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Abstract

In this paper, we propose efficient fair blind
(t, n) threshold signature schemes in wallet
with observers. By these schemes, any t out of
n signers in a group can represent the group to
sign fair blind threshold signatures, which can
be used in anonymous e-cash systems. Since
blind signature schemes provide perfect unlink-
ability, such e-cash systems can be misused by
criminals, e.g. to safely obtain a ransom or to
launder money. Our schemes allow the judge
(or the judges) to deliver information allowing
anyone of the t signers to link his view of the
protocol and the message-signature pair.

Keywords: Fair Blind Signatures, Threshold
Signatures, Wallet with Observers, Discrete
Logarithm, Secure E-Cash Systems.

1 Introduction

The concept of blind signature was introduced
by Chaum [4]. It allows a requester to ob-
tain signatures on the messages she/he provides
to the signer without revealing these messages.
The blind signatures can realize secure elec-
tronic payment schemes [4, 5, 8, 17] protecting
customers’ anonymity. In a distributed envi-
ronment, the signed blind messages can be re-
garded as a fixed amount of electronic money
in secure electronic payment schemes. The ba-
sic assumption of these schemes is that the sin-
gle money issuer of these schemes is trustwor-
thy. However, the money issuer may issue ex-
tra e-coins as she/he wishes. If the money is-
suer does that, it may cause great danger or
hurt for the corporation or society. To cope
with this dilemma, instead of a single signer,
blind threshold signature schemes and their
variations [12, 15] have been proposed in a

distributed environment, where several signers
work together to sign a blind threshold signa-
ture. The schemes proposed in [12, 15] allows
t out of n participants in a group cooperating
to sign a blind threshold signature without the
assistance of a single trusted authority.

Since blind signature schemes provide per-
fect unlinkability, such e-cash schemes can be
misused by criminals, e.g. to safely obtain a
ransom or to launder money [21]. To cope with
this dilemma, the concept of fair blind signa-
tures is introduced in [22]. In [22], three fair
blind signature schemes are introduced to pre-
vent the misuse of the unlinkability property.
With the help of the judge, the signer can link
a signature to the corresponding signing pro-
cess. In [14], Juang et. al. proposed a fair
blind threshold signature scheme based on the
blind threshold signature scheme proposed in
[12] and the registration method proposed in
[22]. It allows the judge to deliver information
allowing anyone of the t signers to link his view
of the protocol and the message-signature pair.
But the scheme in [14] needs more exponential
operations than the scheme in [12].

In [6], Chaum et. al. proposed the con-
cept of wallet databases with observers. It
uses the tamper-proof devices, such as Java
cards, that the person cannot modify or probe,
to keep some correct and secret database. In
this concept, a person (customer) can use two
modules to handle ordinary consumer transac-
tions: (1) the tamper-proof module, called an
observer, whose inner working is programmed
by a trusted authority; and (2) the personal
workstation whose inner working is totally un-
der control of the person. By this combined de-
vice, called a wallet, the two modules owned by
a person can keep his personal secret database
and ensure the correctness of these databases.
In [1], Brands also use this concept and the rep-



resentation problem to design an off-line cash
system.
In this paper, we propose a fair blind thresh-

old signature scheme based on the blind thresh-
old signature scheme proposed in [12] and the
concept of wallet with observers proposed in [6].
In our scheme, the size of a fair threshold signa-
ture and the signature verification process are
all the same as that of an individual signature.
The security of our schemes relies on the diffi-
culty of computing discrete logarithm and the
tamper-proof devices and it is computationally
infeasible for signers to derive the exact corre-
spondence between the message they actually
sign and all signers’ complete views of the exe-
cution of the signing process without the assis-
tance of the judge (or judges) or the requester.

