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Abstract–In this paper a new methodology for 
representing text-input strategies for miniature and 
mobile devices is presented. The methodology is 
based on representing text-input strategies as 
graphs. Graph representations allow different static 
mobile text-input strategies to be represented in a 
uniform manner. Further, different strategies are 
easily compared as the graph representation allows 
various characteristics to be extracted. The 
methodology incorporates KSPC (KeyStrokes Per 
Character), checking for error recoverability and 
correctness. We also propose an error recovery 
measure – the mean error recovery distance 
(MERD). The methodology can be expanded to 
include additional evaluation measures and it is 
feasible to implement design-tool support. Finally, 
the methodology is demonstrated on several text 
entry designs from the literature. 
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1. Introduction to mobile text entry 
 

Mobile text input is an important aspect of 
contemporary human computer interaction. Users 
send SMS messages using mobile phones, edit song 
titles on miniature mp3 players and edit address lists 
on wristwatches, or portable databanks.  

Small and portable devices are attractive to users. 
However, the small size results in small displays and 
less room for interaction controls. The limited 
surface area only allows for a few keys. There is also 
a trade-off between the number of keys and the size 
of the keys. Smaller keys are harder to use than larger 
keys and leads to higher error rates as incorrect keys 
are more easily pressed accidentally (Fitts’ Law [1]). 
It is rarely room for full size keyboards, and mobile 
devices usually have fewer keys than there are 
characters in the alphabet.  

For example, mobile phones allow users to hit a 
key repeatedly to cycle through characters labelled 
on the key to retrieve a desired character. A character 
is thus retrieved with anything from 1 to 5 
keystrokes. 

Two and three key text entry systems first 
appeared on arcade game machines in the 70'ties, 
where users employ rotator keys and press a select 
button to select the desired character. MacKenzie [5] 
describes the date-stamp approach at great detail. 

Raghunath and Narayanaswami [6] implemented a 
wristwatch system, consisted of splitting the alphabet 
into two and presenting the alphabet as two rings. 
One key is used to toggle between the two rings, one 
key is used to cycle forward in the rings and the final 
key is used to select a character. 

Sandnes et al. [7] investigated the Multi-ring 
where characters are organised into groups, for 
example ‘abc’, ‘def’, ‘ghi’ and so forth. First, the 
user cycles through the list of groups using a ‘left’ 
and a ‘right’ key and then selects the group 
containing the desired character. Then, the user 
cycles through the characters within the group.  

Four key text entry strategies has been studied by 
Evreinova et al [8] and Tamaka-Ishii et al [9] and 
studies addressing five key text entry strategies 
include Moyes [10], Isokoski and Raisamo [11] and 
Bellman [12].  
 
1.1. Benefits of a graph based methodology 
 

There are several benefits to introducing a graph 
based methodology for modelling text entry 
strategies. First, the text entry strategies must be 
static in nature since graphs are static structures. 
Hence, no dynamic aspects can be modelled. There 
are several major challenges associated with dynamic 
and adaptive user interfaces from a usability point of 
view. Several studies on mobile text entry conclude 
that adaptive and dynamic text entry strategies are 
hard to learn and thus slow to use in practice 
although they are theoretically fast to use (See [5, 
12]). Further, adaptive and dynamic strategies 
require feedback and cannot be used eyes-free. 

Second, graph theory is well understood and 
widely used in computer science and a wide range of 
graph theoretic algorithms and graph analysis metrics 
exists, which can be applied to the evaluation and 
analysis of text-entry systems.  
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Third, the graph notation allows automated 
verification and analysis of text-entry designs to be 
carried out by automatic tools.  
 

2. A graph based methodology  
 

The purpose of this methodology is to identify 
weaknesses in text entry designs before one is 
committing to user tests, as testing on real people is 
an expensive and time-consuming activity. Note 
however that the methodology is not a substitute for 
testing with real users. 
 
2.1. Scope 
 

The methodology in this paper has two 
limitations: it applies to static text entry strategies 
where there is a limited set of control signals. A static 
text entry strategy can be defined as one which does 
not change throughout its lifetime and that its 
response is predictable. For example, text entry 
prediction and disambiguation both employ 
dictionaries to enhance and simplify the text entry 
process. In prediction the text entry system attempts 
to predict which word the user types based on the 
characters already entered [13], and it is an 
established technique within the realm of disabled 
users. Disambiguation-based techniques are often 
associated with the T9 system. Both prediction and 
disambiguation are difficult to capture in a static 
model and are therefore beyond the scope of this 
paper.  

