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Abstract 

Wavelet image decompositions generate a tree 
structured components that provide a hierarchical 
data structure for representing images. A new 
class of recently proposed image compression 
algorithms has focused on new ways for 
exploiting dependencies between this hierarchy 
of wavelet coefficients using zerotree data 
structures. This paper deals with a particular type 
of adaptive subband image coding where we 
focus on the image coder’s ability to adjust its 
coding length of each coefficient of high 
frequency subbands. Our model is inspired by a 
variation on the embedded zerotree wavelet 
(EZW). Our subband image coder based on the 
proposed adaptive quantization idea exhibits 
excellent rate-distortion performance. For 
popular test images, it is comparable or superior 
to most of the state-of-the-art coders in the 
literature.  
key words: image compression, discrete wavelet 
transform, EZW, P-zerotree. 
 

I.  Introduction 
Hierarchical decomposition to image coding has 
been a popular and promising framework for 
highly efficient image compression [1], 
motivated by their ability to offer 
space-frequency resolution tradeoffs that are well 
matched to the characteristics of real images. The 
interest in wavelet/subband coding techniques 
was renewed thanks in part to the recent work by 
[2] that introduced a method to generate 
embedded bit streams at a reasonable algorithmic 
cost while still outperforming the stand 
block-based (e.g., DCT-based) algorithms. In 
fact, many wavelet/subband image coders were 
submitted to the ongoing JPEG 2000 
standardization effort, and a wavelet-based coder 
will be adopted for the standards.  

Wavelet/subband coding techniques provide 
excellent space/frequency energy compaction so 
that within each subband energy tends to be 
clustered spatially. The space/frequency 
localization of subband image data takes 
advantage of efficient data structures for spatial 
decorrelation, e.g., zerotrees in [2], [3], [10] 
hierarchical trees in [4]. These techniques utilize 
the correlation across and within subbands and 

energy compaction properties [5]. In addition, 
wavelet/subband coding techniques usually 
consist the use of quantization of subband 
coefficients, and optional entropy coding of the 
quantizer’s indexes—to change from one image 
to another, or even locally within an image.  

In this paper, we concentrate on 
incorporating adaptive quantization techniques in 
the subband image-coding framework where: 1) 
we develop a modeling structure, modified 
zerotree, called P-zerotree, for coding the 
location information, 2) instead of conventional 
quantization of the subband, in which a specific 
fixed bit rate is typically allocated for each 
subband, the proposed new adaptive quantization 
techniques explicitly compare the ratio of 
significant coefficients inside each subband with 
those of its scale and quantize only such 
coefficients.  
 

II. Modified Embedded Zerotree 
Wavelet Coding 

 
Shapiro [2] developed an algorithm that exploits 
a relation between subbands in image 
compression. Zerotree wavelet coding is proven 
a technique for coding wavelet transform 
coefficients [1-8], [10]. The advantages of 
zerotree wavelet coding include embedded 
bitstream structure, scalability and superior 
compression performance. In the algorithm, 
zerotree has been combined with bit plane 
coding and demonstrates the effectiveness of 
wavelet based coding. The algorithm is based on 
the zerotree that efficiently represent many 
insignificant coefficients. The compression 
algorithm has three key procedures: 1) wavelet 
decomposition, 2) exploiting the self-similarity 
inherent in the wavelet transform to predict the 
location of significant information for symbol 
generation, 3) entropy coding. In this section, 
first we briefly review Shapiro’s EZW [2]. Then, 
we describe the proposed technique, which 
provides higher compression efficiency.  
 
A. Wavelet transform of image 

The wavelet transform is identical to a 
hierarchical subband system, where the subbands 



 

are logarithmically spaced in frequency. The 
basic idea in the DWT for a two dimensional 
image is as follows. An image is first 
decomposed into four parts of high, middle, and 
low frequencies, i.e., LL1, HL1, LH1, HH1 
subbands, by cascading horizontal and vertical 
two channel critically subsampled filter banks. 
The subbands labeled HL1, LH1, and HH1 
represent the finest scale wavelet coefficients. To 
obtain the next coarser scale of wavelet 
coefficients, the subband LL1 is further 
decomposed and critically subsampled. This 
process is continued an arbitrary number of times, 
which is determined by the application at hand. 
Fig. 1 shows an image is decomposed into ten 
subbands for three levels (scales). Each level has 
various band-information such as low-low 
frequency band, low-high frequency band, 
high-low frequency band, and high-high 
frequency band.  