2 The proposed scheme

In this section, we propose fair blind thresh-
old signature schemes in wallet with observers.
For simplicity, the fair blind threshold signa-
ture scheme is based on the Nyberg-Rueppel
blind signature scheme [2] with message re-
covery. All secure Meta-ElGamal blind signa-
ture schemes proposed in [2, 11] can be used
in our scheme. In a typical signing process of
a fair blind threshold signature scheme, there
are three kinds of participants, the signers, the
judge and a requester. Before the requester
can obtain a signature from the signers, all the
signers have to cooperate to distribute their se-
cret shadows to other signers in advance. Then
the requester installs his temper-proof device
with the judge and uses the wallet to request a
fair blind threshold signature from the signers.
The proposed scheme consists of four phases:
(1) the shadow distribution phase, (2) the ini-
tialization phase, (3) the signature generation
phase and (4) the signature verification phase.
The shadow distribution phase is performed
only once among the signers and then they can
use their secret shadows to sign messages. In
the initialization phase, the requester requests
one pseudonym from the judge. The public key
of the pseudonym is signed by the judge by a
secure blind signature scheme and the corre-
sponding secret key is stored in the tamper-
proof device and known only by this device.
These process is performed only once and this
tamper-proof device can be used until it ex-
pires. In the signature generation phase, a re-
quester requests a fair blind threshold signa-

ture from the signers. Before the requester can
generate the real threshold signature from sign-
ers, she/he must send the unblinding informa-
tion encrypted by the judge’s public key to the
judge. This information is also stored in the
wallet databases and it contains necessary in-
formation to link message-signature pair. Thus,
the judge, who knows the corresponding secret
key, can link the message-signature pair with
the corresponding signer’s view when necessary.
In the signature verification phase, anyone can
use the group public key to verify if a threshold
signature is valid.

Let n
′
be the number of signers before the

shadow distribution phase, QUAL be the set
of non-disqualified signers after the shadow dis-
tribution phase, let n be the number of non-
disqualified signers QUAL. Let Ui, 1 ≤ i ≤
n

′
, be the identification of signer i before the

shadow distribution phase. Let Ui, 1 ≤ i ≤ n,
be the identification of non-disqualified signer i
after the shadow distribution phase. Let C be
the computer controlled by the requester, T be
the tamper-proof device issued by the judge (or
some trusted authority) for the requester, n be
the number of signers, t be the threshold value
of the fair blind threshold signature scheme, so
that at least (n− t+1) signers are honest. Let
dT be the secret key stored in T when T is born
and eT be the corresponding public key. Let m
be the blind message to be signed, H be a se-
cure one-way hashing function [23]. Let p and
q be two large strong prime numbers such that
q divides (p − 1), and let ρ and ζ be two gen-
erators of Z∗

p (i.e., gcd(ρ, p) = 1, gcd(ζ, p) = 1,
ρ �= 1, ζ �= 1) and ζ be a random value gener-
ated by a generic distributed coin flipping pro-
tocol. Let g ≡p ρ(p−1)/q and h ≡p ζ(p−1)/q .
Let ” · ” denote the ordinal string concatena-
tion. Let di be the secret key chosen by Ui and
dJ be the secret key chosen by the judge. In a
distributed environment, Ui and the judge can
publish their corresponding public keys ei and
eJ . Anyone can get eT , ei and eJ via some au-
thentication service (e.g. the X.509 directory
authentication service [23]). Using a secure
public key signature scheme [7, 20], T, Ui and
the judge can produce signatures of messages
by their own secret keys dT , di and dJ . Anyone
can verify these signatures by the correspond-
ing public keys eT , ei and eJ . Let CertdT (m)
be the signature on the message m produced
by T, Certdz (m) be the signature on the mes-
sage m produced by T with the secret key dz

of its pseudonym requested in the initialization



phase, and CertJ (m) be the signature on the
message m produced by the judge. For making
our scheme clear, we assume that the message
transmitted in the following protocol is via an
authentication scheme (e.g. the RSA signature
scheme); that is, no one can fake any other’s
messages and no one can deny the messages he
really transmitted.

