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Abstract

Two spanning trees of a given graph
G=(V,E) are said to be independent if they are
rooted at the same vertex, say », and for each
vertex v € V\{r} the two paths from » to v, one
path in each tree, are internally disjoint. A set of
spanning trees of G is said to be independent if
they are pairwise independent. Zehavi and Itai
conjectured that any k-connected graph has &
independent spanning trees rooted at an arbitrary
vertex. This conjecture is still open for £ > 4. In
this paper, we shall give the upper bound and
the lower bound of the height of £ independent
spanning trees if they exist on a k-connected &-
regular graph. An algorithm is also proposed to
reduce the height of k£ independent spanning
trees.
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1. Introduction

A set of paths connecting two vertices in
a graph is said to be internally disjoint if and
only if any pair of paths in the set has no
common vertex except the two end vertices.
Considering a graph G=(V,E), a tree T'is called a
spanning tree of G if T is a subgraph of G and T
contains all vertices in V. Two spanning trees of
G are said to be independent if they are rooted at
the same vertex, say r, and for each vertex v €
N{r}, the two paths from r to v, one path in
each tree, are internally disjoint. A set of
spanning trees of a graph is said to be

independent if they are pairwise independent.

Broadcasting in a distributed system is
the message dissemination from a source node
to every other node in the system. We can
design a fault-tolerant broadcasting scheme
based on independent spanning trees [1] [4]. The
fault tolerance can be achieved by sending k
copies of the message along » independent
spanning trees rooted at the source node.

Itai and Rodeh [4] gave a linear time
algorithm for finding two independent spanning
trees in a biconnected graph. Cheriyan and
Maheshwari [2] showed that, for any 3-
connected graph G and for any vertex r of G,
three independent spanning trees rooted at » can
be found in O(|V]|E|) time. In [5] and [6], the
authors conjectured that any k-connected graph
has k independent spanning trees rooted at an
arbitrary vertex r. Huck [3] has proved that the
conjecture is true for planar graphs. The
conjecture is still open for arbitrary k-connected
graphs with &k > 4.

A graph G is called k-regular if every
vertex of G has degree k. A k-regular graph is
not necessarily k-connected. This paper is
concerned with k-regular graphs which is also -
connected. Most of interconnection networks are
k-connected and k-regular, such as chordal rings,
star graphs (Cayley graphs), hypercube, torus,
and so on.

An example of 3-connected 3-regular
graph is the Petersen graph, as shown in Figure
1(a). Using the algorithm proposed in [2], three
independent spanning trees on the Petersen
graph are constructed, as shown in Figure 1(b).
definition

Following the of independent



spanning trees, for each vertex v € {1,2,....9}
the three paths from 7 to v, one path in each tree,
are internally disjoint (or called vertex-disjoint).
In this paper, we focus our efforts on the
height of the independent spanning trees of a .-
connected k-regular graph. We shall give the
upper bound and the lower bound of the height
of independent spanning trees. It is obvious that
the of  the

performance fault-tolerant

broadcasting can be improved by reducing the
An

height of independent spanning trees.

algorithm is also designed to achieve this
purpose.

The remaining part of this paper is
organized as follows. In Section 2, we introduce
some properties of independent spanning trees
in a k-connected k-regular graph. In Section 3,
we shall propose an algorithm for reducing the
height of independent spanning trees. Section 4
contains our concluding remarks.

(b)

Figure 1. (a) The Petersen graph (b) Three independent spanning trees on the Petersen graph.

2. The height
spanning trees

Let G be a k-connected k-regular graph.

of independent

Suppose & independent spanning trees rooted at
a vertex r in G exist, denoted by 7, 75, ..., T}, .
We define child(v,i), parent(v,i) as the children
T

i

set and the parent vertex of a vertex v in
respectively. The ancestor of a vertex v in 7, ,

denoted by ancestor(v,i), is the vertex set of the
path from » to v in 7, . The descendant of a
vertex v in T, , denoted by descendent(v,i), is the
vertex set of the subtree rooted at v in 7, . The
neighborhood of a vertex v is the set N(v)
consisting of all vertices which are adjacent with
v in G. Then we have the following lemmas.

