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Abstract 

Due to the advances in computer and 
multimedia techniques, VOD is more popular 
than before. However, the bandwidth is still a 
bottleneck in the VOD environment. In order to 
resolve the problem, we proposed a video proxy 
architecture in this paper. A good video proxy 
should have higher hit rate. Thus, we design an 
efficient data replacement scheme by using 
Knapsack to increase total system performance. 
Besides, we also provided a prediction method 
to predict the distribution of access patterns. By 
the method, we can decide which data could be 
put into the video proxy. According to our 
simulation and evaluation, our method can 
improve hit rate much as well as save a lot of 
bandwidth. The detail will be described in the 
literature. 
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1. Introduction 
Recent advancement in multimedia has 

brought about new applications which allow us 
to exchange information efficiently [1-3]. 
Among these applications, video-on-demand 
(VOD) is an interesting application [4]. Our 
main purpose is to improve VOD architecture 
and then reduce the bandwidth usage. Caching 
popular video in local proxy is one of the most 
attractive ways to resolve this problem [1-3,5,7]. 
In general, there are three architectures in 
accordance with the location of the proxy [2]. 
Among them, the independent proxy structure is 
more interesting because it can share the cached 
data to every client and reduce the response time 
for a client. In this paper, we propose a 
cooperative video proxies architecture to save 
the bandwidth more. No doubt, how to increase 
hit rate in our architecture is also important. 

Many factors can increase hit rate, such as job 
scheduling [8-10], data placement [4,7], data 
replacement [11-14], and so on. Several 
replacement policies have been presented 
[11-14]. However, they aren’t suitable in VOD 
because of the characteristics of video data. Thus, 
we proposed a two-phase replacement scheme in 
our cooperative video proxies. In the first phase, 
we will design a popularity comparison method 
to decide when we will trigger the replacement 
operation. Here, we propose a prediction method 
to predict the popularity of requests. And then in 
the second phase, we designed an effective 
replacement by using the Knapsack algorithm 
method to save the bandwidth dramatically 
[18-19]. 

In order to evaluate the proposed 
architecture and two-phase replacement scheme, 
we design and implement a simulation 
environment. By our evaluation results, we only 
take a little time and some disk capacity to 
increase the total performance. We can save 
about 1624GB bandwidth one day than that of 
without cooperative proxies. And, if we adopt 
our two-phase replacement, we can save more 
277GB than that of several other policies. 

 The remainder of this paper is organized as 
follows. In Section 2, some background 
knowledge will be surveyed briefly. In Section 3, 
we will explain the design concept and principle 
of our VOD system. In Section 4, we will 
introduce the basic concept and principle of 
two-phase replacement scheme in our video 
proxy. In Section 5, related performance gains 
will be evaluated and analyzed. Finally, some 
concluding remarks will be given in Section 6. 

 

2. Fundamental Background 
Basically, the VOD systems suffer from the 

problem of communication bandwidth [6]. 
Hence, how to resolve the problems become 
more important. One of the popular ways is to 
cache popular video in local proxy [1-3,5,7]. In 
general, there are three architectures of the proxy, 

 



  

named Proxy-at-Client, Proxy-at-Server and 
Independent Proxy [2]. Independent Proxy can 
share the cached data to every client and reduce 
the response time for a client [2]. Thus, we will 
focus on this kind of architectures. Because the 
single proxy inherently limits in scalability and 
robustness, research trend turns to cooperative 
caching servers [2,5,15]. One of the most 
popular Squid caching servers is to use the 
Internet Cache Protocol (ICP) to maintain the 
consistency of the objects in the caches [16]. 
However, ICP is not a scalable protocol because 
the local caching server sends many ICP queries 
to search the requested object in other siblings 
when a local cache miss [15,16]. All siblings 
have to receive and process the ICP query. As 
the number of the cooperative proxies increases, 
the overhead of ICP will becomes serious 
quickly. To solve the scalability problem, 
Caching and Replication for Internet Service 
Performance (CRISP) was proposed [15]. 
Although the CRISP may reduce the number of 
messages in the sibling-lookup process, it 
doesn’t reduce the access latency for an object 
missing in the local server. The sibling-lookup 
time is still needed. Another drawback is that it 
needs a failure handing process if the mapping 
server is over loaded or down. Thus, a 
distributed protocol was proposed [15]. This 
protocol can eliminates the sibling-lookup time. 
Every caching server has the directory recording 
the caching entry of other caching servers. Thus, 
the local proxy can immediately determine 
which peer server contains the requested object 
if a local miss occurs. Besides, it can also 
increase the robustness. When any proxy is 
down, the other proxies still know the location of 
object cached in the other proxies. However, this 
protocol can’t still reduce the number of local 
proxy miss. Thus, in the following sections, we 
will introduce our video proxy architecture with 
an efficient replacement technique to increase 
the total performance in some degree. 

