
FAULT TOLERANCE FOR HOME AGENTS IN MOBILE IP

Yin-Fu Huang and Min-Hsiu Chuang

Institute of Electronic and Information Engineering
National Yunlin University of Science and Technology

Touliu, Yunlin, Taiwan 640, R.O.C.
Email: huangyf@el.yuntech.edu.tw

ABSTRACT

In the conventional IP protocol, whenever a mobile
device moves to a different network, it must change its IP
address to communicate with other nodes in the Internet.
Mobile IP protocol keeps mobile nodes online without
changing theirs IP addresses while changing the attachment
points. The packets destined to MNs are relayed by their
HAs. However, once the only one HA fails, all MNs
managed by the HA will not receive packets normally. In the
paper, we propose a novel protocol with multiple MAs
where only double mobility bindings are maintained in the
whole system. When an HA is failed, its backup HA can
take over it in a short time without fetching the bindings
from other places. Besides, we also consider the load
balancing between these HAs during HA takeover and
recovery. Through the simulation, we observe that our
method has less registration overheads, better
MN-scalability and less sensitivity on MN mobility than
others.

1 INTRODUCTION

Due to the development of the wireless technology,
many personal information products such as laptops,
personal digital assistants (PDA), and cell phones are
equipped with a wireless communication interface, thereby
bringing the convenience for people. However it has some
problems when the current TCP/IP protocol [8, 9] works on
these portable devices, since the TCP/IP protocol was
designed under the assumption that the end-points are
stationary. When a mobile node (MN) moves to another
network without changing its IP address, it will not receive
the packets destined to it. These packets still route to the
home network of the MN, but not to the current attachment
point. Thus, the work group of IETF (Internet Engineering
Task Force) develops the Mobile IP protocol [5, 6, 10] to
overcome the problems.

In a single MA system, it will face to the challenges
such as efficiency and robustness when the supervised MN
number increases dramatically. Thus some methods with
multiple MAs were proposed to solve this problem [1, 2, 4],
and even concerned about the load balancing between these
MAs [11]. In [4], each HA in the home network must
maintain mobility bindings of all MNs registered with the
network, even if it only manages a portion of these MNs. In
[1], there exists a stable storage to keep all mobility bindings
in the network. However, the stable storage forms a single

point failure. To solve the problems above, we propose a
novel protocol with multiple MAs where only double
mobility bindings are maintained in the whole system; i.e.,
only one backup for an MA. When an HA is failed, its
backup HA can take over it in a short time without fetching
the bindings from other places. Besides, we also consider
the load balancing between these MAs. We always select the
lightest loading HA as a new backup when the old backup
HA takes over the failed HA. In summary, our method has
less registration overheads, better MN-scalability, and less
sensitivity on MN mobility than others.

The remainder of the paper is organized as follows. In
Section 2, we briefly introduce the concepts of Mobile IP. In
addition, the system model with assumptions and problem
definitions is described in the section. Then the fault-tolerant
protocol involving failure detection, HA takeover, and
backup selection is proposed in Section 3. In Section 4, we
describe HA recovery when an HA comes up from crash. A
simulation model is presented to evaluate the system
performance in Section 5. Finally, we make conclusions in
Section 6.

2 SYSTEM MODEL

2.1 Mobile IP

A mobile IP protocol consists of the following
components: 1) mobile nodes (MN), 2) home agents (HA), 3)
foreign agents (FA), and 4) correspondent nodes (CN). Basic
mobile IP operations are shown in Fig. 1. A mobility agent
(HA or FA) transmits agent advertisements periodically to
advertise its services on a link. Mobile nodes use these
advertisements to determine their current point of
attachment to the Internet. When an MN stays in a home
network, it can receive and send packets according to the
conventional IP protocol, just like the other stationary nodes
in the network. Whenever the MN moves away from the
home network into a foreign network, the MN will obtain a
care-of-address (COA) from the foreign network. There are
two ways to obtain a COA. First, if the MN finds an FA in
the foreign network, it can register with the FA and acquire a
care-of-address using the agent discovery protocol. Second,
if the MN finds no FA, it can obtain a collocated care-of-
address assigned by using the DHCP protocol [3]. After
getting a COA, the MN must register with its HA. If the HA
accepts its registration, the HA will update the mapping
between the home address and the newest COA of the MN,

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

625

called mobility binding, and then send a registration reply to
the MN.

Internet

Home Network

Foreign Network

SD

Cisco 1720

BRIS/ T

CONSOLE

AUXWIC 0 OK

O
K

B
2

B
1

WI C 1 OK

DSUCPU

LNK100FDX

S3

LO OP

LP Home Agent

SD

Cisco 1720

BRIS/ T

CONSOLE

AUXWIC 0 OK

OKB2B1

WI C 1 OK

DSUCPU

LNK100FDX

S3

LO OP

LP Foreign Agent

Correspondent Node

Mobile Node

Mobile Node

Tunnel

Movement

Data Flow

Fig. 1 Mobile IP operations

2.2 The Assumptions and Problem Definitions

When the number of MNs registered with the home
network increases, the workload of managing and relaying
packets will fall on an HA. Once the only one HA fails, all
MNs managed by the HA will not receive packets normally.
Therefore, multiple mobility agents (MA) can be used to
deal with this problem. In our model, we have some
assumptions outlined as follows: 1) not more than one MA
of a home network will fail at the same time, 2) whenever an
MA fails, any data in the volatile media of the MA will be
gone, and can not be restored anymore, 3) the control
signals used in the proposed protocol will be reliable in the
network, and 4) when an MA recovers from the failed status,
no MA fails during the recovery.

