}^0 and X_{n-1}^{-1} , respectively. We can construct the Hamiltonian path from *s* to *t* as $\langle s \ P(s, z) \ z, \phi(z) \ P(\phi(z), t) \ t \rangle$, as illustrated in Fig. 4(b).

Lemma 5. If X_{n-1} is (n-4) edge Hamiltonian laceable and (n-3) edge Hamiltonian, then X_n is (n-2) edge Hamiltonian, for n > 3.

Proof. Let *F* be the faulty edge set in X_n with |F| = n - 2. Both two subgraphs X_{n-1}^{0} and X_{n-1}^{1} are (*n*-4) edge Hamiltonian laceable and (*n*-3) edge Hamiltonian.

Case 1. $F \subset X_{n-1}^{0}$ or $F \subset X_{n-1}^{1}$

Without loss of generality, we can assume that $F \subset X_{n-1}^{I}$. Since X_{n-1}^{I} is (n-3) edge Hamiltonian, there exists a Hamiltonian path P(x, x)

y) in $X_{n-1}^{l} - F$ for some edge (x, y) of X_{n-1}^{l} . There also exists a Hamiltonian path $P(\phi(x), \phi(y))$ between $\phi(x)$ and $\phi(y)$ in X_{n-1}^{0} . Thus, $\langle x - P(x, y) - y, \phi(y) - P(\phi(y), \phi(x)) - \phi(x), x \rangle$ forms a Hamiltonian cycle of $X_n - F$, as illustrated in Fig. 5(a).

Case 2. $F \not\subset X_{n-1}^{0}$ and $F \not\subset X_{n-1}^{1}$

Without loss of generality, we can assume that $|F_0| \leq |F_1|$. Thus, $X_{n-1}^0 - F_0$ is Hamiltonian laceable and $X_{n-1}^1 - F_1$ is Hamiltonian. Let C_1 be the Hamiltonian cycle in $X_{n-1}^1 - F$. Since $\lceil (2^{n-1}-1)/2 \rceil > n-2$ for n > 3, there exists an edge (x, y) of C_1 such that both $(x, \phi(x))$ and $(y, \phi(y))$ are fault-free. We can write the cycle C_1 as $\langle x P(x, y) - y, x \rangle$. Since $X_{n-1}^0 - F$ is Hamiltonian laceable, there exists a Hamiltonian path $P(\phi(y), \phi(x))$ in $X_{n-1}^0 - F_0$. Hence, $\langle x - P(x, y) - y, \phi(y) - P(\phi(y), \phi(x)) - \phi(x), x \rangle$ forms a Hamiltonian cycle in $X_n - F$, as illustrated in Fig. 5(b).

Theorem 2. The *n*-dimensional bipartite HL-graph X_n is (n-3) edge Hamiltonian laceable, and (n-2) edge Hamiltonian, for $n \ge 3$.

Proof. We will prove this theorem with induction on *n*. The base case: **Lemma 1** shows X_3 is 1 edge Hamiltonian laceable. Thus X_3 is also 1 edge Hamiltonian. We show X_4 is 1 edge Hamiltonian in **Lemma 2**. Applying **Lemma 5**, we can prove X_4 is 2 edges Hamiltonian. The induction step can be proved with **Lemma 4** and **Lemma 5**.

4. Concluding remarks

In [5], Tsai et al. showed that the hypercube Q_n is (*n*-2) edge Hamiltonian laceable and (*n*-3) edge hyper-Hamiltonian laceable. The HL-graph

is more general than hypercube graph. In this paper, we show that every *n*-dimensional bipartite HL-graph is hyper-Hamiltonian laceable, (n-3) edge Hamiltonian laceable and (n-2) edge Hamiltonian. It is worthwhile to investigate other fault tolerance Hamiltonian properties of hypercube-like graphs.

References

- [1]. R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory.
- [2]. F.T. Leighton, Parallel Algorithms and Architectures: Arrays, Trees and Hypercubes, Morgan Kaufmann, San Mateo, 1992.
- [3]. S. Latifi, S. Zheng, N. Bagherzadeh, Optimal ring embedding in hypercubes with faulty links, in: Fault-Tolerant Computing Symp., 1992, pp. 178-184.
- [4]. Chong-Dae Park, Kyung-Yong Chwa, Hamiltonian properties on the class of hypercube-like networks, Information Processing Letters, 91 (2004) p.11-17.
- [5]. Chang-Hsiung Tsai, Jimmy J.M. Tan, Tyne Liang, Lih-Hsing Hsu, Fault-tolerant Hamiltonian laceability of hypercubes, Information Processing Letters, 83 (2002) p. 301-306.
- [6]. A.S. Vaidya, P.S.N Rao, S.R. Shankar, A class of hypercube-like networks, in: Proc. Of the 5th Symp. On Parallel and Distributed Processing, IEEE Comput. Soc., Los Alamitos, CA, December 1993, pp. 800-803.