

An Effective Data Replacement Scheme within Video Proxy
for VOD System

Yu-Jin Wang, Yi-Shou Lin, S.W.Huang and Cheng Chen

Department of Computer Science and Information Engineering
1001 Ta Hsueh Road, Hsinchu, Taiwan, 30050, Republic of China

Tel:(886)35712121 EXT:54734, Fax:(886)35724176
Email:{ugwang, linys, huangsw, cchen }@csie.nctu.edu.tw

Abstract

Due to the advances in computer and
multimedia techniques, VOD is more popular
than before. However, the bandwidth is still a
bottleneck in the VOD environment. In order to
resolve the problem, we proposed a video proxy
architecture in this paper. A good video proxy
should have higher hit rate. Thus, we design an
efficient data replacement scheme by using
Knapsack to increase total system performance.
Besides, we also provided a prediction method
to predict the distribution of access patterns. By
the method, we can decide which data could be
put into the video proxy. According to our
simulation and evaluation, our method can
improve hit rate much as well as save a lot of
bandwidth. The detail will be described in the
literature.

Key words: Multimedia, Algorithm, Proxy
server, Bandwidth

1. Introduction
Recent advancement in multimedia has

brought about new applications which allow us
to exchange information efficiently [1-3].
Among these applications, video-on-demand
(VOD) is an interesting application [4]. Our
main purpose is to improve VOD architecture
and then reduce the bandwidth usage. Caching
popular video in local proxy is one of the most
attractive ways to resolve this problem [1-3,5,7].
In general, there are three architectures in
accordance with the location of the proxy [2].
Among them, the independent proxy structure is
more interesting because it can share the cached
data to every client and reduce the response time
for a client. In this paper, we propose a
cooperative video proxies architecture to save
the bandwidth more. No doubt, how to increase
hit rate in our architecture is also important.

Many factors can increase hit rate, such as job
scheduling [8-10], data placement [4,7], data
replacement [11-14], and so on. Several
replacement policies have been presented
[11-14]. However, they aren’t suitable in VOD
because of the characteristics of video data. Thus,
we proposed a two-phase replacement scheme in
our cooperative video proxies. In the first phase,
we will design a popularity comparison method
to decide when we will trigger the replacement
operation. Here, we propose a prediction method
to predict the popularity of requests. And then in
the second phase, we designed an effective
replacement by using the Knapsack algorithm
method to save the bandwidth dramatically
[18-19].

In order to evaluate the proposed
architecture and two-phase replacement scheme,
we design and implement a simulation
environment. By our evaluation results, we only
take a little time and some disk capacity to
increase the total performance. We can save
about 1624GB bandwidth one day than that of
without cooperative proxies. And, if we adopt
our two-phase replacement, we can save more
277GB than that of several other policies.

 The remainder of this paper is organized as
follows. In Section 2, some background
knowledge will be surveyed briefly. In Section 3,
we will explain the design concept and principle
of our VOD system. In Section 4, we will
introduce the basic concept and principle of
two-phase replacement scheme in our video
proxy. In Section 5, related performance gains
will be evaluated and analyzed. Finally, some
concluding remarks will be given in Section 6.

2. Fundamental Background
Basically, the VOD systems suffer from the

problem of communication bandwidth [6].
Hence, how to resolve the problems become
more important. One of the popular ways is to
cache popular video in local proxy [1-3,5,7]. In
general, there are three architectures of the proxy,

named Proxy-at-Client, Proxy-at-Server and
Independent Proxy [2]. Independent Proxy can
share the cached data to every client and reduce
the response time for a client [2]. Thus, we will
focus on this kind of architectures. Because the
single proxy inherently limits in scalability and
robustness, research trend turns to cooperative
caching servers [2,5,15]. One of the most
popular Squid caching servers is to use the
Internet Cache Protocol (ICP) to maintain the
consistency of the objects in the caches [16].
However, ICP is not a scalable protocol because
the local caching server sends many ICP queries
to search the requested object in other siblings
when a local cache miss [15,16]. All siblings
have to receive and process the ICP query. As
the number of the cooperative proxies increases,
the overhead of ICP will becomes serious
quickly. To solve the scalability problem,
Caching and Replication for Internet Service
Performance (CRISP) was proposed [15].
Although the CRISP may reduce the number of
messages in the sibling-lookup process, it
doesn’t reduce the access latency for an object
missing in the local server. The sibling-lookup
time is still needed. Another drawback is that it
needs a failure handing process if the mapping
server is over loaded or down. Thus, a
distributed protocol was proposed [15]. This
protocol can eliminates the sibling-lookup time.
Every caching server has the directory recording
the caching entry of other caching servers. Thus,
the local proxy can immediately determine
which peer server contains the requested object
if a local miss occurs. Besides, it can also
increase the robustness. When any proxy is
down, the other proxies still know the location of
object cached in the other proxies. However, this
protocol can’t still reduce the number of local
proxy miss. Thus, in the following sections, we
will introduce our video proxy architecture with
an efficient replacement technique to increase
the total performance in some degree.