 

3. Design of the System Architecture 
As the growth of client number, the 

requirement of bandwidth usage is much more. 
We can cache popular video in local proxy to 
save a lot of bandwidth. According to scalability 
and robustness, our video proxy is based on 
cooperative proxies. It stands as a cache between 
the home server and the clients. We use Chang’s 
protocol to let all of the cooperated video 
proxies communicate with each other efficiently 
[15]. But, our protocol still has a difference to it. 
In our protocol, when the requested object is not 
cached in local proxy, the local proxy will get 
the object from peer proxy or home server, and 
supplies the object to the client, instead of saving 

the object in its cache each time. It is because the 
size of video is huge and we don’t know if the 
new video is popular than any of the cached 
video. According to the location of queried video, 
there are five situations will occur, named 
Directly Hit, Peer Hit, Download Peer, Home 
Hit, and Download Home. 
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In Directly Hit, as shown in Figure 1, the 
queried video is cached in the local video proxy. 
The video proxy sends the object to the client 
directly. In Peer Hit, as shown in Figure 2, if the 
queried video is not cached in the local video 
proxy, then the video proxy server will check his 
peer resource table. The table contains the total 
videos that peer proxy cached. If the table has 
the video, the video proxy will redirect the client 
to this peer video proxy. Then, the client will 
send a new request to the peer video proxy.  
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Figure 4. Home Hit 
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Figure 5. Download Home 

 

In Download Peer, as shown in Figure 3, if 
a video is often requested in local video proxy 
and this video is cached in peer video proxy, it 
may be downloaded to the local video proxy 
from the peer video proxy. Data placement 
module will calculate the frequency of the 
requested video and the total videos that are 
cached in video proxy. If the value of requested 
video is larger than any of videos cached in 
video proxy, the requested video will be 
downloaded into the local video proxy from the 
peer video proxy. And then, the local video 
proxy will tell other peer video proxies that it 
has a new video and ask them to update their 

peer resource table. By this way, the response 
time is well as the bandwidth between the client 
and the peer video proxy can be reduced. 

In Home Hit, as shown in Figure 4, if the 
video is not cached in the local video proxy or 
the peer video proxies, the local video proxy will 
redirected the client to home video server. The 
client will send a new request to the home video 
server. Then, the home video server will return 
the queried video to the client. Basically, 
Download Home shown in Figure 5 is similar to 
the situation of Download Peer. If a video is 
often requested and it is cached in home video 
server, it may be downloaded to the local video 
proxy from the home video server. Data 
placement module will calculate the frequency 
of requested video and the total videos cached in 
video proxy. If the value of requested video is 
larger than that of any of the videos cached in 
video proxy, the requested video will be 
downloaded into the local video proxy from the 
home video server. And, the local video proxy 
will tell other peer video proxies that it has a 
new video and ask them to update their peer 
resource table. Figure 6 shows the flow chart of 
all kinds of operational scenario. In the next 
section, we will introduce an effective 
replacement scheme used in our video proxy 
architecture. 