Furthermore, from these DWT coefficients, 
the original image can be reconstructed. This 
reconstruction process is called the inverse DWT 
(IDWT). Let I [m, n] represent an image. The 
DWT and IDWT for I [m, n] can be similarly 
defined by implementing the DWT and IDWT 
for each dimension m and n separately: DWTn 
[DWTm I [m, n]]. Fig. 2 shows the original and 
DWT decomposition of 512 512 Lena image. 
The coarsest subband is a low-pass 
approximation of the original image, and the 
other subbands are finer-scale refinements.  

A parent-child relationship can be defined 
between wavelet coefficients at different scales 
corresponding to the same location. Excepting 
the highest frequency subbands, i.e., HL1, LH1, 
and HH1, every coefficient at a given scale can 
be related to a set of coefficients at the next finer 
scale of similar orientation. The coefficient at the 
coarse scale is called the parent, and all 
coefficients corresponding to the same spatial 
location at the next finer scale of similar 
orientation are called children. For a given parent, 
the set of all coefficients at all finer scales of 
similar orientation corresponding to the same 
location are called descendants. A wavelet tree 
that descending from a coefficient in the subband 
LH3 is shown in Fig. 3.  
 
Definition 1: A wavelet coefficient xn (i, j) ∈ D 
is a parent of xn-1 (p, q), where D is a subband 
labeled HLn, LHn, HHn, p = i*2-1| i*2, q = j*2-1| 
j*2, n>1, i>1, and j>1. 
Definition 2: If a wavelet coefficient xn (i, j) at 
the coarsest scale and its descendants xn-k (p, q) 
satisfy |xn (i, j)| < T, | xn-k (p, q)| < T for a given 
threshold T, then they are called wavelet 
zerotrees.  
Definition 3: If a wavelet coefficient xn (i, j) at 
the coarsest scale satisfy |xn (i, j)| > T for a given 

threshold T, then xn (i, j) is called a significant 
coefficient [2]. 

The zerotree is defined as follows. Given an 
amplitude threshold T, if a wavelet coefficient |x 
(i, j)| satisfies |x (i, j)| < T, then the |x (i, j)| is said 
to be insignificant over a given threshold T. If a 
coefficient and all of its descendants are 
insignificant over T, then we call the set of these 
wavelet coefficients zerotree for the threshold T. 
An element of a zerotree for threshold T is a 
zerotree root if it is not the descendant of a 
previously found zerotree root for the threshold 
T.  

The zerotree is based on the hypothesis that if 
a wavelet coefficient at a coarse scale is 
insignificant with respect to a given threshold T, 
then all wavelet coefficients of the same 
orientation in the same spatial location at finer 
scales are likely to be insignificant with respect 
to T. In [2], Shapiro represented the EZW 
algorithm for image compression using the 
zerotree of wavelet coefficients. 
 
B. Embedded Zerotree Wavelet Coding [2] 

EZW coding is based on discrete wavelet 
transform (DWT). The DWT decomposed the 
input image into several varying resolutions of 
subbands. EZW scans wavelet coefficients 
subband by subband. Parents are scanned before 
any of their children, but only after all 
neighboring parents have been scanned. There 
are two types of passes performed: 1) a dominant 
pass, 2) and a subordinate pass [2]. The dominant 
pass finds significant coefficients to a given 
threshold, and the subordinate pass refines all 
significant coefficients found in all previous 
dominant passes. Four symbols are used to tell a 
dominant pass to a decoder. Two symbols are 
used for a significant according to its sign—POS 
(positive significant) or NEG (negative 
significant). A ZTR (zerotree root) symbol is 
used to signify a coefficient below the threshold 
T, with all its children in the zerotree data 
structure are also insignificant. An IZ (isolated 
zero) symbol signs a coefficient is insignificant 
but has at least one significant child. The use of 
ZTR and IZ symbols is to inform locations of 
significant coefficients as efficiently as possible.  