Lemma 1. Let T, T,,
spanning trees rooted at a vertex r

-y T be k independent

in G. For every vertexvin G, v #r,



parent(v,i) N parent(vj) = ¢ ,

where i # j and ij € {1,2,...k}.

N©W).
Proof. This lemma holds directly from the
definition of independent spanning trees. For
every vertex v € W{r}, if parent(v,i) N
parent(v,j) # 0, the two paths from r to v in 7,
and 7, have a common vertex and are not
internally disjoint, ie., 7, and T, are not
independent. Therefore, every vertex v € N{r}
must have & distinct parents in £ independent
spanning trees, and the £ distinct parents are the
neighborhood of v. Q.ED.
Lemma 2. Let T, T,,

spanning trees rooted at a vertex r

-y Ty be k independent

in G. For every vertex v in G,
child(v,i) N child(vj) = ¢, where i
#Zjandije {1,2,..,k}. Meanwhile,
if veN(r), U, childv,i) =
= N(©v).
Proof. Suppose there exist two independent
spanning trees T, #7, and u € child(v,i) N
child(v.j), then for the vertex u, parent(u,i) =
parent(u,j). It is a violation against Lemma 1.
Thus every vertex v in G must have £ distinct
children sets (may be empty) in &k independent
spanning trees.
For every vertex v, v¢ N(7), if there exists
a vertex # € N(v) but u is not in any of the
children sets of v, then » must have a new parent
in some T, it is a contradiction. Therefore, the
union of the children sets of v must be the
neighborhood of v. In case v € N(r), the children
sets of v cannot include the root vertex ». Thus
the union of child(v,i) equals N(v) \{r}. Q.E.D.

Corollary 3. Let T,, T,,
spanning trees rooted at a vertex r

- Iy be k independent

in G. The root vertex r of T, , i €
{1,2,...,k}, must have one child.

The proof is trivial.

Using vertex 4 in Figure 1 as an example,
parent(4,1) U parent(4,2) U parent(4,3) =
{5u{2}u{8} = {5,2.8} = N4); child(4,1) v
child(4,2) U child4,3) = {82}u{5} L{} =
{5,2,8} = N(4). For every vertex in N(r) = {5, 1,

9}, the vertex is also the unique child of 7 in 7, .
TZ > Or Tj .

Lemma 4. Let T, T,,
spanning trees rooted at a vertex r

-y Ty be k independent

in G. For every vertex v in G, and
ve {rtuUN(r), N(v) N ancestor(v,i)
= parent(v,i). For v € N(r), N(v) N
ancestor(v,i) = parent(v,i) U {r},
whereie {1,2,..,k}.
Proof. Suppose a vertex u in 7; is both an
ancestor and a neighbor of v, but not the parent
of v. By Lemma 1, there must exista 7}, j # / and
parent(v,j) = u, such that the two paths from r to
v in 7, and 7, have a common vertex u and are
not internally disjoint. Thus, 7; and 7; are not
independent.

Obviously, root vertex r has no parent
vertex in 7;. For v € N(r), there are two cases,
parent(v,i) = r or parent(v,i) # r. Whether r is
the parent vertex of v or not, r is an ancestor of v
in T, . Therefore, N(v) N ancestor(v,i) =
Q.ED.
Similarly, we can prove the following

parent(v,i) U {r}.

lemma.

Lemma 5. Let T, T,, ..., T, be k independent
spanning trees rooted at a vertex r
in G. For every vertex v in G and v
# r, N(v) N descendant(v,i) =

r, N(r) N
descendant(r,i) = N(r), where i €
{1,2,...k}.