 

4.Two Phase Replacement Scheme 
There are two main design issues in our 

replacement scheme. The first is when we will 
trigger the replacement scheme. The second is 
how to choose a victim to be replaced. In the 
prior policy, the proxy will choose a least use 
video as a victim [11-14]. But, it may not save 
the most bandwidth. For example, the size of the 
video A is 100MB and the number of access is 
20. The other video B has the size with 50 MB 
and its access number is 30. Based on the 
traditional policies, the video B will be cached in 
local proxy because its access number is larger 
than that of the video A. However, the 
bandwidth usage of the video A is 2000MB 
which is more than that of the video B. Thus, 
caching video A in local proxy is more useful to 
save the network bandwidth. For this reason, the 
video size is an important factor in designing our 
replacement scheme. 

 By taking these two main design issues 
into considerations, we propose a two-phase 
replacement scheme. In the first phase, we will 
design a popularity comparison method to 
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decide when we will trigger the replacement 
operation. And then in the second phase, we will 
design an effective replacement method to 
choose a victim. Below, we will introduce the 
popularity comparison method and two-phase 
replacement scheme in some detail. 

4.1 Popularity Comparison Method 
 The main function of the popularity 
comparison method is to decide when we will 
trigger the replacement method. Basically, when 
a new video is coming, we will compare its 
access frequency with the total cached videos. If 
the access frequency of the new video is larger 
than that of any other cached video, the local 
proxy will go to the second phase to trigger the 
replacement method. In order to obtain the 
optimal performance/cost, we develop two 
different modes of the popularity comparison 
method. One is the non-predict mode and the 
other is the predict mode.  

 

4.1.1 Non-Predict Mode 

 In this mode, if the access frequency of the 
new video is larger than that of any other cached 
video cached, then the process goes to the 
second phase. But, we may not have the highest 
performance in this mode. Given the same 
example as before, because the access frequency 
of the video A is not larger than that of video B, 
the process won’t go to the second phase. If we 
let the process go to the second phase until the 
access frequency reaches 30, it will waste 
100*10 bandwidth. In order to avoid this kind of 
drawback, the predict mode is proposed. 

4.1.2 Predict Mode 

In this mode, if the access frequency of the 
new video is larger than that of any other cached 
video, we let the process go to the second phase 
like the non-predict mode. If not, we define P as 
the probability of the progress towards the 
second phase for each process. In our system 
design, a random number, C, will be generated 
automatically to compare with P when a newly 
request is coming. If C is smaller than P, second 
phase will be triggered and vice versa. We can 
determine the P depending on the access 
frequency of the new video. If the access 
frequency of newly requested video accumulates 
rapidly, P will be larger. However, we do not 
know the distribution of the video accesses today. 
Fortunately, access patterns may not change 
dramatically every day [17]. We can predict the 
growth speed of video access frequency newly 
requested according to its access pattern 
occurred within the last time period before (e.g. 
yesterday). If we record the whole access pattern 
within this period, the overhead of computing is 
too large. Without loss of generality, we may 
take one day as a period and then partition one 
day into four intervals. We record the least 
access frequency in four intervals to predict the 
distribution of the video access for the next 
period (e.g. tomorrow). Now, we introduce a 
method to predict the distribution of the video 
access. We define the last period as Tp, current 
period as Tc. Four last intervals are Ip1, Ip2, Ip3, Ip4 
and four current intervals are Ic1, Ic2, Ic3, Ic4. And, 
we also define fa(Ipi) as the least accumulation 
access frequency during each last interval Ipi , 

 



  

i=1,2,3,4. Assume a video V is coming and its 
access frequency is Fv. We want to know 
whether the access frequency accumulation of 
the video V grows rapidly. We use fa(Ipi) to be a 
criterion to predict the distribution of the video 
access in current period. With the time 
increasing, fa(Ipi) will change in each interval. 
We define Fthreshold(tc)as the criterion in each 
interval given in Equation 4-1. And the detailed 
algorithm is given in Appendix A. 