After a dominant pass, EZW further encodes 
coefficients using a successive approximation 
quantization (SAQ) scheme. Coding is done 
bit-plane by bit-plane. The successive 
approximation approach to quantization of the 
wavelet coefficient leads to the embedded nature 
of an EZW coded bitstream [8]. These two 
passes are entropy-coded with an adaptive 
arithmetic coder [6]. 
 
C. Adaptive Zerotree Entropy (AZE) Coding 



 

The proposed coding method, AZE coding, is an 
efficient technique for coding wavelet transform 
coefficient. Like EZW, this new AZE exploits 
the self-similarity inherent in the wavelet 
transform of images to predict the location of 
information across wavelet scales. AZE 
introduced a data structure called a P-zerotree, 
also built on the parent-child relationship. The 
P-zerotree structure takes advantage of the 
principle that if a wavelet coefficient x at a 
coarse scale is insignificant with respect to a 
given threshold T, then all wavelet coefficients of 
the same orientation at the same spatial location 
at finer wavelet scales are also likely to be 
insignificant with respect to T [2], [8]. In such 
situation, x is a P-zerotree root, and will be 
quantized to zero. AZE coding organizes 
quantized wavelet coefficients into wavelet trees 
and then uses adaptive entropy coding to reduce 
the number of bits required representing those 
trees. Subjectively, AZE differs from EZW in 
four major ways. 

1) P-zerotree model: The P-zerotree model 
consists of a tree structure that crosses 
multiple resolutions of the 
wavelet-decomposed image. A P-zerotree 
structure data group is formed using units 
that have the same location inside each 
subband along the horizontal, vertical, 
and diagonal directions. Thus, each tree 
node has 2 2 children, and each child 
has its own 2 2 children, and so on until 
the highest frequency subbands are 
reached. If all of the elements inside a 
tree structure data group are tested to be 
insignificant, then the data group is 
labeled as the P-zerotree. The definition 
of P-zerotree is as follows: 
Pk is a P-zerotree root for a given 
threshold T, if 
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2) The threshold T is taken to generate 
P-zerotree. AZE coding reserves all 
coefficients at the coarsest subband, LL3 
in Fig. 5, to be significant.  where Pk is a parent of Pk-1, k ≥ 2. 

P-zerotree model is based on one 
assumption: The symbol ZTR is used to 
signify a coefficient xk, k>2, at a k-scale 
coarser subband below T, with all its 
children in the zerotree data structure, 
except the finest scale, also below T. The 
potential reason is that if xk, xk-1, …, x2 are 
all below T, the descendant x1 of xk has a 
higher possibility below T.  

2) Quantization at the coarsest subband is 
performed distinctly from the P-zerotree 
growing process, thereby making it 
possible to reduce image distortion.  

3) EZW takes advantage of 
successive-approximation quantization 

(SAQ) to perform the embedded coding. 
The SAQ sequentially applies a sequence 
of thresholds T0,  ., Tn-1 to determine 
significance, where the thresholds are 
chosen so that Ti = Ti /2. While in the 
proposed AZE coding, as will be seen in 
next section, the coding length of 
significant coefficients at a subband is 
adaptively dependent on the weight 
through significant coefficients at such 
scale. 

4) Being the variation of coefficients among 
different scale, significant coefficients at 
different scale are further encoded 
independently for enhancing the image 
quality.  

 
III. Proposed Framework 

 
Fig. 4 shows a block diagram of the 

encoding/decoding structure of the proposed 
framework. The corresponding image coding 
algorithms consist of two major stages: 1) a 
pyramid wavelet decomposition/reconstruction 
stage, and 2) a quantization/coding stage. The 
pyramid decomposition stage achieves efficient 
spatial decorrelation using P-zerotree data type, 
and usually concentrates most of the subjectively 
important information in the coarsest frequency 
subband.  