2.1 The shadow distribution
phase

Before a requester can request a fair blind
threshold signature from the signers, all the
signers must cooperate to distribute their secret
shadows to other signers without the assistance
of a mutually trusted authority. In this phase,
signers can detect the incorrect shares by the
verification equations. In the shadow distribu-
tion phase, each Ui, 1 ≤ i ≤ n′, carries out the
following steps:

1. Ui chooses a secret key zi ∈ Zq and two se-
cret polynomials fi(x) =

∑t−1
k=0 ai,kx

k and
f

′
i (x) =

∑t−1
k=0 a

′
i,kx

k such that ai,0 = zi, it
computes Gi,k ≡p gai,kha′

i,k , 0 ≤ k ≤ t−1,
and it sends (Gi,k, 0 ≤ k ≤ t − 1)) to Uj ,
1 ≤ j ≤ n′, j �= i.

2. Upon receiving (Gj,k, 1 ≤ j ≤ n′, j �= i,
0 ≤ k ≤ t − 1) from all other signers, Ui

sends δi,j ≡q fi(xj) and δ′i,j ≡q f ′
i(xj),

where xj is a unique public number for Uj ,
secretly to every Uj , 1 ≤ j ≤ n′, j �= i.

3. When Ui receives all δj,i and δ′j,i, 1 ≤ j ≤
n′, j �= i, from other signers, she/he veri-
fies if the shares δj,i and δ′j,ireceived from
Uj is consistent with the certified values
Gj,l, 0 ≤ l ≤ t − 1, by checking whether
gδj,ihδ′

j,i ≡p

∏t−1
l=0(Gj,l)xi

l

. If it fails, Ui

broadcasts that an error has been found,
publishes δj,i and δ′j,i, the authentication
information of δj,i, δ

′
j,i and Uj . Each signer

except the dishonest signer Uj then marks
Uj as a disqualified signer and builds the
set of non-disqualified signers QUAL.

4. Every signer Ui, i ∈ QUAL, broadcasts
Ai,l ≡p gai,l , 0 ≤ l ≤ t− 1.

5. When Ui ,i ∈ QUAL, receives all Aj,l,
j ∈ QUAL, j �= i, 0 ≤ l ≤ t − 1,
from other signers in QUAL, she/he ver-
ifies whether gδj,i ≡p

∏t−1
l=0 (Aj,l)xi

l

. If

this check fails for an index j, Ui broad-
casts that an error has been found, pub-
lishes δj,i, the authentication information
of δj,i and Uj . Any t signers in QUAL can
compute zj, fj(x), Aj,k, 0 ≤ k ≤ t − 1.
Anyone then computes the public shad-
ows Pj,i ≡p gδj,i ≡p

∏t−1
l=0(Aj,l)xi

l

, where
i and j ∈ QUAL, and the group public
key y ≡p

∏
j∈QUAL yj ≡p

∏
j∈QUAL Aj,0.

The group public key y and all public shad-
ows Pj,i, where i and j ∈ QUAL, the
personal public key yi ≡p Ai,0 ≡p gzi

can then be published by each signer Ui.
Without loss of generality, we assume that
n non-disqualified signers QUAL are Ui,
1 ≤ i ≤ n. It can be done by renaming the
index of each signer Ui, i ∈ QUAL.

2.2 The initialization phase

Before a requester can request a fair blind
threshold signature from the signers, she/he
must acquire one pseudonym from the judge.
The public key of the pseudonym is signed by
the judge by a secure blind signature scheme
[2, 4, 11] and the corresponding secret key is
stored in the temper-proof device T issued by
some organization (e.g. the judge) and known
only by this device T . The requester and the
judge then carry out the following steps:

1. T sends a request information including
the certificate CertdT (H(RD)), where RD
contains some redundancy information in-
dicating the registration, for a pseudonym
to the judge.