3. Design of the System Architecture
As the growth of client number, the

requirement of bandwidth usage is much more.
We can cache popular video in local proxy to
save a lot of bandwidth. According to scalability
and robustness, our video proxy is based on
cooperative proxies. It stands as a cache between
the home server and the clients. We use Chang’s
protocol to let all of the cooperated video
proxies communicate with each other efficiently
[15]. But, our protocol still has a difference to it.
In our protocol, when the requested object is not
cached in local proxy, the local proxy will get
the object from peer proxy or home server, and
supplies the object to the client, instead of saving

the object in its cache each time. It is because the
size of video is huge and we don’t know if the
new video is popular than any of the cached
video. According to the location of queried video,
there are five situations will occur, named
Directly Hit, Peer Hit, Download Peer, Home
Hit, and Download Home.

Client

Proxy
Server

Proxy
Server

Proxy
Server

Proxy
Server

1.Client choose a local proxy

2.The local proxy sent the
object to the client

Figure 1. Directly Hit

Client

Proxy
Server

Proxy
Server

Proxy
Server

Proxy
Server

1.Client choose a

2.The local proxy redirects
the client to where the

local proxy

2.The local proxy checks the peer resource table
and find the peer proxy that has queried video

video is cached

4.Client makes a new request to
peer proxy

Figure 2. Peer Hit

In Directly Hit, as shown in Figure 1, the
queried video is cached in the local video proxy.
The video proxy sends the object to the client
directly. In Peer Hit, as shown in Figure 2, if the
queried video is not cached in the local video
proxy, then the video proxy server will check his
peer resource table. The table contains the total
videos that peer proxy cached. If the table has
the video, the video proxy will redirect the client
to this peer video proxy. Then, the client will
send a new request to the peer video proxy.

Client

Proxy
Server

Proxy
Server

Proxy
Server

Proxy
Server

1.Client choose a local proxy3.Sent the data to the client

4.Register to other peer proxy

2.send the video to the local proxy

Figure 3. Download Peer

Client

Proxy
Server

Proxy
Server

Proxy
Server

Proxy
Server

1.Client choose a
2.The local proxy redirects

the client to home server local proxy

Home
Server

3.Client make a new request
to home server

4.Send the object to the client

Figure 4. Home Hit

Client

Proxy
Server

Proxy
Server

Proxy
Server

Proxy
Server

1.Client choose a3.Send the object to the local proxy

Home
Server

2.Send the object to the local proxy

client

4.Register to other proxy

Figure 5. Download Home

In Download Peer, as shown in Figure 3, if
a video is often requested in local video proxy
and this video is cached in peer video proxy, it
may be downloaded to the local video proxy
from the peer video proxy. Data placement
module will calculate the frequency of the
requested video and the total videos that are
cached in video proxy. If the value of requested
video is larger than any of videos cached in
video proxy, the requested video will be
downloaded into the local video proxy from the
peer video proxy. And then, the local video
proxy will tell other peer video proxies that it
has a new video and ask them to update their

peer resource table. By this way, the response
time is well as the bandwidth between the client
and the peer video proxy can be reduced.

In Home Hit, as shown in Figure 4, if the
video is not cached in the local video proxy or
the peer video proxies, the local video proxy will
redirected the client to home video server. The
client will send a new request to the home video
server. Then, the home video server will return
the queried video to the client. Basically,
Download Home shown in Figure 5 is similar to
the situation of Download Peer. If a video is
often requested and it is cached in home video
server, it may be downloaded to the local video
proxy from the home video server. Data
placement module will calculate the frequency
of requested video and the total videos cached in
video proxy. If the value of requested video is
larger than that of any of the videos cached in
video proxy, the requested video will be
downloaded into the local video proxy from the
home video server. And, the local video proxy
will tell other peer video proxies that it has a
new video and ask them to update their peer
resource table. Figure 6 shows the flow chart of
all kinds of operational scenario. In the next
section, we will introduce an effective
replacement scheme used in our video proxy
architecture.