In this section, a simple example will be used 
to illustrate the order of operations used in the 
AZE algorithm. Consider the simple 3-scale 
wavelet transform of an 8 8 image. The array of 
value is shown in Fig. 5. The AZE coding steps 
are as follows: 
 
A. P-zerotree scanning 

1) We can choose our threshold T, to evaluate 
whether a coefficient is significant or 
insignificant. Let T= 32. 

3) AZE scans wavelet coefficients subband 
by subband. Parents are scanned before 
any of their children. In Fig. 5, coefficients 
at subband HL3, -34, is first scanned, and 
its amplitude is greater than T, 
coefficient –34 is significant. The rest of 
coefficients at subband HL3 are then 
scanned and evaluated. After that, 
coefficient at LH3, i.e., -31 is evaluated to 
be smaller than T, and each child at LH2 is 
also small than T. The target 
coefficient –31 is replaced with ‘0’ to 
signify P-zerotree root of its children at 
subband HL2 and HL1. The scan result is 



 

listed in Fig. 6.  
4) Note that coefficient at HH3 and its 

children at HH2 are all small than T, thus 
coefficient at HH3 is replaced with ‘0’ to 
be P-zerotree root. It indicates that its 
children at HH2 and HH1 are all replaced 
with ‘0’ to signify insignificant. 

5) After all of coefficients at 3-scale bands 
are scanned complete. AZE will scan 
non-zero coefficient part of 2-scale bands. 

6) The magnitude 49 at subband HL2 is 
significant with respect to T. 

7) The magnitude 10 at HL2 and all of its 
children at HL1 are lower than T, thus, 
magnitude 10 is replaced with ‘0’ to 
signify P-zerotree root, and its children are 
replaced with ‘0’ to signify insignificant 
with respect T. 

8) The magnitudes (7, 13, 3, 4) at subband 
HL1 remains to be significant because its 
parent, i.e., 49, at HL2 is significant. 

9) The scan results are listed in Fig. 6.  
 
B. Construct significant/insignificant 

coefficient map 

1) We can construct significant/insignificant 
map from the results of Fig. 6. The map is 
generated with the sequence of subbands at 
3-scale, 2-scale, and 1-scale, i.e., HL3, 
LH3, HH3, HL2, LH2, …. 

2) In Fig. 7, A significant coefficient is 
encoded using the symbol “01” (negative 
significant) or “10” (positive significant). 
Only P-zerotree root is encoded using the 
symbol “00”. 

 
C. Adaptive entropy coding 

1) Next, adaptive coding is applied to 
significant coefficients. Significant 
coefficients   at each scale are quantized 
to n intervals, where 

B = Round(( NCl / TCl ) / (1/3)) + 3,  
l = 1, 2, 3 
n = 2B-1, (2) 

In this work, adaptive entropy quantization is 
exploited to balance the coefficients’ variation of 
each subband among different scale. We showed 
that a symbol stream is coded with less entropy 
using the P-zerotree relation. We used a 
modified zerotree data structure for subband 
decomposition and adaptive entropy coding but 
still achieved a very good image coder. The 
experimental results show that our AZE is 
competitive with other image coder in the 
literature. Experimentally, our AZE subband 
coder has 0.27~0.85 dB better performance than 
the EZW’s. 

where B denotes representation bits for 
each significant coefficient, NCl represents 
the number of significant coefficients at 
the lth-scale image data, and TCl represents 
the number of coefficients at the lth-scale 
image data. The relationship between NCl / 
TCl and coding length for each coefficient 
is shown in Fig. 8.   

2) Each significant coefficient Coefl at the 
lth-scale resolution is then encoded to 
Coefl

’ as follows. 
Dl = ( MAX_Coefl – MIN_Coefl ) / nl,  
Coefl’ = (Coefl – MIN_Coefl) / Dl, l = 1, 
2, 3 (3) The authors thank Mr. Y.-H. Huang for 

providing partial program codes for the where MAX_Coefl/MIN_CoeflB denotes 

the largest/smallest significant coefficient 
at the l-scale resolution. It is clearly that 
the value of Coefl’ is at the range of 0 and 
nl.  