2. The judge first verifies T ′s identification by
the certificate CertdT (H(RD)) using his
corresponding public key eT , and then use
any secure blind signature scheme to issue
a pseudonym for T . Let dz be the secret
key chosen by T and ez be the correspond-
ing public key. After the blind signature
generation process, the secret key dZ and
the certificate CertJ (H(ez)) of the corre-
sponding public key ez is stored in T.

2.3 The signature generation
phase

Without loss of generality, we assume that t out
of the n signers are Ui, 1 ≤ i ≤ t. When a re-
quester (C and T ) requests a fair blind thresh-
old signature, she/he, the judge, and the t sign-



ers perform the following steps during the sig-
nature generation phase.

1. Each Ui randomly chooses a number ki ∈
Zq, computes r̂i ≡p gki and sends r̂i to the
requester.

2. After receiving all r̂i, 1 ≤ i ≤ t, C does the
following.

(a) Choose two random numbers α ∈
Zq and β ∈ Z∗

q , compute r ≡p

m
∏t

i=1 ri ≡p mgtα(
∏t

i=1 r̂i)β and
m̂ ≡q β−1r, where ri ≡p gαr̂i

β and
1 ≤ i ≤ t.

(b) Check if m̂ �= 0. If yes, sends
(α, β, r̂i, 1 ≤ i ≤ t,m) to T. Other-
wise, go back to step (a).

(c) T also computes r ≡p m
∏t

i=1 ri ≡p

mgtα(
∏t

i=1 r̂i)β , m̂ ≡q β−1r, where
ri ≡p gαr̂i

β and 1 ≤ i ≤ t,
CertdZ (H(m̂)), and sends EeJ (α · β ·
r̂1 · ... · r̂t ·m) to the judge.

(d) After receiving the receipt from the
judge, T sends CertdZ (H(m̂)) back to
C.

(e) C then sends CertJ (H(ez)),
ez, CertdZ ( H(m̂)), m̂ to all
Ui, 1 ≤ i ≤ t.

3. Upon receiving m̂, each Ui verifies if
CertdZ (H(m̂)) is valid. If yes, she/he
computes ŝi ≡q m̂(zi +

∑n
j=t+1 fj(xi)

( −xk

xi−xk
))) +ki and sends ŝi back to the re-

quester.

4. After receiving all ŝi, C computes si ≡q

ŝiβ + α, and checks if g−siyr
i ri ≡p

(
∏n

j=t+1(Pj,i))
(
∏

t

k=1,k �=i
(

−xk
xi−xk

))(−r)
, 1 ≤

i ≤ t.

If any of the ŝi is not valid, it has to ask the
corresponding signer to send it again. Other-
wise, it computes s ≡q

∑t
i=1 si. The threshold

signature of m is (r, s).

2.4 The signature verification
phase

To verify the threshold signature (r, s), one sim-
ply computes m ≡p g−syrr and checks if m
has some redundancy information. If m has
no proper redundancy, a secure one-way hash-
ing function H can be applied to m. But this

approach can not provide the message recovery
capability. To verify the threshold signature (r,
s) on m without redundancy, one must send m
along with (r, s) to the verifier.

3 Analysis

We examine the correctness and security of our
scheme in this section. We also show how to
link a given signature to its corresponding sign-
ing process under the assistance of the judge.

3.1 Correctness

To prevent a signer from sending an invalid par-
tial signature to the requester, the partial signa-
ture must be checked in step 4 of the signature
generation phase. The following lemma ensures
the correctness of partial signatures.