4.Two Phase Replacement Scheme
There are two main design issues in our

replacement scheme. The first is when we will
trigger the replacement scheme. The second is
how to choose a victim to be replaced. In the
prior policy, the proxy will choose a least use
video as a victim [11-14]. But, it may not save
the most bandwidth. For example, the size of the
video A is 100MB and the number of access is
20. The other video B has the size with 50 MB
and its access number is 30. Based on the
traditional policies, the video B will be cached in
local proxy because its access number is larger
than that of the video A. However, the
bandwidth usage of the video A is 2000MB
which is more than that of the video B. Thus,
caching video A in local proxy is more useful to
save the network bandwidth. For this reason, the
video size is an important factor in designing our
replacement scheme.

 By taking these two main design issues
into considerations, we propose a two-phase
replacement scheme. In the first phase, we will
design a popularity comparison method to

Requested Video

Is it caching
in local proxy?

Is video's
popularity larger than
any video cached in

local proxy?

No such video Send video to
the client

Is it caching
in home proxy?

Is it caching
in peer proxy?

Download video to
local proxy

No

No

No
Yes

Yes

Yes

NoYes

Figure 6. System Flow Chat

decide when we will trigger the replacement
operation. And then in the second phase, we will
design an effective replacement method to
choose a victim. Below, we will introduce the
popularity comparison method and two-phase
replacement scheme in some detail.

4.1 Popularity Comparison Method
 The main function of the popularity
comparison method is to decide when we will
trigger the replacement method. Basically, when
a new video is coming, we will compare its
access frequency with the total cached videos. If
the access frequency of the new video is larger
than that of any other cached video, the local
proxy will go to the second phase to trigger the
replacement method. In order to obtain the
optimal performance/cost, we develop two
different modes of the popularity comparison
method. One is the non-predict mode and the
other is the predict mode.

4.1.1 Non-Predict Mode

 In this mode, if the access frequency of the
new video is larger than that of any other cached
video cached, then the process goes to the
second phase. But, we may not have the highest
performance in this mode. Given the same
example as before, because the access frequency
of the video A is not larger than that of video B,
the process won’t go to the second phase. If we
let the process go to the second phase until the
access frequency reaches 30, it will waste
100*10 bandwidth. In order to avoid this kind of
drawback, the predict mode is proposed.

4.1.2 Predict Mode

In this mode, if the access frequency of the
new video is larger than that of any other cached
video, we let the process go to the second phase
like the non-predict mode. If not, we define P as
the probability of the progress towards the
second phase for each process. In our system
design, a random number, C, will be generated
automatically to compare with P when a newly
request is coming. If C is smaller than P, second
phase will be triggered and vice versa. We can
determine the P depending on the access
frequency of the new video. If the access
frequency of newly requested video accumulates
rapidly, P will be larger. However, we do not
know the distribution of the video accesses today.
Fortunately, access patterns may not change
dramatically every day [17]. We can predict the
growth speed of video access frequency newly
requested according to its access pattern
occurred within the last time period before (e.g.
yesterday). If we record the whole access pattern
within this period, the overhead of computing is
too large. Without loss of generality, we may
take one day as a period and then partition one
day into four intervals. We record the least
access frequency in four intervals to predict the
distribution of the video access for the next
period (e.g. tomorrow). Now, we introduce a
method to predict the distribution of the video
access. We define the last period as Tp, current
period as Tc. Four last intervals are Ip1, Ip2, Ip3, Ip4
and four current intervals are Ic1, Ic2, Ic3, Ic4. And,
we also define fa(Ipi) as the least accumulation
access frequency during each last interval Ipi ,

i=1,2,3,4. Assume a video V is coming and its
access frequency is Fv. We want to know
whether the access frequency accumulation of
the video V grows rapidly. We use fa(Ipi) to be a
criterion to predict the distribution of the video
access in current period. With the time
increasing, fa(Ipi) will change in each interval.
We define Fthreshold(tc)as the criterion in each
interval given in Equation 4-1. And the detailed
algorithm is given in Appendix A.