 
IV. Experimental Results 

 
We have implemented an image coder using the 
adaptive P-zerotree entropy coding to generate 
actual compressed bit streams. We use in our 
experiments popular 512 512 gray scale image. 
Our subband image coder employs a four-scale 
p-zerotree decomposition except the coarsest 
subband. We apply our adaptive entropy 
quantization to the significant coefficients to 
shrink down the variances among different scale 
subbands.  

Fig. 9 includes the compressed Lena image at 
various rates. The bit rate is based on AZE 
coding. We compare the peak signal-to-noise 
ratio (PSNR) 

PSNR = 
MSE

2

10
255log10 ,  

where MSE is the mean square error for each 
compressed image. We can see that the 
reconstructed images offer good quality at a very 
low rate of 0.125 b/pixel.  

 
Fig. 10 shows the results PSNR versus bit 

rate performance of proposed coder for Lena. We 
also summarize the PSNR results of AZE in 
Table I, for Lena.  
 

V.  Conclusion 
 
We have proposed a novel subband image coder 
that produces a fully embedded bit stream. By 
modeling the image subbands except the lowest 
one using the parametric P-zerotree 
decomposition model, we were able to provide a 
conceptual framework to develop the image 
coder as well as simple implementation.  
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Fig. 1. DWT decomposition of an image: Note that the lowest frequency subband is the top left, and the highest 
frequency subband is at the bottom right.  
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Fig. 2. (a) The original and (b) DWT decomposition of 512 512 Lena image. 
 
 

 

Host Image

LL3 HL3

LH3 HH3
HL2

LH2 HH2

HH1LH1

HL1

DWT

 
Fig. 3. DWT decomposition of an image: Note that the arrow points from the subband of the parents to 

the subband of the children. The lowest frequency subband is the top left, and the highest frequency 
subband is at the bottom right. Also shown is a wavelet tree consisting of all the descendants of a 
single coefficient in the subband LH3. The coefficient in LH3 is a zerotree root if it is insignificant 
and all of its descendants are insignificant. 
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Fig. 4. Encoding/decoding structure of proposed framework. 
 
 



 

 

 
63 -34 49 10 7 13 -12 7 
-31 23 14 -13 3 4 6 -1 
15 14 3 -12 5 -7 3 9 
-9 -7 -14 8 4 -2 3 2 
-5 9 -1 47 4 6 -2 2 
3 0 -3 2 3 -2 0 4 
2 -3 6 -4 3 6 3 6 
5 11 5 6 0 3 -4 4 

Fig. 5. Example of 3-scale wavelet transform of an 8 8 image. 
 
 

63 -34 49 0 7 13 0 0 
0 0 0 0 3 4 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

 
Fig. 6. Scanned results. 
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Fig. 7. Significant/insignificant coefficients map. 
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Fig. 8. The relationship between NCl / TCl and coding length for each coefficient at the lth-scale image 

data. 
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(d) 

Fig. 9. Compressed Lena images using AZE. (a) Rate = 1.0 b/pixel (PSNR = 40.12). (b) Rate = 0.5 
b/pixel (PSNR = 36.95). (c) Rate = 0.25 b/pixel (PSNR=34.02). (d) Rate = 0.125/pixel (PSNR = 30.50). 
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Fig. 10. PSNR versus bit rate performance for poposed coder, for Lena. 

 
TABLE I 

CODING RESULT FOR 512 512 LENA SHOWING PSNR (JPEG, EZW AND AZE) 
Compress Ratio Bit Rate(bpp) JPEG EZW AZE 

8 1.0 38.81 39.55 40.12 
16 0.5 35.15 36.28 36.95 
32 0.25 29.86 33.17 34.02 
64 0.125 24.63 30.23 30.50 

 
 
 