Lemma 1. The partial signature ( ri, si) is
valid if Ui is honest.
By means of our scheme, we have
g−siyr

i ri

≡p g−(ŝiβ+α)gzir gαr̂i
β

≡p g
−(m̂(zi+

∑n

j=t+1
fj(xi)(

∏t

k=1,k �=i
(

−xk
xi−xk

)))+ki)β

gzirgkiβ

≡p g
−m̂(zi+

∑
n

j=t+1
fj(xi)(

∏
t

k=1,k �=i
(

−xk
xi−xk

)))β
gzir

≡p g
−m̂ziβ−m̂

∑
n

j=t+1
fj(xi)(

∏
t

k=1,k �=i
(

−xk
xi−xk

))β
gzir

≡p g

∑n

j=t+1
fj(xi)(

∏t

k=1,k �=i
(

−xk
xi−xk

))(−m̂β)

≡p (
∏n

j=t+1(Pj,i))
(
∏

t

k=1,k �=i
(

−xk
xi−xk

))(−r)

✷

After the signature generation phase, the
blind threshold signature can be verified by the
group public key in the signature verification
phase. Lemma 2 ensures the correctness of the
scheme.

Lemma 2. The signature (r, s) generated
in the signature generation phase is a valid
blind threshold signature on message m for the
Nyberg-Rueppel signature scheme.
Proof. The validity of the signature (r, s) can
easily be established as follows.

g−syrr

≡p g−(
∑t

i=1
(ŝiβ+α))g

∑n

i=1
zirm(

∏t
i=1 ri)

≡p mg
−(m̂(

∑t

i=1
zi+

∑t

i=1
(
∑n

j=t+1
fj(xi)(

∏t

k=1,k �=i
(

−xk
xi−xk

))))+
∑t

i=1
ki)β−tα

g
∑n

i=1
zir(

∏t
i=1 g

αr̂i
β)

≡p mg
−(m̂(

∑
t

i=1
zi+

∑
n

j=t+1
(
∑

t

i=1
fj(xi)(

∏
t

k=1,k �=i
(

−xk
xi−xk

))))+
∑t

i=1
ki)βg

∑
n

i=1
zir(

∏t
i=1 g

kiβ)



≡p mg
−(m̂(

∑
t

i=1
zi+

∑
n

i=t+1
zi))βg

∑n

i=1
zir

≡p mg−m̂
∑n

i=1
ziβg

∑n

i=1
zir

≡p mg−r
∑

n

i=1
zig

∑
n

i=1
zir

≡p m. ✷

3.2 Security considerations

In [10], Gennaro et. al. proposed an improved
distributed key generation scheme based on dis-
crete logarithm. In this scheme, they use the
information-theoretic verifiable secret sharing
protocol [18] to guarantee that no bias for a bit
in the output group public key of the protocol
is possible. The shadow distribution phase of
our proposed scheme is based on the distributed
key generation scheme in [10]. Different from
the scheme in [10], in order to do cheater de-
tection when some signer cheats, the public
shadows (Pj,i ≡p gδj,i ≡p

∏t−1
l=0(Aj,l)xi

l

,where
i and j ∈ QUAL) will be published by all sign-
ers. All the public shadows (Pj,i, where j and
i ∈ QUAL) can be computed by the public val-
ues Aj,l ≡p gaj,l , j ∈ QUAL , 0 ≤ l ≤ t − 1,
broadcasted in Step 4 of the shadow distribu-
tion phase. This public shadows will not dis-
close any extra information of the group secret
key.
Since blind threshold signature schemes

without the fairness property provide perfect
unlinkability, such e-cash schemes can be mis-
used by criminals, e.g. to safely obtain a ran-
som or to launder money. For example, a crim-
inal can safely obtain a ransom by joining a
blind threshold signature scheme where the re-
quest is via an untraceable mail (e.g. an or-
dinary mail or an untraceable e-mail [3, 13])
and the signers put the blind threshold signa-
ture on a public board. Then the criminal can
easily obtain the blind threshold signature from
the public board and derive the corresponding
e-coins. To cope with this dilemma, in our pro-
posed scheme, anyone of the t signers Ui can
first send the messages (r̂i, m̂) requested by the
criminal to the judge and then the judge sends
all the corresponding view (α · β · r̂1 · ... · r̂t ·m)
back to the signer. The signer can verify va-
lidity of the corresponding view by comput-
ing r ≡p m

∏t
i=1 ri ≡p mgtα(

∏t
i=1 r̂i)β , m̂ ≡q

β−1r. When the criminal withdraws these e-
coins from the signer, the signer can easily
identify the criminal by linking the message-
signature pair (m, r, s) with the corresponding
signer’s view ki, r̂i ≡p gki ,and m̂. If the judge
is honest, all crimes by misusing the unlinkabil-

ity property of blind threshold signatures will
be prevented and the anonymity of honest cus-
tomers will also be preserved.