A limited set of control signals means that the 
physical characteristics of a device has only a small 
number of ways in which users can interact with the 
device. For example, a desktop has a full size 
QWERTY keyboard with more than 100 keys, while 
a wristwatch may only have three keys for 
interaction. Due to the limited number of control 
signals, several signals must therefore be combined 
into a sequence in order for symbols to be produced 
or operations to be executed. Interaction strategies 
which enjoy an unrestricted number of interaction 
signals has no need for sequential input and are 
therefore not relevant for this strategy. 

We define text entry strategies where text is typed 
in one step as simultaneous text entry, for example 
standard QWERTY typing and chord typing. Further, 
text entry strategies were text is entered in multiple 
steps is termed sequential text entry. 
 
2.2. Devices 
 

In this study it is assumed that the device is of 
limited physical size and thus has a limited surface 
area. Further, it is assumed that the device has a form 
of visual, aural or tactile feedback and some 
interaction controls, such as keys. The interaction 

controls can be used to send interaction signals 
defined by the set S = s1, s2, .., sN, where N is the 
total number of control signals. These controls are 
typically keys, and the devices would typically be 
one-hand devices, i.e. they are held in one hand and 
operated by the other hand. Note that the model is 
capable of representing two-handed operation as 
well. In this study devices with three keys are used 
for illustrative purposes. The concept of three buttons 
is appealing and it is the minimum number of buttons 
one need in order to practically operate a device and 
they can be operated with one hand only, in such a 
way that each key is assigned a unique finger. 
Implications of this is that the fingers do not need to 
be moved across a keyboard from one key to another 
and physical navigation errors and the delay 
associated with moving fingers between keys are 
eliminated [14]. Further, since the fingers constantly 
cover the keys, no backlighting of the keys is needed 
resulting in an overall reduced power consumption. 
However, the model proposed in this paper is not 
limited to just three keys. 

 
2.3. Signals 
 

Given a device with K keys, in this instance three 
keys, several categories of signals can be sent. First, 
single keystrokes can be used to send K different 
signals. Second, chording can be used to increase the 
number of possible signals. With K keys K2-1 signals 
can be sent and with three keys 7 different signals 
can be chorded. Third, keystroke duration can be 
used to express different signals – for example short 
taps and long or hold strokes. With K keys 2K signals 
can be sent when allowing for short and long taps. If 
chording and keystroke duration is combined a total 
of 2(K2-1) signals can be generated. For 3 key 
devices this would account to 14 different signals. 
Note however that a combination of chording and 
keystroke duration is difficult and would require 
practice.  

In the proposed methodology single keystrokes 
are denoted by ei where ei indicates that key ei is 
pressed, ei+ej indicate a chord signal comprising of 
the keys ei and ej, and a short tap is denoted by éi and 
a long tap is denoted by êi. 
 
2.4. The alphabet 
 

The alphabet is a set of symbols that that the user 
needs in order to compose the desired texts. This 
study is restricted to languages using phonetic scripts 
represented by a limited set of symbols, for example 
most European languages such as English. Languages 
using ideographic scripts such as Chinese or Korean 
may need a totally different approach \cite{Chinese 
chord paper}.  

The alphabet can be subdivided into two 
categories – ordered symbols and unordered 
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symbols. Ordered symbols include the alphabet ‘a’, 
‘b’, ‘c’, .. and the number ‘0’, ‘1’, ‘2’, ‘3’, ... Most 
users know that ‘b’ follows ‘a’ in the alphabet and ‘c’ 
follows ‘b’ etc. This knowledge can be used to 
improve the interaction. Examples of symbols 
without a well-established or standard order are the 
punctuation symbols, basic arithmetic operators etc. 
In this study only ordered symbols will be 
considered, but the method extends to unordered 
symbols as well. The set of symbols A, also known as 
the alphabet, comprise of the symbols a1, a2, .., aK 
where K is the size of the alphabet and the index i 
indicate the rank in the order such that ai-1 < ai < ai+1, 
∀  ai ∈  A. 
 
2.5. Editing 
 
Advanced editing is included into the model by 
treating the editing commands as part of the character 
stream. In order for advanced editing to be 
incorporated into the model text entry strategy must 
therefore be equipped with editing symbols, for 
example BACKSPACE, LEFT, RIGHT, UP, 
DOWN, INSERT and DELETE to mention a few. 
Further, case is included by providing TO-
UPPERCASE and TO-LOWERCASE symbols or 
simply a CAPS-LOCK symbol. The particular editor 
is therefore responsible for interpreting these editing 
symbols that arrives in the symbol stream. 
 