 (4-1) 

where tc is defined as the current time 

When the accumulation of the video V is 
increasing, Fv will approach to Fthreshold(tc) It 
means that the video V has more probability to 
download into proxy. Thus, a higher probability 
P is assigned. Formally, the P can be defined by 
the Equation 4-2. 
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4.2 The Replacement Method 
The main function of the second phase is 

to decide which video as a victim will be 
replaced, so that we may cache the most popular 
video in the local proxy. Thus, how to store 
different size of videos in the limited capacity of 
the local proxy to raise the performance becomes 
very important. This problem is similar to the 
0-1 knapsack problem [18-19] because the 
capacity of the local proxy is limited, the size of 
the videos and the popularity of the videos are 
all variable. Since the total size is smaller than 
proxy capacity, we can use the dynamic 
programming technique to obtain the maximum 
profit [18-19]. The main goal of the replacement 
scheme is to reduce the provision of the home 
server. Thus, we hope the throughput getting 
from the local proxy is as much as possible. And, 
the size of a video multiplied by the frequency of 
the video is the network throughput. We can map 
and model our scheme by using knapsack 
algorithm as follows. Assume that there are n 
videos, item[1] through item[n], cached in the 
local proxy, and a new video item[n+1] is 
coming. Let 

fj = access frequency of video j, during period T 

wj=size of video j, 

pj= fj * wj , 

c = capacity of the local proxy, 

 

The fn+1 is the access frequency of the new video 
and the wn+1 is the size of the new video. The 
value of the pn+1 is fn+1 * wn+1. By applying the 
Knapsack algorithm, we can obtain the 
maximum profit. We give an example here. 
Assume there are 3 videos cached in the local 
proxy and the capacity of the proxy is 8. There is 
a new video coming. The characteristics of these 
videos are shown in Table 4-1. 

 

Table 4-1. The Characteristics of All Videos 

Video (i) 1 2 3 4(new) 

wI 2 1 5 7 

fI 4 4 2 2 

pi 8 4 10 14 

  

By Knapsack algorithm, we can obtain the 
optimal value, 22, derived from video 1, video 2, 
and video 3. Because the new video 4 is not in 
the result, we will not download the new video 
from the home server. The detailed algorithm is 
illustrated in Figure A-1 to Figure A-3. 

Algorithm 1: Popularity Comparison 

Input: a new request: A 

number of cached videos: N 

prediction mode: M 

total videos cached in the proxy:  

Video[1],…..,Video[N] 

Fthreshold (tc): F 

Output: enter     /* if enter is true, go to the 
second and vice versa */ 

Program:  
switch(M){  

non-predict: 

  for(int i=1;i<=N;i++){ 

if(A.frequency>Video[i].frequency)  

enter=true; 

else{ 

enter=false; 

break; 

 



  

} 

}  /* check whether A.frequencylarger 

            than all cached videos */ 

if(enter==true)   

probability=100%;break;  

predict:   

if(A.frequency>F) 

probability=100%;  

else 

  propbbility=A.frequency/F; 

break; 

}  

Figure A-1. The Algorithm of Popularity 
Comparison Method 

Algorithm 2: Knapsack 

Input: number of cached videos: N 

  capacity of knapsack: C 

profit of total videos cached in the 

proxy: p[1],…,p[N] 

      weight of total videos cached in the 

      proxy: w[1],….,w[N] 

Output: knapsack table: KC*N 

   profit table: PC*N 

       the coordinates of largest profit: 

       (z_x,z_y) 

Program:  
K[0][0]=1; 

K[0][1...n]=0; 

for(i=1;i<n+1;i++){    

for(j=0;j<c+1;j++){       

if(K[i-1][j]>0){       

K[i][j]=1;          //not select 

P[i][j]=P[i-1][j];     

} 

    if (j-w[i]>=0){ 

if(K[i-1][j-w[i]]>0){  

if(K[i-1][j]==0){    

K[i][j]=2;    //select 

          P[i][j]=P[i-1][j-w[i]]+p[i];    

        }else{    //select or not 

K[i][j]=3; 
if(P[i-1][j]>=P[i-1][j-w[i-1]]+p[i-1]) 

     P[i][j]=P[i-1][j]; 

          else  

P[i][j]=P[i-1][j-w[i-1]]+p[i-1];                     

        } 

        if(P[i][j]>z){  

z=P[i][j]; 

  z_x=i; 

          z_y=j; 

  } } 

   }             //end of knapsack loop 

}     //end of stone loop 

Figure A-2. Algorithm 2: Knapsack Algorithm 

Algorithm 3: Backward 

Input: knapsack table: KC*N 

profit table: PC*N 

number of cached videos: N 

the coordinates of largest profit: 

