
 1

Empirical Investigation of the Relationship between
Interaction Level Metric and Class Defects

Kuo Hua Chung, Chia Hung Kao, Hewijin Christine Jiau

Department of Electrical Engineering
National Cheng Kung University

{leomon,basara}@nature.ee.ncku.edu.tw jiauhjc@mail.ncku.edu.tw

Abstract

The object-oriented paradigm has become

popular in recent years. In order to better evaluate

and control the quality of object-oriented software

systems, many object-oriented design metrics

proposed to indicate the design properties that

influence software quality during design phase.

Design metrics proposed should be empirically

validated to demonstrate the usefulness. The major

focus of our work is to empirically investigate the

relationship between class defect count and an

existing design complexity metric, Interaction Level

(IL). Several open source projects are studied to

perform such an investigation. The result shows this

metric can be a useful reliability indicator at the class

level.

Keywords：Object-oriented design metrics, class
defect, metrics validation.

1 Introduction

Software reliability is more emphasized on

software market. Thus, software developer would like

to build a reliable software product within limited

time and budget. Software failures may occur due to

many causes. In particular, during software design,

the design decisions influence the software reliability.

Therefore, in order to produce high quality software,

a strong emphasis on design aspects, especially

during the early design phase, is necessary since early

correction actions are less costly. One way to

accomplish this goal is design metrics. Software

design metrics are defined to measure some particular

design perspectives and provide developers a

quantified approach to evaluate the design. Thus,

software metrics can be used to set up a model to

identify the part at high risk of software system and

improve the reliability. Many traditional software

product metrics, such as McCabe’s cyclomatic

complexity [11] or line of code [13] are proposed. It

has been shown that these metrics are associated with

defects and maintenance performance [8][12].

However, as object-oriented technology is popular,

traditional software metrics cannot model the key

concepts in object-oriented design, such as

inheritance or encapsulation. Hence, many

object-oriented metrics are developed. One of the

object-oriented design metrics suites is CK metrics

[8]. Many researches studied the relationship between

software quality and CK metrics [5][14].

However, besides CK metrics, some metrics

can capture the information that CK metrics cannot.

The metric we focus on is Interaction Level (IL)

proposed by Abbott et al. [3]. IL captures class

interface and attribute design information which CK

metrics ignore. In early design phase, CK metrics

measure the structural relationship such as CBO

(Coupling between Object Classes), and DIT (Depth

 2

of Inheritance Tree). CK metrics also include a

complexity metric, WMC (Weighted Method per

Class), usually defined as the number of methods of
class in early design phase. IL exploits the class

interface and attribute information to provide a more

accurate complexity measurement than simple

method counting. In order to demonstrate the

usefulness of each design metric, empirical validation

should be performed. In priori literature, the

association between the interface information

captured by IL and maintenance performance is

validated by Bandi et al. [4]. Our focus is to

empirically investigate the relationship between IL

and class defect count.

The organization of the rest of this thesis is as

following: In section 2, we introduce IL metric. In

section 3, we present the model and experiment

hypotheses. Section 4 describes the design of the

experiments, data collection process and the

experiment result and Section 5 gives the conclusion.

2 Definition of Interaction Level

IL provides an estimate design complexity metric

when class interface and attributes are defined. It is

calculated based on the maximum interactions

between variables (attributes and parameters) within

a method. There exist two variables A and B, if the

value of state of B is (directly or indirectly)

influenced by the value or state of A, there is an

interaction from A to B. The definition of IL is as

following:

IL = k1 * (value based on number of interactions)

+ k2 * (value based on strength of interactions)

Because the complexity of each interaction

Table 1: Size of different data types

Type Size value
Boolean 1

Integer or Character 2

Real 3

Array +2

Object 5

should be different, strength is the measurement to

distinguish the complexity of interaction constituted

from different data types. The strength of interaction

is defined as the product of size of the variables

involved in an interaction. The size values of

different data type are specified based on [4] and we

made some modifications. We explain such

modification in next section. The size values are list

in Table 1. It is necessary to use both number and

strength because they typically have an inverse

relationship that decrease in either number or strength

could increase the other and vice versa. Here, the

constant k1 and k2 means the different importance of

number and strength of interaction. We set these

constants to one for simplicity and balance the

influence of number and strength of interaction. IL

value can be aggregated to different level of

granularity. IL for a class is the summation of all

methods’ IL value in the class . In our work,

constructors and utility functions are excluded for

computing IL metric value.

