Design and Implementation of a Monitoring and Scheduling System for
Multiple Linux PC Clusters™

Chao-Tung YangT, Chun-Sheng Liao¥, and Ping-1 Chen

High-Performance Computing Laboratory
Department of Computer Science and Information Engineering
Tunghai University, Taichung, 40704, Taiwan R.O.C.
email: {ctyang, g932834}@thu.edu.tw

Abstract

Managing and monitoring a cluster is both a
tedious and challenging task, since each computing
node is designed as a stand-alone system rather than
a part of a parallel architecture. Beowulf systems
will need a richer set of software tools to improve
usability and re-configurability. In this paper, a
software system that allows the centralized
administration of a generic Beowulf cluster is
proposed. This system also provides web services
and applications to monitor large-scale clusters with
task scheduling.

Keywords. Cluster computing, Monitoring System,
Scheduling System, Multiple Linux PC Clusters.

1. Introduction

As the performance of commodity computer and
network hardware increases, and their prices
decrease, it becomes more and more practical to
build parallel computational systems from off-the-
shelf components, rather than buy CPU time on very
expensive supercomputers. In fact, the cost
performance ratio of a Beowulf cluster platform is
between three to ten times better than that for
traditional supercomputers [2, 3, 4]. The Beowulf
architecture scales well, and it is easy to construct. In
addition, one only pays for the hardware, since most
of softwares are free. Beowulf is a multi-computer
architecture which can be wused for parallel
computations. It is a system, which usually consists
of one server node and one or more client nodes
connected together via Ethernet or some other type
of network, such as SCI, Myrinet and Infiniband. It
is a system built using commodity hardware
components, like any PC capable of running Linux,
standard Ethernet adapters, and switches [1, 2, 3, 4, 6,
7,8,9, 10, 11, 12].

Monitoring the status of a Beowulf-style cluster
platform can be a daunting task for any system
administrator, especially if the cluster system
consists of more than a dozen computing nodes.
Since Linux is not absolutely stable, hardware
problems can cause nodes to crash or become
inaccessible, and chasing down problem computing
nodes in a 500-node cluster is painful. Managing and
monitoring a cluster is both a tedious and challenging
task, since each node is designed as a stand alone
system rather than a part of a parallel architecture.
Beowulf systems will need a richer set of software
tools to improve usability and re-configurability [5,
13].

As the PC cluster becomes a popular low cost
high-performance computing platform, it is hard to
manage, mainly due to the lack of powerful
migration and monitoring tools. This research paper
presents our efforts to resolve this problem by
developing a PC cluster monitoring system. Still in
this system, it also provides web services and
applications to monitor large-scale clusters with task
scheduling.

In the second generation Beowulf cluster, the
master node can perform the migration of
uncompleted tasks during runtime and this is the
point where we start. In addition, we will also
present how we can migrate tasks dynamically
during runtime. We introduce an original algorithm
to arbitrate threads between job executive and job
listener, as it used signal programming technique to
notify the main job executive when the job is
submitted and our scheduler could be modified to
keep thread-safe for synchronicity. We also
examined the special properties of thread in Linux
operating system for our implementation.

The remaining of this paper is organized as
follows. In section 2, we make a background review.
In section 3, we discuss the system and software
architecture of our design. In section 4, we

* This work is supported in part by National Science Council Taiwan, under grant no. NSC94-2622-E-029-002-CC3.
T The corresponding author
* email: csliao@nchc.org.tw

demonstrate some examples of system utilities, and
finally in section 5, conclusions are presented.

2. Background

A Beowulf class cluster consists of PCs, based on
AMD and Intel x86, Compaq Alpha, Power PC
processor architectures. Other components are Pure
Mass-Market COTS. Typically they use a UNIX-like
operating system; such as Linux, BSD, or Solaris.
Message passing is normally used for
communications between nodes; typically using MPI,
PVM, or BSP. The clusters are set up and run as
single user environments, which are optimized for
the applications being executed.

Several tools have been developed to monitor a
large number of machines as stand-alone hosts as
well as hosts in a cluster. These tools can be useful
because they monitor the availability of services on a
host and detect if a host is overloaded, but they do
not generally provide performance monitoring
information at the level of detail needed to tune the
performance of a Beowulf cluster. In contrast to
existing systems, which usually display information
only graphically, our project integrates performance
monitoring with scheduling systems. In the following
sections, we discuss open-source cluster-monitoring
tools.