Proof. Suppose a vertex u in 7, is both a

child(v,i). In case v =

descendant and a neighbor of v, but not a child
of v. By Lemma 2, there must exista 7}, j # i and
u € child(v.), such that the two paths from r to
u in T; and T} have common vertex v and are not
internally disjoint. Thus, 7, and 7, are not
independent.
In case v = r, N(r) N descendant(r,i) =
N(r) because all vertices other than r are
descendants of 7 in T . Q.E.D.
Corollary 6. Let T, T, ..., T, be k independent
spanning trees rooted at a vertex r
in G. Theroot of T;, i € {1,2,...,k},
has k-1 grandchildren.
Proof. By Corollary 3, we know that the root



vertex 7 of T, has only one child. Let v be the
unique child of 7, all vertices other than r are
descendants of v in 7, . Suppose v has &-2
children, there must exist one vertex u that is not
a child of v, but u is both a descendant and a
neighbor of v. This is a violation against Lemma
S. Q.ED.

Corollary 7. Let T, T, ..., T, be k independent
spanning trees rooted at a vertex r
in G, the unique child of r in T,
has no child in T, , for all j # i, ij
e {1,2,...k}.
Proof. By Corollary 6, we know that the root
vertex r of T, has k-1 grandchildren. Let v be the
unique child of the root in some 7}, v € N(r). By
Lemma 2, the union of k children sets of v in 7,
has k-1 vertex. Therefore, for all 7, = 7,, v has
Q.E.D.

We summarize Lemmas 4 and 5 as the

an empty children set.

following theorem.

Theorem 8. Let T,, T), ..., T, be k independent
spanning trees rooted at a vertex r
in G. Let P be a path from r to v in
T,. Any vertex in P may have at
most two neighbors that can be
found in P.

Proof. By Lemmas 4 and 5, for every vertex v in

G, one of the three cases must be held: (i) For v

¢ {r}UN(r), a neighbor of v is either the parent

or a child of v in 7;. (ii) For v = r, a neighbor of

r is either the unique child of » or a leaf vertex

(with no child) in 7, . (iii) For v € N(), a

neighbor of v is either the parent of v or the root

vertex in 7;. Therefore, if P is a path from r to v

in T, , every vertex in P may have at most two

Q.ED.

Now, we are at a position to deduce the

neighbors also in P.

upper bound and the lower bound of the height
of k independent spanning trees. Let d;(u,v)
denote the distance between vertices u and v in
G, the height of a spanning tree 7T rooted at r in
G, denoted by heighfT), is the maximum
distance of the paths from r to any other vertices
in 7, i.e., height(T) = max{ d,(r,v) }, where v €
N{r}.

Theorem 9. Let G be a k-connected k-regular
graph with order n, and T, T), ...,
T, are k independent spanning

trees of G, then logk_l (I’l — 1)

< height(T)

< —n—l ,
2(k 1)
forie {1,2,.,k}.

Proof. Let P,= <7, v,, v,, ..., v,> be the longest
path in 7, and let height(T) = d;(r,v,) = h. We
prove the upper bound first. By Theorem 8§,
every vertex in P, may have at least £-2
neighbors which are not in P,. Thus, the total
number of vertices outside P, is at least ((h-1)(&-
2)+2(k-1))/k if each vertex has & neighbors in P;.
We have the following inequation :

(htD)k-2) k< n-(ht]).
By reduction, we have
< L -1
2(k 1)
The lower bound of 4 is found on such a flat tree
that every internal vertex (except the root) has .-
1 children, i.e.,

h > log, (n—=1). Q.E.D.

3. An algorithm for reducing the
height of independent spanning

trees

In this section, we shall propose an
algorithm to reduce the height of independent
spanning trees. By analyzing and exchanging
the positions of vertices in 7, the height of T,
may be reduced.

In a k-connected k-regular graph G, every
vertex v has & neighbors. By Lemma 1, for v # 7,
each neighbor of v is the parent of v in 7, (ie
{1,2,...,k}). If the position of v in 7; changes, its
parent must be changed. Thus a change in T,
triggers another change in 7, (j # i). This
phenomenon results in a i-permutation of the
parents of v. We define a possible exchange of
the positions of v in 7 as a permutation (7, T, ...
. ). That is, the parent of v in 7; is changed
from vertex parent(v,i) to vertex parent(v,m,).
For example, vertex 6 in Figure 1(b) has three

parents, one in each tree. The possible



exchanges are (321), (312), (231), (213), (132)
and (123), where (m, m, m;) denotes that the
parent of vertex 6 in 7, is changed from vertex
parent(6,i) to vertex parenf(6, m), i=1,2,3. By
the way, exchange (123) means no exchange.