 (4-1)

where tc is defined as the current time

When the accumulation of the video V is
increasing, Fv will approach to Fthreshold(tc) It
means that the video V has more probability to
download into proxy. Thus, a higher probability
P is assigned. Formally, the P can be defined by
the Equation 4-2.

()

()




 ≥
=

otherwise ,

 , %100

cthreshold

v

cthresholdv

tF
F

tFF
P (4-2)

4.2 The Replacement Method
The main function of the second phase is

to decide which video as a victim will be
replaced, so that we may cache the most popular
video in the local proxy. Thus, how to store
different size of videos in the limited capacity of
the local proxy to raise the performance becomes
very important. This problem is similar to the
0-1 knapsack problem [18-19] because the
capacity of the local proxy is limited, the size of
the videos and the popularity of the videos are
all variable. Since the total size is smaller than
proxy capacity, we can use the dynamic
programming technique to obtain the maximum
profit [18-19]. The main goal of the replacement
scheme is to reduce the provision of the home
server. Thus, we hope the throughput getting
from the local proxy is as much as possible. And,
the size of a video multiplied by the frequency of
the video is the network throughput. We can map
and model our scheme by using knapsack
algorithm as follows. Assume that there are n
videos, item[1] through item[n], cached in the
local proxy, and a new video item[n+1] is
coming. Let

fj = access frequency of video j, during period T

wj=size of video j,

pj= fj * wj ,

c = capacity of the local proxy,

The fn+1 is the access frequency of the new video
and the wn+1 is the size of the new video. The
value of the pn+1 is fn+1 * wn+1. By applying the
Knapsack algorithm, we can obtain the
maximum profit. We give an example here.
Assume there are 3 videos cached in the local
proxy and the capacity of the proxy is 8. There is
a new video coming. The characteristics of these
videos are shown in Table 4-1.

Table 4-1. The Characteristics of All Videos

Video (i) 1 2 3 4(new)

wI 2 1 5 7

fI 4 4 2 2

pi 8 4 10 14

By Knapsack algorithm, we can obtain the
optimal value, 22, derived from video 1, video 2,
and video 3. Because the new video 4 is not in
the result, we will not download the new video
from the home server. The detailed algorithm is
illustrated in Figure A-1 to Figure A-3.

Algorithm 1: Popularity Comparison

Input: a new request: A

number of cached videos: N

prediction mode: M

total videos cached in the proxy:

Video[1],…..,Video[N]

Fthreshold (tc): F

Output: enter /* if enter is true, go to the
second and vice versa */

Program:
switch(M){

non-predict:

 for(int i=1;i<=N;i++){

if(A.frequency>Video[i].frequency)

enter=true;

else{

enter=false;

break;

}

} /* check whether A.frequencylarger

 than all cached videos */

if(enter==true)

probability=100%;break;

predict:

if(A.frequency>F)

probability=100%;

else

 propbbility=A.frequency/F;

break;

}

Figure A-1. The Algorithm of Popularity
Comparison Method

Algorithm 2: Knapsack

Input: number of cached videos: N

 capacity of knapsack: C

profit of total videos cached in the

proxy: p[1],…,p[N]

 weight of total videos cached in the

 proxy: w[1],….,w[N]

Output: knapsack table: KC*N

 profit table: PC*N

 the coordinates of largest profit:

 (z_x,z_y)

Program:
K[0][0]=1;

K[0][1...n]=0;

for(i=1;i<n+1;i++){

for(j=0;j<c+1;j++){

if(K[i-1][j]>0){

K[i][j]=1; //not select

P[i][j]=P[i-1][j];

}

 if (j-w[i]>=0){

if(K[i-1][j-w[i]]>0){

if(K[i-1][j]==0){

K[i][j]=2; //select

 P[i][j]=P[i-1][j-w[i]]+p[i];

 }else{ //select or not

K[i][j]=3;
if(P[i-1][j]>=P[i-1][j-w[i-1]]+p[i-1])

 P[i][j]=P[i-1][j];

 else

P[i][j]=P[i-1][j-w[i-1]]+p[i-1];

 }

 if(P[i][j]>z){

z=P[i][j];

 z_x=i;

 z_y=j;

 } }

 } //end of knapsack loop

} //end of stone loop

Figure A-2. Algorithm 2: Knapsack Algorithm

Algorithm 3: Backward

Input: knapsack table: KC*N

profit table: PC*N

number of cached videos: N

the coordinates of largest profit:

(z_x,z_y)

profit of total videos cached in the proxy:

p[1],…..,p[N]

weight of total videos cached in the

proxy: w[1],….,w[N]

Output: the desired items: item[1],…item[N]

 /* if item[i] is true, the item[i] will be

 cached in the proxy. i∈ */ { }n,....,1
Program:
i=z_x;

n=j=z_y;

k=m=i-1;

while(k>0){

if(K[k][n-w[m]]==3){

if(P[k-1][n-w[m]]>=

P[k-1][n-w[m]-w[i-1]]+p[k-1])

K[k][n-w[m]]=1; //not select

else

K[i][j]=2; //select

}

 else if(K[k][n-w[m]]==1){ k--;

 item[k]=false; //not select

 }

else if(K[k][n-w[m]]==2){

item[k-1]=true; //select

n=n-w[m];

 m=k-1;

 k--;

 }

 }

Figure A-3. Algorithm 3: Backward Algorithm

When we use the knapsack algorithm as
our second phase replacement method, we can
save the most server provision. We will aznalyze
it in the following. Obviously, the total network
usage Dtotal is calculated by the Equation 4-3.

localetotal DDD += hom (4-3)

where

][*][∑=
i

frequencysizetotal ivideoivideoD

request alli ∈

 (4-4)

][*][hom ∑=

i
frequencysizee ivideoivideoD

server homerequest i ∈ (4-5)

][*][∑=

i
frequencysizelocal ivideoivideoD

server localrequest i ∈ (4-6)

The video[i]size is the size of the video
requested by the client i. The video[i]frequency is
the frequency of the video requested by the
client i. If the clients are fixed, the total network
usage Dtotal is fixed. Our purpose is to minimize
the provision of the home server Dhome.
Therefore, we have to maximize the provision of
the local server Dlocal. In our replacement scheme,
it fits the concept. Thus, the profit in our
algorithm is the video[i]size * video[i]frequency. It is
the provision of the local server Dlocal shown in
Equation 4-6. In knapsack algorithm, we always
choose the largest profit of all kinds of the
combinations, i.e. the largest Dlocal. Because the
total bandwidth usage is fixed, we can obtain the
minimum of Dhome by the Equation 4-3. Below,
we give a brief deduction for our result.

Theorem 1: Given a set of total requests,
R, and a set of requests which get data from the
local proxy, S, and |S|≦|R|. By the knapsack
algorithm, the provision from home
server

,

is minimum. In other words, we can reduce the
most bandwidth from the proxy to the remote
home.

∑=
S

i
frequencysizee ivideoivideoD][*][hom

Proof: Assume there is a Dhome’ smaller
than Dhome. Thus, there is a Dlocal’ larger than
Dlocal. But, by knapsack algorithm, we always
choose the largest Dlocal from the profit table. It
is a contradiction. Therefore, by the knapsack
algorithm, we can reduce the most bandwidth
from the proxy to the remote home.

In conclusion, we have described the
popularity comparison method as our first phase.
Its complexity is O(n). The replacement method
is our second phase. Its complexity is O(kn).
Thus, the complexity of the two-phase
replacement scheme is O(kn). Here, the k means
the capacity of the proxy and the n means the
number of the total videos cached in local proxy.
Because k is constant and the number of the total
cached videos n is small, the complexity is not
high and it is acceptable. Applying the
two-phase replacement scheme, we can save the
most bandwidth.

5. Simulation Environment and
Performance Evaluations

In this section, we will describe the
structure of our simulation environment first.
Then, the input data model employed in the
simulation environment will be explained. Lastly,
several performance evaluations are given to
illustrate the main advantages of our two-phase
replacement scheme used in the video proxy
architecture.

5.1 Overview of Our Simulation Environment
In our simulation, Request Generator

simulates user behavior to request a video. In
general, we can configure the request average
arrival time following Poisson distribution
[10,20]. Moreover, we apply Zipf distribution for
video selection [10]. Admission Control controls
the incoming requests. Every user’s requests will
be accepted until admission criteria are satisfied.
Generally, it examines if requested video is in
the server and system capability is enough for
new requests. Job Scheduling is used to control
proxy to retrieve video data from disks and
buffer them in a cycle fashion. Disk Scheduling
is used to optimize the performance of reading
data from disks by rearranging the order of
retrieval commands from job schedule module.
Data Placement acts as the file system manger of
video server. It handles the mapping from logical
address to physical address of the video blocks.
By peer resource table, we can know that peer
servers cache what videos so as to search the
peer servers quickly. Statistical Table records the

characteristics of every video such as access
frequency etc. When the knapsack algorithm is
triggered, we can obtain the characteristics by
the table. All video proxies can communicate
with each other by the communicative stub
module. When a video proxy downloaded a new
video from the remote home server, and then it
will tell other video proxies that it has a new
video by this module. And, the other video
proxies will update their peer resource table. The
whole structure is shown in Figure 7. In the
following, we will describe the video data layout,
request model and simulation parameters before
introducing our evaluation vectors.