(z_x,z_y) 

profit of total videos cached in the proxy: 

p[1],…..,p[N] 

weight of total videos cached in the 

proxy: w[1],….,w[N] 

Output: the desired items: item[1],…item[N] 

      /* if item[i] is true, the item[i] will be 

 cached in the proxy.  i∈ */ { }n,....,1
Program:  
i=z_x; 

n=j=z_y; 

k=m=i-1; 

while(k>0){ 

if(K[k][n-w[m]]==3){ 

if(P[k-1][n-w[m]]>= 

P[k-1][n-w[m]-w[i-1]]+p[k-1])  

K[k][n-w[m]]=1;  //not select 

else  

K[i][j]=2;             //select                         

} 

  else if(K[k][n-w[m]]==1){  k--; 

 item[k]=false;   //not select 

  } 

else if(K[k][n-w[m]]==2){ 

 



  

item[k-1]=true;   //select 

n=n-w[m];    

    m=k-1; 

    k--; 

   } 

 } 

Figure A-3. Algorithm 3: Backward Algorithm 

When we use the knapsack algorithm as 
our second phase replacement method, we can 
save the most server provision. We will aznalyze 
it in the following. Obviously, the total network 
usage Dtotal is calculated by the Equation 4-3. 

localetotal DDD += hom       (4-3) 

where 

 ][*][  ∑=
i

frequencysizetotal ivideoivideoD

request alli ∈

 

    (4-4) 

   
  ][*][hom ∑=

i
frequencysizee ivideoivideoD

server  homerequest  i ∈  (4-5) 

   
  ][*][  ∑=

i
frequencysizelocal ivideoivideoD

server  localrequest  i ∈  (4-6) 

The video[i]size is the size of the video 
requested by the client i. The video[i]frequency is 
the frequency of the video requested by the 
client i. If the clients are fixed, the total network 
usage Dtotal is fixed. Our purpose is to minimize 
the provision of the home server Dhome. 
Therefore, we have to maximize the provision of 
the local server Dlocal. In our replacement scheme, 
it fits the concept. Thus, the profit in our 
algorithm is the video[i]size * video[i]frequency. It is 
the provision of the local server Dlocal shown in 
Equation 4-6. In knapsack algorithm, we always 
choose the largest profit of all kinds of the 
combinations, i.e. the largest Dlocal. Because the 
total bandwidth usage is fixed, we can obtain the 
minimum of Dhome by the Equation 4-3. Below, 
we give a brief deduction for our result. 

Theorem 1: Given a set of total requests, 
R, and a set of requests which get data from the 
local proxy, S, and |S|≦|R|. By the knapsack 
algorithm, the provision from home 
server

, 

is minimum. In other words, we can reduce the 
most bandwidth from the proxy to the remote 
home. 

∑=
S

i
frequencysizee ivideoivideoD ][*][  hom

Proof: Assume there is a Dhome’ smaller 
than Dhome. Thus, there is a Dlocal’ larger than 
Dlocal. But, by knapsack algorithm, we always 
choose the largest Dlocal from the profit table. It 
is a contradiction. Therefore, by the knapsack 
algorithm, we can reduce the most bandwidth 
from the proxy to the remote home.  

In conclusion, we have described the 
popularity comparison method as our first phase. 
Its complexity is O(n). The replacement method 
is our second phase. Its complexity is O(kn). 
Thus, the complexity of the two-phase 
replacement scheme is O(kn). Here, the k means 
the capacity of the proxy and the n means the 
number of the total videos cached in local proxy. 
Because k is constant and the number of the total 
cached videos n is small, the complexity is not 
high and it is acceptable. Applying the 
two-phase replacement scheme, we can save the 
most bandwidth. 

 

5. Simulation Environment and 
Performance Evaluations 

In this section, we will describe the 
structure of our simulation environment first. 
Then, the input data model employed in the 
simulation environment will be explained. Lastly, 
several performance evaluations are given to 
illustrate the main advantages of our two-phase 
replacement scheme used in the video proxy 
architecture. 