2.6. Modelling text entry strategies 
 

A static text entry strategy can be modelled using 
a finite state machine modelled as a directed graph 
G(V, E), where the vertices V represent text-entry 
states and the edges E represent transitions between 
these states. The states typically represent time-
intervals when the device is waiting for input from a 
user while the users are determining their next move. 
A transition is triggered by a user signal, i.e. when a 
user presses a key, and the finite state machine moves 
into a new state. Transitional edges are therefore 
labeled with a signal label si indicating the user signal 
(or keystroke) that triggers the transition. A transition 
may also trigger an output signal. This is denoted 
using the notation si:aj, where the signal si triggers 
the symbol aj. For example ‘2:c’ denotes that signal 
‘2’ produces the output ‘c’, ‘3:’ denotes that signal 
‘3’ leads to a state transition but no symbol is output, 
‘:d’ defines a default state transition that occur 
without a signal but produces the symbol ‘3’ and 
finally ‘:’ indicates a default state transition without a 
output symbol.  

To simplify the diagram and increase readability 
end states are denoted by edges that do not point at 
other states. End states are therefore also easy to 
identify in a diagram. The graph should always 
comprise a start state or start vertex. In this paper 

start states are represented using a gray shaded 
vertex.  
A graph can only have one starting-state but may 
possess multiple end-states.  

Given a test entry strategy defined using graph G, 
then the shortest path between the two states Ca and 
Cb is represented using Path(G, Ca, Cb), and the 
length of this path is |Path(G, Ca, Cb)|. We also 
define an output state Cout(ai) as a state that 
comprises an output edge representing a transition 
that produces the output symbol ai. Finally, the set of 
exit states Cexit are states without outbound edges. 
 
3. Evaluating text-entry strategies 
 

In this section evaluation criteria for mobile text-
entry are explored, namely correctness, error 
recoverability, KSPC and a new measure – mean 
error recovery distance MERD. 
 
3.1 Correctness 
 

We define the correctness of a text entry strategy 
to mean that it is both feasible and it has full 
coverage. A feasible strategy can be implemented 
within the constraints of the target device, and a 
strategy has full coverage if all the symbols of in the 
alphabet can be output. 
 
3.2. Feasibility 
 

For a device to be feasible the following two 
criteria must be satisfied. First, the number of 
outbound edges or leaving transitions from a given 
state must not exceed the number of signals |S| 
supported by the device. A simple graph traversal 
can be used to ensure that this constraint is satisfied. 
Second, each trigger of a state must be unique. If two 
triggers or more are identical then the design is 
ambiguous. This constraint can be verified by a 
simple graph traversal. 
 
3.3. Coverage 
 

For a text entry strategy to cover the entire 
alphabet there must be at least one unique transition 
for each symbol of the alphabet. I.e. for each symbol 
in the alphabet there must be an edge where the 
symbol is the output. 

Further, there must be a path from the start state to 
all the states where the transitions labelled with the 
output symbols originate. This can be verified by 
applying Flynn’s algorithm to compute the distance 
between any two vertices in the graph. Flynn’s 
algorithm computes a distance matrix based on an 
adjacency matrix representation of the graph. 
Coverage is then ensured if the distance between the 
start state and all the states that are the origins of 
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output producing transitions are greater than zero. 
Note that with small alphabets the time complexity of 
computing the distance matrix is insignificant. Also 
note that this matrix can be reused for several other 
evaluation measures discussed in subsequent 
sections. 
 
3.4. Error recoverability 
 

Although a text entry design has full coverage it 
might not be possible to fully recover from errors. 
We define error recovery as the ability to reach any 
state in the text entry strategy from any other non-exit 
state. Typically, a user makes a mistake while 
selecting the desired letter by walking the graph, and 
then the error recovery characteristics of the graph 
will allow the user to reach the desired state without 
restarting from the origin. In terms of graph theory 
there should be a path from any state to any output 
state in the graph for the text entry design to have 
error recovery capabilities. When using Flynn’s 
algorithm (as described in a previous section) all the 
non-diagonal elements in the distance matrix should 
be non-zero. 
 