Ganglia is an Open Source project (available on
SourceForge at http://ganglia.sourceforge.net) with a
BSD license. It grew out from the University of
California, Berkeley, Millennium Cluster Project (see
http://www.millennium.berkeley.edu) in
collaboration with the National Partnership for
Advanced Computational Infrastructure (NPACI)
Rocks Cluster Group. Ganglia provide a complete,
real-time monitoring and execution environment
based on a hierarchical design. It uses a multicast
listen/announce protocol to monitor node status, and
uses a tree of point-to-point connections to
coordinate clusters of clusters and aggregate their
state information. Ganglia uses the eXtensible
Markup Language (XML) to represent data, eXternal
Data Representation (XDR) for compact binary data
transfers, and an open source package called
RRDTool for data storage (in Round Robin
databases) and for graphical visualization.

The SMILE Cluster Management System (SCMS)
is an extensible management tool for Beowulf
clusters. SCMS provides a set of tools that help users
monitor, submit commands, and query system status;
maintain system configuration, among others.
System monitoring is limited to heartbeat-type
measurements.

The Network Weather Service, although not
targeted at Beowulf clusters, is a distributed system
that periodically monitors and dynamically forecasts
the performance various network and computational
resources can deliver over a given time interval. The

service operates a distributed set of performance
sensors (network monitors, CPU monitors, etc.) from
which it gathers system condition information. It
then uses numerical models to generate forecasts of
what the conditions will be for a given time frame.
NWS is used for various meta-computing systems
such as Globus.

3. System Design

The concept of our system is to improve the
availability of monitor system in the distributed
computing environment. Nowadays, the monitor
system is not well developed on user requirements.
Therefore, we started on the user interaction and the
manner of application executing, and developed the
applications by the portability of the Java Virtual
Machine. Our system can be divided into three
applications of the Cluster architecture.

e Observe server: The role of the Observe
server is to run the collect daemon that gets
the information of each cluster’s total
information observed from the master node
and replicate the data to their local file based
database for the usage of the web interface.

e Master node: The master node executes the
master daemon that could collect the
information of their slave nodes to their local
file based database and response the Observe
Sserver.

e Slave node: All other nodes of our cluster
must run the slave daemon. The slave
program must get information in user specific
metrics like CPU speed, available size of
memory, load of this node and other
information user interested in.

On the other side, we have a separate role to
display and control our cluster in another way, there
are two types of this role:

e Web portal: We use two tools that generate
the web service for controlling and presenting
the information of our system. The former
tool used is a drawing tool named Round
Robin Database Tool (RRDtool), which draws
the state chart from the collected information
in the Observe server. The latter is the web
front-end portal created by PHP. When user is
connecting to the portal, he can retrieve the
information by the state chart and control the
system by the web interface.

e PDA application: The mobile devices are not
suitable for displaying detail information and
remote controlling. We need to simply our
information and design the appropriate
interface for this usage. The Java application
framework is suitable for this type of
application and we choose it to develop our
simple application. Implementation of this
work is to connect the Observe server, get all

metrics of our information and directly
present these to a classified format.

Our system has been implemented for nodes
within a private network; it resides on one node,
which controls all the others with remote commands.
This choice allows easy installation and upgrade, and
it needs to have daemons running on computing and
service nodes. On the other hand, this choice can
scale if the number of nodes is huge. The software
has been implemented for managing a cluster of
clusters, on public networks.

The flow of this system is shown in Figure 1,
where the master nodes can collect the system
information form its slave nodes in the multiple
Linux PC clusters. The Observe server will gather all
information from master nodes, and send to Web
server for displaying form remote users and
applications. The system architecture and software
architecture are shown in Figure 2. Also, the Observe
server will be called to provide services and
information form the Web server.

Rcmotc@@ ﬁ

Web
Observe oy =
Server g g Server

Master Nodes

Slave Nodes Slave Nodes

Fig. 1. System overview.

The functions of three daemons in our system are

listed as:

1. Slave Daemon: The Slave daemon can obtain
the related system information of each slave
node from Kernel, and provide the services to
its Master node in the PC cluster.