AdmissionControlResourceManager

JobScheduler

RequestGenerator

Replacement

DataPlacement

Diskscheduling

Data

CommunicativeStub

Statistictable

Message

Figure 7. Simulation Environment

5.2 Video Data and Input Model
 Block size B is default to 94KB and server
round τ is about 250ms [10]. Given the rotation
latency (trot), the average seek time (tseek), and the
transfer rate (rdisk) of disks, we can employ
SCAN policy of disk scheduling and the disk
capability M be deduced from Equation 5-1,
where n denotes the number of requests
[10,21-22].

{ }τ≤++= seekdiskrot trBtnnM *2)/(*max (5-1)

The number of videos is 1000. In order to
model different size of videos, the content size is
from 600MB to 1800MB. To model different
scales of our proxy, the capacity of proxy is from
40GB to 640GB. Similarly, to model different
scales of cooperative proxies, the proxy number
is from 1 to 5 [15]. The network delay in LAN is
1ms and in WAN is 200ms [15]. Request
generation is modeled as Poisson arrival process
with Zipf distribution of video selection [10,20].

5.3 Preliminary Performance Evaluations
 In the following subsections, we will
assess the merits of our two-phase replacement
scheme by the measurement of hit rate,
bandwidth reduction, average network delay and
average CPU time. We will evaluate our two

modes and compare it with LRU, Size-max
(always replace the victim which has maximum
size), Size-min (always replace the victim which
has minimum size) techniques. At last, we will
evaluate our proposed cooperative video proxies
architecture under various numbers of proxies.

5.3.1 Evaluation of Two Modes

0

10

20

30

40

50

60

70

30%-70% 20%-80% 10%-90%

Zipf

H
it

 r
at

e
(%

)

Non-predict Mode

Predict Mode

Figure 8. Hit rate v.s. Zipf

Figure 8 shows the change of hit rate
under different Zipf distribution, while C=80GB.
The more serious access skew is, the higher hit
rate has. We can find that the access patterns are
more skew, the number of hot videos is smaller
so that the more clients can get videos from local
proxy. Thus, it will have higher hit rate. Besides,
the predict mode has higher hit rate than that of
non-predict mode. Because even the access
frequency of every video cached in local proxy
is larger than that of the new video, the new
video still has a chance to run Knapsack
algorithm. However, we find that the hit rates of
predict mode and non-predict mode are very
closed

5.3.2 Comparisons with Other Policies.

0

20

40

60

80

100

40G 80G 160G 320G 640G

Proxy capacity

H
it

 r
at

e

Two-Phase LRU
Size-Max Size-Min

Figure 9. Hit rate v.s. Proxy capacity

0

200

400

600

800

1000

1200

1400

1600

40G 80G 160G 320G 640G

Proxy C apacity

B
an

dw
id

th
 R

ed
uc

ti
on

(G
B

)

T w o-Phase L RU

Size-M ax Size-M in

Figure10.Bandwidth Reduction v.s. Proxy
Capacity

trates the

1800

Figure 9 illus proxy hit rate as
funct

ussed previously, a good
replac

Av age Network Delay Time =

(5-2)

Figure 11 shows that the average network delay

the penalty of the
CPU

ion of the proxy capacity, for Two-Phase,
LRU, Size-max, Size-min policies. The hit rate
of our two-phase replacement is higher than that
of other policies. And, we notice that as the
proxy capacity grows, the performance
difference between our policy and other policies
becomes larger as well. Because when the
number of cached videos grows, the probability
to find unused videos in the proxy increases. It
may increase the probability of overwriting a hot
video in other policies. This situation hardly
occurs in our two-phase replacement because we
will check whether the popularity of the new
video is larger than that of any cached video
before replacing it.