3.5. Mean error recovery distance (MERD) 
 

We propose a measure indicating the average 
effort required to recover from errors, namely the 
mean error recovery distance (MERD). Note that 
MERD is only a simple distance oriented measure 
and does not incorporate any cognitive factors. 
Although cognitive factors are not included the 
MERD can serve as a best-case and identify poor text 
entry strategies.  

The states on the path from the start-state to the 
output state associated with the desired symbol a is 
given by P = Path(G, Cstart, Cout(a)). Imagine that the 
user has made a mistake and ended up in a state not 
on this path. We define the set of states not on the 
path from Cstart to Cout(a) that are not exit states as E 
= P’/Cexit, i.e. the compliment of the set of states on 
the path that are not exit states. The MERD 
associated with reaching the output state associated 
with symbol a when being in a state not on the path 
of a is: 

∑
∈

=
Ec

out aCcGPath
E

aMERD ))(,,(
1

)(  (1) 

In other words, the average distance from the 
states not on the path from the start state to the output 
state of the symbol and to the output state of the 
symbol is computed. The overall MERD is computed 
as: 

∑
∈∀

=
Aa

afaMERDMERD )()(   (2) 

Namely, the sum of the average recovery distance 
for each symbol of the alphabet multiplied by their 
respective probability of occurrence. 

 
3.6. KSPC 
 

KSPC (keystrokes per character) is a measure 
proposed by MacKenzie [15-17], which indicates the 
number of keystrokes required in order to retrieve a 
particular character. The KSPC measure usually 
refers to the average KSPC, the minimum KSPC and 
maximum KSPC. Obviously, KSPC indicates the 
potential speed in which text can be typed. However, 
KSPC is criticised in the human computer interaction 
community for being over simplistic not capturing 
other important factors affecting typing speed. We do 
not wish to add to this debate but rather demonstrate 
how to compute KSPC using the proposed 
methodology. 

Given a graph model of the text interface it is easy 
to determine minimum maximum and average KSPC. 
Given a starting state Cstart and a set of output states 
Cout ⊆  C, then the minimum KSPC is given by: 
 

))(,,(minmin aCCGPathKSPC outstart
Aa∈

=  (3) 

 
The maximum KSPC is given by: 
 

))(,,(maxmax aCCGPathKSPC outstart
Aa∈

=  (4) 

 
and finally the average KSPC is given by: 
 

∑
∈

=
Aa

outstart afaCCGPathKSPC )())(,,(  (5) 

where f(a) is the probability of occurrence for the 
character a. 
 
4. Examples of the methodology applied 
 

For the purpose of demonstrating the proposed 
methodology six text entry strategies are modelled, 
namely the DateStamp approach (see Figure 1), a 
new one-way DateStap strategy (see Figure 2), 
Raghunath and Narayanaswami’s [6] wristwatch 
strategy (see Figure 3), multi-tap (see Figure 4), 
Sandnes et al’s [7] multi-ring (see Figure 5) and a 
mesh (see Figure 6). The characteristics of each 
strategy is summarised in Table 1. 

The graph model for the date-stamp method for an 
alphabet of five characters (‘a’, ‘b’, ‘c’, ‘d’ and ‘e’) is 
presented in Figure 1. It is obvious how this extends 
to the full alphabet (omitted to save space). The user 
start in the state indicated with the gray background, 
and the user can move to the two neighboring states 
using key 1 or 2. To select the character associated 
with the state the user presses key 3. Clearly, this 
design is feasible as each state only has three 
outbound edges. Further, the design has full coverage 
as there is a path from the start state to all the other 
states. In fact, there is a path from any non-exit state 
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to any other state and the design supports full error 
correction with a MERD = 5.01.  

Further, KSPCmin = 1 as only one transition is 
needed to produce the output character ‘a’ (assuming 
snap-to-beginning). KSPCmax of this design is 
identical to the diameter of the graph [18]. The 
diameter of a graph is defined as the longest path 
between any two vertices of a graph. For this 
particular design KSPCmax = 3. For the English 
alphabet KSPCmax = 14. The mean number of 
keystrokes per character for the English alphabet is 
KSPC = 7.77. 
The graph representation simplifies the 
understanding of text entry designs, and in this next 
example shown in Figure 2 a subtle but significant 
alteration is made to the previous date-stamp 
approach (This is to the best of our knowledge a yet 
undocumented strategy). The difference between this 
strategy and the date stamp approach is that the user 
only can scroll in one direction, and that the user at 
each step can select one of two characters. The 