2. Master Daemon: The Master Daemon is
responsible to collect the system information
from all slave nodes into cluster, and put the
related information into Local Database.
Local Database is used for the purpose that
will not allow the loading too high of master
node for an instant. The function of Local
Database can be view as a buffer.

3. Collect Daemon: This daemon is running on
the Observe Server. It is used for collecting
the system information of each master node of
multiple Linux PC clusters. It can provide
services by using database to applications or
the remote users.

The system architecture of scheduler is shown in

Figure 3. We implement the multiple priority queue

of the scheduler and a user can specify the priority
value for his job when submission. Our scheduler is
based on the multi-thread architecture and
specifically, this type of scheduler can improve the
performance of job scheduling and the usage of the
memory. The Receive Thread is the service of job
submission, when job submitted; it was send to
different queue by user specification. The scheduling
algorithm is based on the weighted Round-Robin
algorithm. The scheduling of each queue is Round-
Robin, and the job chosen is through the user
specific priority value. For the information of job
execution, we could find it out thought the email
notification service or through our web portal. In our
system, each cluster has one scheduler and it could
help them control their own jobs by classification.

! _ [_Eﬁser or App ——
[WE_S_ervice i L'S:hfiluler i
L'_M. - :]
l\m-ster & Local DB]

(e)

(@)
r = %y @ 4
Remote User PC PC
A A
Browser J2ME
Obhserve Server H
y 4
[EERE! Web Server J
A
Observe Database Agent HTML
y 4
Database Apache Web Server
A
File System PHP Socket
A A
Operating System Operating System
Master Node Slave Nodes
AN AR
— Socket - Socket
y Ay
Master Agent Slave Agent
y A
Local Database Sysstat

A
File System Iproc
A
Operating System Kernel
(b)

Fig. 2. System and Software Architecture (a)
System architecture (b) Software architecture.

In Figure 4, we would understand levels of the
scheduler and how it works in the scheduler
application. We define the Main thread as the level 1,
and level 2 is the thread created by the level 1 and so
on. The processing of the levels can divide to three
parts:

1. The Server Thread created by the Main

Thread is the level 2 thread. When it accepted
the jobs after connection. It linked to the

Level 3 thread called Queue Handler and the
Queue Handler stores them.

2. The Main Thread creates the Job Execution
Thread. The Job Execution Thread transmits
the job to the appropriate node or cluster for
execution by their system state. It is the level
2 thread.

3. The Main Thread creates the level 2 thread
called Status Thread for presenting the
information of the specified queue. It is the
level 2 thread and not shown on the Figure
4(a).

Figure 4(b) shows the queue is waiting when no
tasks are in it. When the task accepts the job through
the Queue Handler in the network, the scheduler is
waked up by the signal, and the scheduler starts to
choose a job for execution.

In the information stored by the queue, it could be
processed by three threads, so we use a variable
value called Mutex A for preventing the atomic
execution. The purpose of the Mutex B is to prevent
the other threads from transmitting the same signal to
the Main Thread in the queue traversal and protect
the atomic job execution. Figure 5 shows the
algorithms of the main thread and queue handler.

] Network

Multiple § 8 § " 0 FIFOQ
Priority Queue
l Round-Robin \

Status Reporter
l E-Mail

Fig. 3. The system architecture of scheduler of
our system.

4. Experimental Results

We have developed our monitor system on three
sets of four nodes Beowulf Cluster. The hardware
and software specification is listed on Table 1. All
daemons are implemented with C and our web portal
was developed with PHP.

Figure 6 shows the snapshot of our system, from
where we can obtain system information of each
computing node of all cluster platforms.

Figure 7 shows a task submission webpage, what
essentially eases the user’s task submission process,
in any of our cluster platforms.

In Figure 8, it is shown the task status webpage,
where all tasks submitted to be processed in our
cluster systems are shown here, as well as the
number of computing nodes used for the execution of
each task.

Main Thread

| Job (under executior) | | Server Thread |

| Queue Handler |

(a)
Main Thread

Duthread_create()
ServerThread

o Socket listen
sigwait() | network
connection

,W; create()
A

Accept() Queue handler

| Queue Handler |

Enqueue

//\wid_create()

Accept() Queue handler
Waked up send signal
'\¥ Enqueue
Waked up send signal
V\\
(b)

Fig. 4. A paradigm of scheduling system. (a)
The processing level of thread used in
scheduler. (b) The processing flow of schedule

\ Mutex A lock \

1!
(| Queue traversal |)
| Select one to execute |
1!