4 Discussions

4.1 Extension schemes

The blind signature scheme proposed in [2]
with message recovery is used in our proposed
scheme. The modification of DSA-type blind
signature scheme proposed in [2] can also be
used in our scheme. In [11] some extensions of
the blind signature schemes in [2] were intro-
duced. As mentioned in [11], not all variants of
Meta-Message recovery signature schemes can
be transformed to blind signature schemes. For
example, there is no blind signature scheme for
the original ElGamal signature scheme yet. All
extensions of secure blind signature schemes
proposed in [11], except that B̃ contains s̃ in
the signature generation equation, can be used
in our scheme. The security considerations and
performance analysis of these extended schemes
are similar to those of our proposed scheme.
In [19], two provably secure blind signature
schemes are proposed. One has been proved to
be equivalent to the discrete logarithm problem
in a subgroup. The other has been proved to
be equivalent to the RSA problem. By suitable
modifications for our scheme, the secure blind
signature scheme based on discrete logarithm
in [19] can also be used in the modified scheme
[16]. Since the security of the underlying blind
signature scheme has been proven to be equiv-
alent to the discrete logarithm problem in the
random oracle model, the security of this modi-
fied scheme [16] is also equivalent to the discrete
logarithm problem in the random oracle model.

4.2 Distributing the power of a
single judge to multi-judges

In our scheme, the duty of the judge is to is-
sue pseudonyms to requesters and keep the un-
blinding information sent from the requesters.
In some situations, it is hard to find a trusted
judge. We can modify the scheme in Section
2 as follows: (1) Instead of a unique judge,
the modified system consists of κ judges and at
least

⌈
κ
2

⌉
judges are honest. (2) These κ judges

execute a distributed key generation protocol
similar to the shadow distribution phase in
Section 2 to generate a group public key eJs

and the corresponding group secret key dJs.



Table 1: Cost of the signature generation phase
and the signature verification phase in our
scheme and that in [14].

The requester (verifier)
EXP INV ENC MUL ADD

Cost of the signature generation phase
A 2 1 1 t+ 5 t
B 5 1 0 3t+ 6 t
Cost of the verification phase
A 2 1 0 2 0
B 4 1 0 3 0
where
EXP = no. of modulo exponentiations,
INV = no. of modulo inversions,
ENC = no of message encryption,
MUL = no. of modulo multiplications,
ADD = no. of modulo additions,
A = Our scheme,
B = The scheme in [14].

(3) During the initialization phase, a requester
must acquire one threshold pseudonym from⌈

κ
2

⌉
judges. The public key of the thresh-

old pseudonym is signed by these judges by a
blind threshold signature scheme and the cor-
responding secret key is stored in the temper-
proof device T and known only by this de-
vice. (4) In the signature generation phase,
any requester must send the unblinding infor-
mation EeJs(α · β · r̂1 · ... · r̂t · m) to any hon-
est judge (just as a database manager). By
the above modifications, the power of a single
judge is distributed to several judges. When
anyone of the t signers Ui sends the messages
(r̂i, m̂) requested by the criminal to the judge
(as a database manager) and then

⌈
κ
2

⌉
judges

can first decrypt the unblinding information
EeJs(α · β · r̂1 · ... · r̂t · m) received soon, find
(α · β · r̂1 · ... · r̂t · m) and send all the cor-
responding view (α · β · r̂1 · ... · r̂t · m) back
to the signer. By this approach, the power of
a single judge is distributed to several judges.
The fair blind threshold signature scheme pro-
posed in [14] is just a single judge. It is still an
open problem that whether there exists an effi-
ciently multi-judges fair blind threshold signa-
ture scheme without the assistance of a tamper-
proof device like the scheme in [14].