5.1 Overview of Our Simulation Environment 
In our simulation, Request Generator 

simulates user behavior to request a video. In 
general, we can configure the request average 
arrival time following Poisson distribution 
[10,20]. Moreover, we apply Zipf distribution for 
video selection [10]. Admission Control controls 
the incoming requests. Every user’s requests will 
be accepted until admission criteria are satisfied. 
Generally, it examines if requested video is in 
the server and system capability is enough for 
new requests. Job Scheduling is used to control 
proxy to retrieve video data from disks and 
buffer them in a cycle fashion. Disk Scheduling 
is used to optimize the performance of reading 
data from disks by rearranging the order of 
retrieval commands from job schedule module. 
Data Placement acts as the file system manger of 
video server. It handles the mapping from logical 
address to physical address of the video blocks. 
By peer resource table, we can know that peer 
servers cache what videos so as to search the 
peer servers quickly. Statistical Table records the 

 



  

characteristics of every video such as access 
frequency etc. When the knapsack algorithm is 
triggered, we can obtain the characteristics by 
the table. All video proxies can communicate 
with each other by the communicative stub 
module. When a video proxy downloaded a new 
video from the remote home server, and then it 
will tell other video proxies that it has a new 
video by this module. And, the other video 
proxies will update their peer resource table. The 
whole structure is shown in Figure 7. In the 
following, we will describe the video data layout, 
request model and simulation parameters before 
introducing our evaluation vectors. 

AdmissionControlResourceManager

JobScheduler

RequestGenerator

Replacement

DataPlacement

Diskscheduling

Data

CommunicativeStub

Statistictable

Message

 
Figure 7. Simulation Environment 

5.2 Video Data and Input Model 
 Block size B is default to 94KB and server 
round τ is about 250ms [10]. Given the rotation 
latency (trot), the average seek time (tseek), and the 
transfer rate (rdisk) of disks, we can employ 
SCAN policy of disk scheduling and the disk 
capability M be deduced from Equation 5-1, 
where n denotes the number of requests 
[10,21-22]. 

{ }τ≤++= seekdiskrot trBtnnM *2)/(*max   (5-1) 

The number of videos is 1000. In order to 
model different size of videos, the content size is 
from 600MB to 1800MB. To model different 
scales of our proxy, the capacity of proxy is from 
40GB to 640GB. Similarly, to model different 
scales of cooperative proxies, the proxy number 
is from 1 to 5 [15]. The network delay in LAN is 
1ms and in WAN is 200ms [15]. Request 
generation is modeled as Poisson arrival process 
with Zipf distribution of video selection [10,20].  

5.3 Preliminary Performance Evaluations  
 In the following subsections, we will 
assess the merits of our two-phase replacement 
scheme by the measurement of hit rate, 
bandwidth reduction, average network delay and 
average CPU time. We will evaluate our two 

modes and compare it with LRU, Size-max 
(always replace the victim which has maximum 
size), Size-min (always replace the victim which 
has minimum size) techniques. At last, we will 
evaluate our proposed cooperative video proxies 
architecture under various numbers of proxies.  

5.3.1 Evaluation of Two Modes 
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Figure 8. Hit rate v.s. Zipf 

Figure 8 shows the change of hit rate 
under different Zipf distribution, while C=80GB. 
The more serious access skew is, the higher hit 
rate has. We can find that the access patterns are 
more skew, the number of hot videos is smaller 
so that the more clients can get videos from local 
proxy. Thus, it will have higher hit rate. Besides, 
the predict mode has higher hit rate than that of 
non-predict mode. Because even the access 
frequency of every video cached in local proxy 
is larger than that of the new video, the new 
video still has a chance to run Knapsack 
algorithm. However, we find that the hit rates of 
predict mode and non-predict mode are very 
closed 

5.3.2 Comparisons with Other Policies. 
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Figure 11 shows that the average network delay 

the penalty of the 
CPU

ion of the proxy capacity, for Two-Phase, 
LRU, Size-max, Size-min policies. The hit rate 
of our two-phase replacement is higher than that 
of other policies. And, we notice that as the 
proxy capacity grows, the performance 
difference between our policy and other policies 
becomes larger as well. Because when the 
number of cached videos grows, the probability 
to find unused videos in the proxy increases. It 
may increase the probability of overwriting a hot 
video in other policies. This situation hardly 
occurs in our two-phase replacement because we 
will check whether the popularity of the new 
video is larger than that of any cached video 
before replacing it. 