3 Models and Hypotheses

IL metric has been subjectively validated by

comparing IL values and design experts preference [3]

and empirically validated the relationship between IL

and maintainability [4] by simple controlled

experiments. As the previous sections describe, IL is

 3

a more appropriate design complexity metric and to

be an indicator of class defect count. However, it

lacks the empirical validation. Therefore, our main

objective was to focus on exploring the relationship

between the object-oriented design complexity metric

and the defect count at the class level. After such

relationship has been validated, IL can be used as the

class defects indicator. The design of the software

system can be evaluated and developer can figure out

the classes at high risk. That is, more defects may

occur within the class. Designer can try to redesign

the part at high risk or use other approaches in order

to raise the reliability. In order to validate the

relationship, the following hypothesis should be

statistically tested.

H1: A class has higher IL value will be associated

with higher number of defects.

The dependent variable in our analysis is defect

count for a class. In previous work, researchers

proposed binary classification of defects data and

used logistic regression models to measure the impact

of design complexity on defects proneness [5][6].

The drawback of using such binary classification

scheme is that a class with one defect cannot be

distinguished from a class with ten defects. As a

result, the true variance of defects in data sample may

not be captured in the empirical analysis. Therefore,

we use the actual defect count as the dependent

variable in our analysis. From the above, the fist

model is given below:

(1) Defects = β0 + β1 × IL

A class has high IL value may be caused by

 Large number of interaction. Large number of

interaction represents the interactions of the

data item within its methods are complex. That

means there may be complex data dependency

relationships within the class ’ methods.

Let’s take a simple example to illustrate this.

In a method, two data item interact with each

other under the situation that they appear in the

same control flow path. Large number of

interactions may imply the method consists of

many control flow paths. More control flow

path implies more complexity for developer.

Therefore, when the complexity of class

development for developer is high, it results in

more defects.

 Large strength of interaction. The size of data

type means the relative degree of complexity to

correctly use a data item in the interaction. For

example, using an object reference data item

will be more complex than using a primitive

data type in an interaction. That may cause

different degree of influence on class reliability.

Therefore, the size of object should be larger

than primitive data type. Besides, the size of

array type is set to “+2”. It means the size of

an integer array is the size of integer plus two.

The reason to make such setting is, when using

array, developers need to pay attention to the

size and index of this array. The strength of

interaction means the complexity to correctly

arrange the interaction to achieve the intended

effect. Thus, large strength may result in more

defects.

 Both.

Therefore, it is suggested that higher interaction level

correlates with increased difficulty in determining

how to develop or implement a design. That means a

design with higher interaction level will result in the

 4

detailed design and the implementation of this class

to be more difficult. There will be more defects in

this class.

However, using IL to indicate the design

complexity of an object is limited, because it only

indicates the complexity for interaction between its

surface and its interior of an object. The focus of IL is

only the internal complexity of class’ methods.

Therefore, we try to find other existing metrics

exploited to describe design complexity of different

viewpoint. The metric selected is Coupling between

Object Classes (CBO) metric of CK metrics suite [7],

which models the coupling or structural relationship

of an object to other objects in software system.

Coupling means a class uses the methods or instance

variables of other classes. CBO of a class is defined

as the number of other classes in the system it is

coupled. A class has high CBO value means lots of

classes it depends. The meanings of CBO in software

development are stated as the following:

 The higher the CBO value of class, the more

rigorous the testing needs to be.

 In evaluating class reliability, higher CBO

value leads to the more difficulties for

designers and developers to manage and

correctly use these classes provide services.

In some cases, the classes have similar IL values but

different CBO values. In such situations, CBO is the

key point addressing the different design complexity.

For example, the complexity to design a class use ten

objects of the same class should differ from design a

class use ten objects of different types. CBO and IL

should be complementary since they model different

design perspectives. Then we have the second model.

(2) Defects = β0 + β1 × IL + β2 × CBO

In this model, we model a class’ complexity along

two different dimension design concept. By combing

CBO, we can model the design complexity of a class

more precisely than using IL only. It is expected that

the explanation ability of defect count of a class in

the second model will be higher than the first model.

Therefore, we have the second hypothesis.

H2: By using CBO and IL, the explanation ability

of class defect count will be higher than using IL

or CBO only.

We will test the second hypothesis by comparing the

R-square values of these two models (1) and (2).