As we disc
ement policy is not only increasing hit rate

but also reducing network bandwidth. Figure 10
shows the proxy bandwidth reduction in one day
as function of the proxy capacity, for Two-Phase,
LRU, Size-min, Size-max policies. When the
proxy capacity reaches 640GB, we can save
about 277GB network bandwidth. Comparing
our policy with other policies, we find that
although hit rate doesn’t increase obviously but
bandwidth is saved so much. This is because the
bandwidth reduction Dlocal is calculated by
Videofrequency * Videosize. We have the higher
bandwidth reduction due to considering the size
of video in our scheme. Thus, the size of video is
an important factor to design replacement policy.

er

Hit rate*DLAN + Miss rate*DWAN

calculated by Equation 5-2. We can find that the
two-phase scheme has the least average network
delay because the two-phase scheme has higher
hit rate so that the more number of clients can

get data in the local proxy. Thus, the average
network delay will decrease.

Although our method has higher
performance, it may cause

 time shown in Figure 12. When proxy
capacity increases, the knapsack table grows so
that the computation overhead will grow.
However, as the capability of CPU is more
powerful, the CPU time is less. It will not be a
problem. Contrarily, to solve the problem of
bandwidth or network delay time will be more
significant.

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

40G 80G 160G 320G 640G

Proxy Capacity

C
P

U
 T

im
e(

s)

Two-Phase LRU
Size-Max Size-Min

 Figure 11. Average Network Delay Time

5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.

40G 80G 160G 320G 640G

Proxy C apacity

N
et

w
or

k
D

el
ay

(s
)

T w o-Phase L R U Size-M ax S ize-M in

Figure 12. CPU Time

5.3.3 Number o roxies
s

at
the t

f Cooperative Video P
 Figure 13 shows that the hit rate increase

as the number of proxy grows. We can find th
otal hit rate has more improvement as the

number of proxy is from one to four. While the
number of cooperative proxies is from four to
five, the improvement is limited. It is because
that as the number of cooperative proxies grows,
the variation of videos cached in cooperative
proxies is limited. Thus, we suggest that the
number of cooperative proxies within 5 is
enough to design efficient cooperative video
proxies.

0

5

10

15

20

25

30

35

1 2 3 4 5

Number of Proxies

hi
t

ra
te

 (
%

)

Figure 13. Hit Rate v.s. Number of Proxies

6.Concluding Remarks
With rapidly progress in information

communication, the need of bandwidth is more
and more. How to reduce the network bandwidth
becomes very important. In this paper, we have
proposed cooperative video proxies with a
two-phase replacement scheme to save a lot of
bandwidth so as to lighten the network load. We
also build a simulation environment to evaluate
the performance of our method. From our
evaluation results, we will save more
147~1624GB bandwidth one day than without
cooperative proxies under the number of proxies
with one to four. If adopt our two-phase
replacement scheme, we may save more
23~277GB than that of other policies under
proxy capacity with 40GB to 640GB. Besides,
the performance of predict mode is similar to
non-predict mode. But, it needs more overhead
of computing than non-predict mode. Thus, we
suggest that the non-predict mode is more
cost-efficiency than predict mode.

In the future, some significant issues need
further exploration. In our video proxy, we cache
a whole video so as to cache limited number of
videos. In order to increase the number of
cached videos, we can cache partial videos in
local proxy. Thus, how to partition a video into
several video segments and how to place these
video segments into video proxies are interesting
topics. We might partition a video into different
number of segments according to its popularity.
If the video is hotter, we place more number of
video segments into the local proxy so as to
increase the hit rate of the proxy. In the other
aspect, in our replacement scheme, if the number
of cached videos increases, the size of the
knapsack table will become larger. Thus, how to
reduce the knapsack table still is an important
issue. We suggest that the videos can be
classified according to their size. When a new
video is coming, we will find its classification of
videos in the proxy. From the members of this

classification, we will choose one as a victim to
be replaced by the new video. Because the
number of the members is small, the size of the
table can be reduced.

References
[1] Meira, W., Jr., Fonseca, E., Murta, C., and

Almeida, V., “Analyzing Performance of
Cache Server Hierarchies”, Proc. of XVIII
International Conference of the Chilean
Society on Computer Science, pp. 113 –121,
1998.

[2] Y.B. Lee, “Parallel Video Servers : A
Tutorial”, IEEE Multimedia No. 5, Issue 2,
pp. 20 –28, April-June 1998.