4.3 Performance Considerations

In this subsection we give an analysis of the
computational effort required to compute fair
blind threshold signatures in our scheme. Ta-
ble 1 illustrates the comparison of our pro-
posed scheme and the scheme in [14]. For re-
ducing the computational cost needed by the
requester, the partial signature verification in
Step 4 would not be done except the final
threshold signature can not pass the verification
equation in the signature verification phase.
The requester does not need to know the pub-
lic shadows Pl,j , where l and j ∈ QUAL,
in advance except there exists some dishonest
signer in the signature generation phase. In
this approach, the requester only needs to com-
pute 2 modular exponentiations and 1 mod-
ular inverse in step 2 of the signature gener-
ation phase. Since the blind threshold veri-
fication functions of our schemes all are the
same as those of the underlying blind signa-
ture schemes, the verification cost of our blind
threshold signature is the same as that of the
underlying blind signature. Comparative to the
scheme in [14], the extra cost for requesting a
fair blind threshold signature in our scheme is
to compute EeJ (α · β · r̂1 · ... · r̂t ·m) which con-
tains one public key encryption. For reducing
the computation cost, T can first negotiate a
session key with the judge and then send the
unblinding information to the judge by a secret
key cryptosystem. This approach will greatly
reduce the computation cost when the number
of signers t is large. But if we want to change
our scheme to multi-judges environments, in-
stead of the above approach, T must send the
unblinding information EeJs(α·β ·r̂1 ·...·r̂t ·m) to
a judge (as a database manager) by the judges’
group public key eJs for distributing the power
of a single judge.
Let the fair blind threshold signature of m in

[14] be (Ω1, CertJ (h(Ω1)), v1, v2, s, u). Let the
prime p be 1024-bits long and the prime q be
160-bits long. Totally, the fair threshold sig-
nature in [14] and our proposed scheme in sec-
tion 2 are 1024+1024+1024+1024+160+1024=
5280 bits and 160+1024=1184 bits, respec-
tively. Hence, our proposed scheme reduces the
length of the fair blind threshold signature by
5280−1184

5280 = 78%.

In [9], three robust threshold signature proto-
cols, namely, DSS-Thresh-Sig-1, DSS-Thresh-
Sig-2 and DSS-Thresh-Sig-3, are proposed.
One approach to generate blind threshold sig-



natures is to take robust threshold signature
schemes [9] and turn them into fair blind signa-
ture schemes. The advantage of this approach
is that it is quite robust and can deal with the
situation where there are many cheaters. How-
ever, in DSS-Thresh-Sig-1, 2t + 3 modular ex-
ponentiations are required for each signer to
generate a threshold signature and it is even
worse for DSS-Thresh-Sig-2 and DSS-Thresh-
Sig-3 which requires O(nt) modular exponenti-
ations. It is clear that this approach is quite
inefficient compared to our proposed schemes.

5 Conclusion

We have proposed efficient fair blind threshold
signature schemes in wallet with observers. In
our schemes, the size of a fair threshold signa-
ture and the signature verification process are
all the same as that of an individual signature.
The security of our schemes relies on the diffi-
culty of computing discrete logarithm and the
tamper-proof devices and it is computationally
infeasible for signers to derive the exact corre-
spondence between the message they actually
sign and all signers’ complete views of the exe-
cution of the signing process without the assis-
tance of the judge (or judges) or the requester.
Our proposed schemes can be easily applied to
current efficient single-authority e-cash schemes
for distributing the power of a single authority
without changing the underlying structure and
degrading the overall performance.
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