\ Mutex B lock \

i

| Check for new job |

| Mutex Aunlock |

i

| Wait for signal |

1}

| Mutex B unlock |

(a)
Mutex A lock
I

Enqueue job
Mutex A unlock

Set Re-traversal Send signal

(b)
Fig. 5. Algorithms of the main thread and queue
handler. (a) Algorithm of the main thread (b)
Algorithm of queue handler

Figure 9 shows the same monitoring system we
can obtain from a PC, but in a PDA screen. In this
way, application developer can monitor computing
nodes of cluster platforms, the physical
characteristics of each computing node, the status of
each task in the queue, that is, all operable using a
PDA. Figure 10 shows our monitoring system that
can be operated form JAVA client running on PC.

Table 1. Specifications of three Beowulf
Clusters. (a) Hardware specification (b)
Software configuration

a)
amd amd-dual hiroyuki
Dual AMD Dual AMD AMD
CPU Athlon MP Athlon MP AthlonXP
2600+ 2000+ 1600+
Master Master
Main Master 2GB 192MB
512MB
Memory | Slave 1GB Slave 512MB Slave
192MB
Hard Master 80G Master 30GB g/(l)fétBer
Disk Slave 80G Slave 30GB Slave 30GB
Gigabit Fast Fast
Network Ethernet Ethernet Ethernet
(b)
amd amd-dual hiroyuki
Distribution RedHat 8 RedHat 9 Redhat 9
Kernel 2.4.18- 2.4.20- 2.4.20-8
14smp 8smp
gce gce-3.2-7 3.2.2-5 3.2.2-5
. 2.3.2- 2.3.2-
glibc 2.3.2-4.80.8 27.0.7 2707

[Ty S— ——

ﬂ AMARL ITAD NWE 80 & Voood@W g DELF) IEEE @) 4 EM) Ovolee
KRG L -5 &0

High Performance Computing Lab
Sumanary GiWd | Task Submit | Task Susms TP Logis | Ol Pags

N
P i) e 10 138 100 Y-kt | (] U

HPC Cluster Information

g, (VB CPUs, 313D srz), 2 Hout down,

@amd CIUSEET 7o 4 Hoste & Hosts sumning [8 CPUs | 16800 Mtz 1) O Hont down |
Totst Losd Avseaga 0,00 | Memary 5035 Mbytes | 155 processes uneing

et - w—n

P | 12267 MHz |} 0 Hout down |
9

(5] hiroyuki CIUSLEr Toisl 4 sasts 2 st sy { 2 CEUs | 2265 Wtz 1) 2 Mot down |

Totst Lyad Avwesgn ©.00 | amry 438 MBrten | 116 peocasses rumming

13
Ain g Yoot MM EIUOCE 41 INEE @) AWIEH] Dl -
EE- i M- af - RO e 0 et (] OR

High Performance Computing Lab

Swtninary Gad Task Subsnll Task Staes TP Lagin Ol Page search

Hum of Process
Task $2UE

High Parformance Computing Lab
Summary Gl Tash Sabewit Tauk Stames FIP Login O Page

Task Status

ot Salect b][cbend

Fig. 8. The status of submitted tasks.

Fig. 9. Monitoring screen on PDA

=

£p Cluster Monitor System-- 53

A=

File About
o [Mooy tont | ro | 10 Sy
@ Jamd E
[fama1 ‘|cPuType AMD Athianitm) MP 2600+
@ [amd-dual “|Freq 2133.336
[amet-dualt ‘|cache 286KB
@ [T hiroyuki |mips 423052
[y hiroyuki1 |numorcru 2
[0y hiroyukiz “|Mem Total 1992 MB
[y hiravuki3 i

~|Swap Total 2016 MB

2 1P:192.168.2.1

(@)

> Cluster Monitor Systen-- SRR ASHHETRE

/=S

File About

7 Lscm

@ Jamd
[y amat

@ [amd-dual
[ame-dualt|

© Clhiowuki
[y hiroyuki1
[hirayuki2
[y hiroyuki3

|one oo
| Five 0.00
“|Fifteen 0.00

o[1P:192.168.11.1

(b)