4 Experiment Analysis

There are several ways to empirically test the

hypotheses. Firstly, small scale controlled

experiments like homework assignment at school can

be set up. Although in the small scale controlled

experiment we may better control the factors which

have impact on software quality, such as design

complexity, student skill, development tools etc, the

defect count of classes in simple project may have

just little difference. Thus, it may be hard to validate

the relationship between design complexity and class

defect count. Secondly, the experiment setting in

software industry should better reflect such

relationship, but we do not have any available

industry software data such as design document, the

results of testing etc, to set up experiments. So, our

approach is taking open source projects as

experimental subjects. We focus on Apache [1] open

source projects since the projects in Apache Software

Foundation have more detailed documentation and

every java class in a project has its own change log.

 5

Information about each class of an open source

project can be collected from its change log.

However, adapting open source projects as

experimental subjects has some threats to validity.

We will discuss that at the end of this section.

4.1 Dependent and Independent
Variables

The dependent variable is the number of defects of

each Java class. Java interface is excluded from the

data samples. The number of defects is defined as the

number of revisions of each Java source class

recorded as bug fixing. In the projects we study,

when a revision of a Java class is bug fixing, the

revision log will contain the string“ PR: ” or

“ bug ” and some additional information about

this revision. Here,“ PR ”means problem report,

and it associates with the bugzilla bug database [2].

In this case, we count such revision as a defect. We

need identify a particular time interval during which

developers perform major bugs fixing activities.

Defect count is collected during this time interval.

The principal to identify this time interval will be

described in the following section.

The independent variables are IL and CBO. It

only needs class interface and attribute information to

compute IL and Java reflection technology [12] can

easily acquire them. So we use Java reflection APIs

to implement the metric calculation tool. The IL

value of a class is the summation of IL values of all

method declared in the class, and inherited methods

are not included. In our experiment, CBO value

measurement is only based on the interface and

attributes of a Java class. Although CBO definition

usually includes not only the classes in the interface
and instance variables but also the variables declared

locally within the method, what we want to measure

is the coupling relationship which can be identified at

the earlier design phase the same as interaction level

applies. And large portion of coupling relationship

can be identified by class interface and instance

variables. The small portion of inaccuracy only

causes a little influence.

4.2 Experimental Subjects

We focus on the projects implemented with Java

language and follow several principals to take

projects as our experimental subjects. Firstly, the

relationship we want to validate is design complexity

and its influences on class defect count. We identify a

more clear time interval during which major bug fix

activities were performed for a particular release in

the project history. The project document and change

history help to make the judgement. For example, in

Table 2, the first project is Jakarta-ORO. In this

project, the interval we identify is from 2.0.0 release

to 2.0.8 release. During this interval, there is other

release, such as 2.0.2, 2.0.3 and so on. The changes

documented between these releases contain many bug

fixing activities. Since the releases following 2.0.0

contain many bug fixing activities and have the same

major release number 2.0, we suggest these activities

are performed for release 2.0. The second principal is

the number of classes in a project should not change

greatly during this time interval. The increasing

number of classes in the project may imply that some

other development activities performed to enhance or

improve the functionality of the software, and the

changes of design may generate other defects in the

software. Therefore, we assume most of the bug

fixing activities are caused by the design complexity

of source release of the software we observed

because the number of classes of the project does not

change greatly in following releases (See Table 3).

 6

The projects we used in this experiment are

depicted in Table 2. The first column is the project’

s name. The second column is the release by which

we measured the metrics values. The third column

depicts the end release, we collect defect data

between start release and end release. The forth

column records the total time which we collected

defects data.

4.3 Experimental Result

We build the linear regression models of the six

projects and test whether a relationship exists

between software metrics and class defect count. If

there is a positive nonzero linear regression

relationship exists, the coefficient of the independent

variables will be larger than zero. Table 4 lists the

linear regression models built by using only IL as

independent variable. Table 5 lists the linear

regression models built by using only CBO as the

independent variable. And Table 6 lists the linear

regression models built by using IL and CBO as the

independent variables. The value followed by the

coefficient value is the p-value of the corresponding

Table 2: Release Information of The Experimental Subjects

Table 3: The Class Count of Start and End Release

Project Name # classes of start release # classes of end release

Jakarta-ORO 61 61

Commons-HttpClient 120 129

Jakarta-Velocity 150 176

Jakarta-POI 308 311

Jakarta-Struts 176 185

Cocoon 495 515

parameter. The sixth columns in Table 6 are the

growth of adjusted R-square value compared to the

higher one of models using single metric only. The

last column is the correlation between IL and CBO.