[3] A.; Das, Sun-Euy Kim and C.R., “Analyzing
Cache Performance for Video Servers”,
Proceedings of the 1998 ICPP Workshops on
Sivasubramaniam, Architectural and OS
Support for Multimedia
Applications/Flexible Communication
Systems/Wireless Networks and Mobile
Computing, pp.38 –47, 1998.

[4] Chiu, Y.M. and Yeung, K.H., “Partial video
sequence caching scheme for VOD systems
with heterogeneous clients”, Proc. Of 13th
International Conference on Data
Engineering, pp.323 –332, 1997.

[5] Radhika Malpani, Jacob Lorch, and
David A. Berger, “Making World Wide
Web Caching Servers Cooperate”, available
at http://www.bmrc.berkeley.edu/research

/publication/1995/138/paper-59.html.

[6] Hua, K.A.; Sheu, S.; Wang, J.Z, “Earthworm:
A Network Memory Management Technique
for Large-Scale”, Proceedings of IEEE
Volume: 3, pp.990 –997, 1997.

[7] Sen, S. and Rexford, J.; Towsley, D., “Proxy
Prefix Caching for Multimedia Streams”,
Proceedings. IEEE Volume: 3, pp.1310
-1319 vol.3, 1999.

[8] Park Kyeongho, Yanghee Choi and Chong
Sang Kim, “Scheduling of storage and cache
servers for replicated multimedia data”, High
Performance Computing on the Information
Superhighway, pp.484 –487, 1997.

[9] Michele Colajanni , P.S.Yu , and Daniel
M.Dias, “Scheduling Algorithms for
Distributed Web Servers”, Proc. of
International Conference on Distributed
Computing Systems, pp.169-176, 1997.

[10] Y.Z. Hou, An Effective Scheduling Policy in
Distributed Video Server Environment,
Master Thesis, CSIE, NCTU, June, 1999.

[11] Tatarinov, I., Rousskov, A.and Soloviev, V.,
“Static Caching in Web Servers, Computer
Communication and Networks”, Proc. of
the Sixth International Conference on
Computer Communications and Networks,
pp.410 –417, 1997.

[12] Sonah, B. and Ito, M.B. Modeling, “New
Adaptive Object Replacement Policy for
Video-On-Demand Systems”, Proc. of the
Sixth International Symposium on Analysis
and Simulation Computer and
Telecommunication Systems, pp.13-18,
1998.

[13] Charu C. Aggarwal, Joel L. Wolf and Philip
S. Yu, On Caching Policies for Web
Objects, IBM Research Report, RC20619,
November, 1996.

[14] Charu C. Aggarwal and philip S.Yu, On
Disk Caching of web objects in proxy
servers, IBM Research Report, RC20636,
November, 1996.

[15] Y. Chang, K.M. Yu, C.C. Wang, and C.N.
Po, “An Efficient Cache Coherence
Protocol for Cooperative WWW Caching”,
available at
http://www.mi.chu.edu.tw/~ykchang/www-
research.html.

[16] Wessels, D. and Claffy, K., Internet Cache
Protocol (ICP), Technical Report

Internet-Draft, IETE Network Working
Group, Version 2,April 1997.

[17] W.S. Huang, An Effective Data Placement
Scheme For Supporting Fault-Tolerance in
Distributed Video Server
Environment,Master Thesis, CSIE, NCTU,
June, 1999.

[18] David K. Smith, Dynamic Programming,
pp.37-54, 1991.

[19] Silvano Martello and Paolo Toth, Knapsack
Problem, pp.36-45, 1990.

[20] A. Dan, D. Sitaram and P. Shahabuddin,
“Dynamic Batching Policies for An
On-Demand Video Server”, Multimedia
Systems, Vol. 4, No.3, pp.112-121, 1996.

[21] B. Ozden, R. Rastogi and A. Silberschatz,
“Disk String in video Server Environments”,
IEEE international Conf. On Multimedia
Computer and Systems, pp.147-154, June
1995.

[22] J. Gafsi and E. Biersack, “Data String and
Reliability Aspects in Distributed Video
Servers”, Cluster Computing: Networks,
Software Tools and Application, Feb,
pp.35-48, 1999.

[23]
http://www.maxtor.com/techdocs/highcapac
ity.html

http://www.maxtor.com/techdocs/highcapacity.html
http://www.maxtor.com/techdocs/highcapacity.html