Although there are k! possible exchanges
for k distinct parents of v in k independent
spanning trees, only some of them are feasible.
A feasible exchange is defined as the possible
exchange that follows properties of independent
spanning trees. Particularly, a feasible exchange
cannot violate the “2-neighbors” property in 7,
mentioned in Theorem 8. The position of the
unique child of the root in 7, cannot be changed
because all exchanges are infeasible. Let u be
the new parent of v in 7, , the exchange is
feasible if and only if (i) u ¢ descendant(v,i), (ii)
for all w in descendant(v,i\{v}, Nw) N
ancestor(u,i) = ¢ or {r}, i.e., Uy oscondamvy =11]
or {u,r}. The time complexity for identifying the
feasibility of an exchange in k independent
spanning trees is O(k* n), where » is the number
of vertices in G.

For example, vertex 6 in Figure 1(b), only
(132) is feasible exchange because the position
of vertex 6 in T, cannot be changed. Figure 2 is
the result of the feasible exchange, where 7%,
T,* and T;* denote three independent spanning
trees after the feasible exchange. Obviously, the
height of 7} is reduced from 5 to 4.

A feasible
beneficial to the height of independent spanning
trees. Let T* (ie {1,2,..k}) denote %
independent spanning trees. We define the

exchange may not be

benefit of a feasible exchange on vertex v in 7,
by
benefit(v, i, x;, v,) = |descendant(v,i)| (x; - y,),

where x; and y; denote the distance from r to v in
T, and T;* respectively. Note that an exchange
affects not only the distance from r to v but also
the distance from r to all descendants of v. Thus
we multiple the distance change with the
number of vertices in descendant(v,i).

The fotal benefit of a feasible exchange
on vertex v is the summation of the benefit in 7,
(ie {1,2,...,k}), i.e.,

total_benefit(v) = X benefit(v, i, x;, y,),
where i € {1,2,....k}.

A feasible exchange is beneficial if and
only if the total benefit is positive. The time
complexity for computing the total benefit of an
exchange is O(n), where n is the number of
vertices in G.

For example, the total benefit of the
feasible exchange (132) on vertex 6 in Figure 2
is benefit(6, 2, 4, 3) + benefit(6, 3, 4,3) = 1 (4-3)
+2(4-3)=3.

For a small constant k, the following
algorithm can reduce the height of independent
spanning trees on a k-connected k-regular graph.

Algorithm Reduce_Height

Input: A k-connected k-regular graph G, a root
vertex r, and k independent spanning
trees 7, , i€ {1,2,....k}.

Output: £ new independent spanning trees with
reduced height.

Step 1. For every vertex v in G except » do

Step 2. For every possible exchange m do

Step 3. Identify the feasibility of © in
T,, i€ {1,2,..k}

Step 4. If = is not feasible then goto
Step 2

Step 5. Compute total benefit(v) for
the feasible exchange ©t

Step 6. Determine the exchange of v with

maximum tofal_benefit(v)
Step 7. Execute the exchange in 7, ,

ie{1,2,...k}
End of Algorithm Reduce Height

Step 3 takes O(k°n) time to identify the
feasibility of a possible exchange in £k
independent spanning trees. Step 5 takes O(kn)
time to compute the total benefit of a feasible
exchange. Thus the complexity of algorithm
Reduce Height is O(») for a small constant k.



Figure 2. Independent spanning trees of the Petersen graph after a feasible exchange on vertex 6.

4. Concluding remarks

For a k-connected k-regular graph G, we
give the upper bound and the lower bound of the
height of k& independent spanning trees.
However, It remains unknown whether there is a
polynomial time algorithm for reducing the
height of & independent spanning trees to a
minimum extent. It also remains unknown
whether there is an efficient algorithm to
construct & independent spanning trees rooted at
arbitrary vertex in G directly. We are now
working on these topics.
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