Project Name Start Release End Release Total Time

Jakarta-ORO 2.0.0 (2000/7/23) 2.0.8 (2003/12/30) 40 months

Commons-HttpClient 3.0 alpha1 (2004/5/17) 3.0 RC2 (2005/4/9) 11 months

Jakarta-Velocity 1.0 beta1 (2001/3/20) 1.2 RC1 (2001/9/26) 6 months

Jakarta-POI 2.0 pre1 (2003/5/17) 2.0 rc1 (2003/11/2) 6 months

Jakarts-Struts 1.0 Beta1 (2001/2/23) 1.0.2 (2002/2/11) 12 months

Cocoon 2.1M1 (2003/4/29) 2.1.5.1 (2004/7/9) 14 months

 7

4.3.1 Influence of IL

From Table 4 and 6, the regression results indicate

that increase in IL value associates with increase in

defect count because the parameters of IL in six

project regression models are positive. And the

p-values of IL’s parameter are all smaller than 0.05.

That means the influence of IL on class defect count

is significant.

4.3.2 Influence of CBO

From Table 5, six multivariate regression models

show that increase in CBO value associates with

increase in defect count since the coefficients of CBO

in these models are positive and significant with the

p-values are smaller than 0.01. From Table 6, five out

of six models show the similar result. The exception

is Jakarta-ORO. In this project, the univariate

analysis about CBO indicates the impact of CBO is

positive and significant. But, in the multivariate

regression model, the coefficient of CBO becomes

negative. Besides, in the models of Jakarta-ORO and

Jakarta-POI, the multiple regression analysis with

two independent variables was performed to

determine the explanatory ability of these variables.

These models almost did not show any increase in

adjusted R-square. All of these are symptoms of

collinearity. We find that the correlation values

between CBO and IL in these two models are

relatively higher than others. IL and CBO account for

most of the same variance in class defect count. That

may be the reason for the adjusted R-square value did

not increase. (Table 6: correlation for Jakarta-ORO is

0.741 and correlation for Jakarta-POI is 0.761).

4.3.3 Discussion of Result

Result of Hypothesis 1: From the observation of IL

influence on defect count, it indicates a class has

higher IL value will be associated with higher

number of defects. In other words, the class

complexity modeled by IL influence the class

reliability. Thus IL can be an appropriate class

complexity metric. The result supports our hypothesis

one. Result of Hypothesis 2: From the observation

of the CBO influence on defect count, four out of six

multivariate regression models have growth of

R-square value about or above fifteen percent.

Although IL and CBO have some correlation,

basically they model different dimension design

properties. That is why the adjusted R-square value

increases. Thus, this indicates CBO and IL are

complementary class defect count indicators. The

result supports our hypothesis two.

4.4 Threats to Validity

In the experiments, we want to investigate the

relationship between design complexity and class

defect count collected during a particular timing

interval performing testing activities. However, some

factors have effects on the experiment result. During

the time interval we collect class defects, some other

development activities are performed such as

enhancement or update. Because we did not

distinguish when the defects exist in the software and

these activities may generate additional defects

counted as the defects caused by design complexity

before enhancement or update, these activities result

in the inaccuracy of the relationship between design

complexity and defect count. Design complexity of

some projects are not first major release. For example,

Commons-HttpClient is 3.0 alpha release 1. In these

projects, some classes in the system are developed

from the project initiation. They may be tested and

corrected after the previous several major releases.

The classes in the software system undergo different

 8

Table 4: Linear Models Using IL as the Independent Variable

Project Name Coefficient of Intercept Coefficient of IL Adjusted R-square

Jakarta-ORO -2.158E-02 (.882) 6.1E-04 (.000) .762

Commons-HttpClient .734 (.000) 1.28E-04 (.000) .365

Jakarta-Velocity 2.35 (.000) 3.26E-04 (.000) .161

Jakarta-POI .418 (.000) 9.7E-05 (.000) .316

Jakarta-Struts .635 (.000) 1.77E-04 (.000) .248

Cocoon .268 (.000) 6.14E-05 (.000) .201

Table 5: Linear Models Using CBO as the Independent Variable

Project Name Coefficient of Intercept Coefficient of CBO Adjusted R-square

Jakarta-ORO -.255 (.395) .707 (.000) .309

Commons-HttpClient .215 (.257) .715 (.000) .434

Jakarta-Velocity 1.55 (.000) .922 (.000) .182

Jakarta-POI .230 (.000) .348 (.000) .415

Jakarta-Struts .461 (.038) .808 (.000) .101

Cocoon .121 (.016) .260 (.000) .166

Table 6: Linear Models Using IL and CBO as the Independent Variables

Project Name Coefficient of Coefficient of Coefficient of Adjusted Growing Correlation