As we disc
ement policy is not only increasing hit rate 

but also reducing network bandwidth. Figure 10 
shows the proxy bandwidth reduction in one day 
as function of the proxy capacity, for Two-Phase, 
LRU, Size-min, Size-max policies. When the 
proxy capacity reaches 640GB, we can save 
about 277GB network bandwidth. Comparing 
our policy with other policies, we find that 
although hit rate doesn’t increase obviously but 
bandwidth is saved so much. This is because the 
bandwidth reduction Dlocal is calculated by 
Videofrequency * Videosize. We have the higher 
bandwidth reduction due to considering the size 
of video in our scheme. Thus, the size of video is 
an important factor to design replacement policy. 

 

er

Hit rate*DLAN + Miss rate*DWAN  

 

calculated by Equation 5-2. We can find that the 
two-phase scheme has the least average network 
delay because the two-phase scheme has higher 
hit rate so that the more number of clients can 

get data in the local proxy. Thus, the average 
network delay will decrease. 

Although our method has higher 
performance, it may cause 

 time shown in Figure 12. When proxy 
capacity increases, the knapsack table grows so 
that the computation overhead will grow. 
However, as the capability of CPU is more 
powerful, the CPU time is less. It will not be a 
problem. Contrarily, to solve the problem of 
bandwidth or network delay time will be more 
significant. 
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Figure 12. CPU Time 

5.3.3 Number o roxies 
s 

at 
the t

f Cooperative Video P
 Figure 13 shows that the hit rate increase

as the number of proxy grows. We can find th
otal hit rate has more improvement as the 

number of proxy is from one to four. While the 
number of cooperative proxies is from four to 
five, the improvement is limited. It is because 
that as the number of cooperative proxies grows, 
the variation of videos cached in cooperative 
proxies is limited. Thus, we suggest that the 
number of cooperative proxies within 5 is 
enough to design efficient cooperative video 
proxies. 
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Figure 13. Hit Rate v.s. Number of Proxies 

 

6.Concluding Remarks 
With rapidly progress in information 

communication, the need of bandwidth is more 
and more. How to reduce the network bandwidth 
becomes very important. In this paper, we have 
proposed cooperative video proxies with a 
two-phase replacement scheme to save a lot of 
bandwidth so as to lighten the network load. We 
also build a simulation environment to evaluate 
the performance of our method. From our 
evaluation results, we will save more 
147~1624GB bandwidth one day than without 
cooperative proxies under the number of proxies 
with one to four. If adopt our two-phase 
replacement scheme, we may save more 
23~277GB than that of other policies under 
proxy capacity with 40GB to 640GB. Besides, 
the performance of predict mode is similar to 
non-predict mode. But, it needs more overhead 
of computing than non-predict mode. Thus, we 
suggest that the non-predict mode is more 
cost-efficiency than predict mode. 

In the future, some significant issues need 
further exploration. In our video proxy, we cache 
a whole video so as to cache limited number of 
videos. In order to increase the number of 
cached videos, we can cache partial videos in 
local proxy. Thus, how to partition a video into 
several video segments and how to place these 
video segments into video proxies are interesting 
topics. We might partition a video into different 
number of segments according to its popularity. 
If the video is hotter, we place more number of 
video segments into the local proxy so as to 
increase the hit rate of the proxy. In the other 
aspect, in our replacement scheme, if the number 
of cached videos increases, the size of the 
knapsack table will become larger. Thus, how to 
reduce the knapsack table still is an important 
issue. We suggest that the videos can be 
classified according to their size. When a new 
video is coming, we will find its classification of 
videos in the proxy. From the members of this 

classification, we will choose one as a victim to 
be replaced by the new video. Because the 
number of the members is small, the size of the 
table can be reduced. 
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