£ Cluster Monitor System-- SR ASHREFRE

=S

File About
ILsc A cru
@ [Jamd E
[a1 et 90.00 %
@ [Jamd-dual “|users 0.00 %
[amd-dualt |nice 0.00%
@ [hiroyuki ‘|system 1004
D ;‘”ﬂﬂ |Process 41
[hiroaiz]| “|uptime 15Day 2323
[y hiroyuki3 4

2|1P: 140.128.101.183

(©)

> Cluster Monitor Systen-- SRR ASHHETRE

/=S

File About
@ CJamd E
[a1 |Pagem oooEs
@ [amd-dual ‘|PageOut 0.00Bss
[ame-dualt| ‘(swapin op00BIS
@ 3 hiroyuki “|swap out 000BIE
[y hirayuki1 4
[y hiravukiz
[y hiroyuki3

1P 192.168.11.1

(d)

£p Cluster Monitor System-- 53

A=

File About
r;;]écwl ; 3 i Memory hﬁiﬁ
am B
[amen “|used 320 MB
@ [amd-dual {|Cached 83MB
[lamet-dualt| |Free 181mB
§ [hiroyuki “|Buffers 110MB
[irawuki1 |shared omB
[y hiroyukiz | swap oMB
[y hiravuki3 1

1Pz 192.168.11.1

(e)

£p Cluster Monitor System-- 53

A=

File About
e [ooy o P |15 |
@ [Jamd H
[amd1 |pisk Read 0.00bss
@ [amd-dual | pisk write 0.00ms
[amd-duat ‘|Etherrx 24300858
§ 7 hiroyuki ‘|Ether 1% 0.00BE
[hirowuki1 H
[i
[y hiravuki3

#|1P:140.128.101.183

Fig. 10. Monitoring screen from JAVA client (a)
System information (b) Loading (c) CPU
information (d) Page information (e) Memory
information (f) I/O status

5. Conclusions

In this paper, a software system that allows the
centralized administration of a generic Beowulf
cluster is proposed. This system also provides web
service and application to monitor for large scale
clusters with task scheduling. We introduced an
original algorithm to arbitrate threads between job
executive and job listener, as also a novel signal
programming technique is used to notify the main
job executive, when the job is submitted and the
scheduler modify to keep thread-safe for
synchronicity. We also examined the special
properties of threads in Linux operating system in
our implementation.

References

[1]
(2]

3]
[4]

[5]
[6]
[7]

(8]

9]

[10]

[11]

[12]

[13]

G. Pfister, In Search of Clusters, Prentice Hall PTR,
ISBN: 0138997098; 2nd edition, January 1998.

A. Geist, Cluster Computing: The Wave of the
future, Springer Verlag, Lecture Notes in Computer
Science, May 1994.

The Beowulf Project, http://www.beowulf.org

T. Anderson, D. Culler, and D. Patterson, “A Case
for Network of Workstations,” |EEE Micro,
15(1):54-64, Feb. 95. http://now.cs.berkeley.edu/
SCMS, http://www.opensce.org/

MPI, http://www.mpi-forum.org/

PVM,
http://www.csm.ornl.gov/pvm/pvm_home.html

D. J. Becker, T. Sterling, D. Savarese, E. Dorband,
U.A. Ranawake and C. V. Packer, “BEOWULF: A
Parallel Workstation for Scientific Computation”,
Proc. International Conference on Parallel
Processing (ICPP), pp 11-14, 1995.

M.R. Guarracino, G. Laccetti and U.
Scafuri,”Beowulf Project at CPS-CNR”, Proc. of
PC-NETS99, L’Aquila (1), 1999. See also
http://pixel.dma.unina.it/beowulf.html

B. Saphir, P. Bozeman, R. Evard and P. Beckman,
“Production Linux Clusters”, Supercomputing 99
Tutorial, Portland (OR), 1999.

T. Sterling and D. Savarese, “A Coming of Age for
Beowulf-Class Computing”, Proc. of Euro-Par 99,
Lecture Notes in Computer Science, no. 1685, pp
78-88, Springer, 1999.

P. Uthayopas and A. Rungsawang, “SCMS: An
Extensible Cluster Management Tool for Beowulf
Clusters”, Supercomputing 99, Portland (OR), 1999.
University of California San Diego. The Network
Weather Service Homepage.
http://nws.npaci.edu/NWS.