Jakarta-ORO .104 (.558) 6.68E-04 -.146 (.229) .764 0 0.741

Commons .273 (.123) 7.2E-05 (.000) .505 (.000) .510 15 0.569

Jakarta Velocity 1.66 (.000) 2.00E-04 .643 (.001) .222 22 0.521

Jakarta-POI .251 (.000) 3.00E-05 .276 (.000) .425 2 0.761

Jakarta-Struts .257 (.185) 1.60E-04 .559 (.001) .293 18.1 0.222

Cocoon .123 (.010) 4.54E-05 .164 (.000) .253 25.8 0.467

development time, and the development time has

effect on the class defect count. In our experiment,

we regard the development time of each class as the

same. But During the time interval we identify, more

defects may be founded in newly defined or modified

classes than the classes tested before and to be fit in

 9

new context.

5 Conclusion

 Firstly, we empirically investigate the

relationship between IL metric and class defect count.

The results seem to show IL can be an indicator of

the class defects during design phase. Secondly, by

combing CBO and IL to model the design complexity

of a class, there is higher explanation ability of the

empirical models to explain class defect count. This

implies the quality of a class can be modeled in

different dimensions software design. Using design

complexity metrics would be able to help developers

to make design inspection more efficient and provide

useful information to developers.

Acknowledgments

 This research is supported by the Taiwan

National Science Council (NSC) under contract

NSC-94-2213-E-006-075.

References

[1] Apache Software Foundation.
http://www.apache.org

[2] Apache Software Foundation Bug System.
http://issues.apache.org/bugzilla

[3] D. H. Abbott, T. D. Korson, and J. D. McGregor,
“A design complexity metric for object-oriented
development,” Tech. Rep. 94-105, Department
of Computer Science, Clemson University, 1994

[4] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk,
“Predicting maintenance performance using
object oriented design complexity metrics,”
IEEE Transaction on Software Engineering, vol.
29, no. 1, Jan. 2003.

[5] V. R. Basili, L. C. Briand, and W. L. Melo, “A
validation of object-oriented design metrics as

quality indicators,” IEEE Transactions on
Software Engineering, vol. 22, no. 10, pp.
751-781, Oct. 1998.

[6] L. C. Briand, J. Wust, S. V. Ikonomovski, and H.
Lounis, “Investigating quality factors in object
oriented designs: An industrial case study,”
Proceedings of the 21st international conference
on Software engineering, pp. 345-354, May
1999.

[7] S. R. Chidamber and C. F. Kemerer, “A metrics
suite for object oriented design,” IEEE
Transactions on Software Engineering, vol. 20,
no. 8, pp. 476-493, June 1994.

[8] G. K. Gill and C. F. Kemerer, “Cyclomatic
complexity density and software maintenance
productivity,” IEEE Transactions on Software
Engineering, vol. 17, no. 12, pp. 1284-1288,
Dec. 1991.

[9] Java Reflection Technology.
http://java.sun.com/j2se/1.3/docs/guide/reflectio
n/

[10] W. Li and S. Henry, “Object-oriented metrics
that predict maintainability,” Journal of Systems
and Software, vol. 23, no. 2, pp. 111-122, Nov.
1993.

[11] T. J. McCabe, “A complexity measure,” IEEE
Transactions on Software Engineering, vol. 2,
no. 4, pp. 308-320, Dec. 1978.

[12] V. Y. Shen, T.-J. Yu, S. M. Thebaut, and L. R.
Paulsen, “Identifying error-prone software -an
empirical study,” IEEE Transactions on
Software Engineering, vol. 11, no. 4, pp.
317-324, April 1985.

[13] I. Sommerville, Software Enginnering.
Addison-Wesley, 6 ed., 2000.

[14] R. Subramanyam and M. Krishnan, “Empirical
analysis of CK metrics for object-oriented
design complexity: Implications for software
defects,” IEEE Transactions on Software
Engineering, vol. 29, no. 4, pp. 297-310, April
2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