example design in Figure 3 also comprises 5 states, 
but it supports twice as many output symbols (a total 
of 10 symbols). The design is feasible and has full 
coverage. Clearly, the KSPCmin = 1, and KSPCmax = 5 
for this design and KSPCmax = 14 for the full English 
alphabet and the mean KSPC = 6.113. This strategy 
is thus theoretically more efficient than the traditional 
date-stamp approach. The strategy is error 
recoverable. However, the drawback is that the user 
can only scroll in one direction and the user may 
have to traverse the entire ring in order to make a 
correction. Although the maximum distance needed 
to recover from error is 12 for both the one-way 
datestamp and the datestamp strategy, the mean error 
recovery distance is larger for the one-way datestamp 
strategy (MERD = 6.5) than it is for the datestamp 
method (MERD = 5.01). However, if one for instance 
assumes a 5% error rate then the benefits of the 
decrease in KSPC for the one-way datestamp 
outweighs the drawbacks associated with its 
increased MERD. 

 

  
 

Figure 1: The classic date-stamp 
text entry strategy 

Figure 2: The one-way date-
stamp text entry strategy 

Figure 3: The Raghunath and 
Narayanaswami wristwatch text 

entry strategy 

 
  

  
Figure 4: The multi-tap text entry 

strategy 
Figure 5: The multi-ring text 

entry strategy 
Figure 6: The mesh text entry 

strategy 
 

The multi-tap approach is a strategy that is widely 
used on mobile phones. The design in Figure 4 
incorporates the characters ‘a’ to ‘f’ where three 
letters is assigned to each of the two of the keys and 
the third key is used as a break key. To expand this 
design to the full alphabet more letters are simply 
added to each of the multi-tap keys. The design is 
feasible and has full coverage. However, this strategy 
is not fully error recoverable. For example if the user 
starts by pressing key 1 the user is moved to state 2. 
Imagine that this is a mistake as the user intends to 
type the character ‘d’. There is no way go get to state 
5 without producing output. If for instance the user 

chooses to press key 2 to reach state 5 the character 
‘a’ is output. Hence, MERD is not applicable. 

Although the multi-ring strategy shown in Figure 
5 is correct it is not error recoverable. Once the user 
enters one of the sub-rings there is no path back. For 
example, imagine that the user want to enter 
character ‘d’. The user by accident presses key 3 
from the start state 1 which moves the user to state 4. 
State 4 gives the user access to one of the characters 
‘a’, ‘b’ or ‘c’. There is no path from state 4 to state 7, 
which is used to produce the letter ‘d’. Consequently, 
MERD is not applicable. 
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Table 1: Summary of the characteristics for the 
six text entry strategies 

Test entry  
strategy 

min 
KSPC 

max 
KSPC 

(fig) 

max 
KSPC 

mean  
KSPC  

MERD 

Datestamp 1 3 14 7.77 5.01 
Uni d.s. 1 5 14 6.11 6.50 
Rag. watch 1 3 16 7.19 6.20 
Multitap 1(2) 4 14 6.69 N/A 
Multi-Ring 2 4 7 4.98 N/A 
Mesh 1 5 9 4.50 4.50 

 
The mesh strategy shown in Figure 6 is not 

previously documented. It is a simplification of the 
bidirectional wraparound mesh [12] for five-key 
devices. Three characteristics of the mesh are 
particularly suitable for mobile text entry: each 
vertex has few outbound edges (i.e. buttons), the 
diameter of the mesh structure is relatively small and 
there is a path between any two states in the structure 
(error recoverability with a short distance). Figure 7 
shows a 3x3 mesh incorporating the characters ‘a’ to 
‘i’. In this design one key is used to cycle vertically, 
the second to scroll horizontally and the third key is 
used to select letters. Obviously, the strategy is 
feasible and has full coverage. Table 1 shows that 
this strategy is the best when considering the mean 
KSPC and MERD, which are both 4.5 (note that these 
values depends slightly on the character layout). Only 
the MultiRing has lower KSPCmax = 7, as opposed to 
KSPCmax = 9 for the mesh. 
 
5. Summary 
 

A graph based methodology for the 
representation, design and evaluation of text entry 
techniques for miniature mobile devices is presented. 
The technique allows different text entry strategies to 
be compared. Further, it is easy to check for 
correctness and error recoverability KSPC and a new 
error recoverability measure ERP is proposed. The 
methodology is not intended as a replacement for 
typing test using real people on real devices but 
rather as an early screening tool as it will identify 
poor text entry strategies early before the interaction 
engineer commits to expensive testing.s  
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