Here for a home network with n MAs, our goal is that
if the MA memory is large enough, we can still service all
MNs registered with the home network, even when n-1 MAs
are failed. Besides, in order to save the memory usage, we
only need to maintain double mobility bindings in the whole
system; i.e., only one backup for an MA. The protocol
proposed here is transparent to MNs such that MNs are not
aware of any MA failures, and no upgraded software should
be installed within them.

3 FAULT-TOLERANT PROTOCOL

3.1 HA Table and Backup Table

In order to still service all MNs registered with a home
network even when more than one HA is failed, we must
maintain double mobility bindings in the whole system; i.e.,
one backup for an HA. A logical system framework is
illustrated as Fig. 2. A bi-directed graph is used to show the
takeover and backup relationships between HAs. Each node
represents a physical HA in the home network. The
underlined number inside a node indicates that it is acting as
a supervising HA (also a logical HA), whereas the other
numbers inside the node represent logical HAs that the
physical HA is taking over. Besides, the numbers labeled
outside a node represent logical HAs that the physical HA

backs up. Initially, the logical system framework as depicted
in Fig. 2 shows that only one logical HA acts on a physical
HA, and it is also a supervising HA. Besides, each physical
HA also backs up mobility bindings of the MNs registered
with another logical HA. However, after several alternate
failures and recoveries, a physical HA might take over or
back up more than one logical HAs at the same time. To
maintain the takeover and backup relationships between
HAs, two tables called HA table and Backup table are used
in each physical HA. HA table records 1) the logical HAs
(including the supervising HA) being taken over by the
physical HA, and 2) their backup locations. Besides, Backup
table records the backup HAs, thereby enabling the physical
HA to take over them when the logical HAs fail.

1

3

4

5

2

HA Backup location
140.125.32.4 140.125.32.3

Backup HA
140.125.32.5

HA Table

Backup Table

3

2

4

5

1
Backup HA
140.125.32.1

Backup HA
140.125.32.4

HA Backup location
140.125.32.3 140.125.32.2

HA Backup location
140.125.32.5 140.125.32.4

HA Backup location
140.125.32.2 140.125.32.1

HA Backup location
140.125.32.1 140.125.32.5

Backup HA
140.125.32.3

Backup HA
140.125.32.2

Fig. 2 Logical system framework

3.2 Failure Detection and HA Takeover

During the system operation, each physical HA in the
home network must monitor whether all related logical HAs
are alive or not. These related logical HAs includes the
supervising HAs where the logical HAs being taken over by
the physical HA are backed up (i.e., “Backup location” of
HA table), and the logical HAs of which bindings are
backed up here (i.e., “Backup HA” of Backup table). Here
agent advertisement messages sent by logical HAs are used
to check whether these logical HAs are alive or not. If a
physical HA receives an agent advertisement from a logical
HA persistently, the logical HA can be considered alive;
otherwise, it could be failed.

In a physical HA, each logical HA monitored here has
a timer Failure_timer. Whenever receiving an
advertisement message from a logical HA, the physical HA
would call procedure Adv_monitor() to reset the
corresponding Failure_timer with value Max_failure_time.
Besides, each physical HA would call procedure
Failure_detect() periodically to decrease all the timers by
one. If the timer of one logical HA expires, the HA is
considered failed. If the failed HA has the backups of the
logical HAs being taken over by the physical HA (i.e.,
“Backup location” of HA table), new backups should be
found for the takeover HAs. On the other hand, if the
backup of the failed HA is in the physical HA (i.e., “Backup
HA” of Backup table), the physical HA will take over the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

626

failed HA. Then, it also needs to find a new backup for the
failed HA. Procedure Adv_monitor() and Failure_detect()
are given as follows:

Procedure Adv_monitor(i){

Failure_timer[i] Max_failure_time;
}// Adv_monitor end

Procedure Failure_detect(){

For all monitored HAi
Failure_timer[i] Failure_timer[i]-1;

For all monitored HAj with timer=0
If (HAj exists in “Backup location” of HA table)

/* Find new backups for all corresponding
“HA”s of HA table */

For all HAk in “HA” of HA table
Select_backup(k);

Else Takeover(j);
/* Find a new backup for “Backup HA” of

Backup table */
Select_backup(j);

}// Failure_detect end

If a physical HA takes over a failed HA, it must
perform Gratuitous ARP mapping the IP address of the
failed HA to its physical address [7], and then fills the IP
address into its HA table. Afterward, the failed HA can be
operational on the physical HA, including sending agent
advertisements for the failed HA and forwarding packets to
the MNs registered with the failed HA. Procedure
Takeover() is given as follows:

Procedure Takeover(j){

Perform Gratuitous ARP for HAj;
Add HAj into ‘HA’ of HA table;
Send agent advertisements for HAj;
Forward packets to the MNs registered with HAj;

}// Takeover end

3.3 Selecting the Backup HA

After the failure of a physical HA, new backups
should be found for the takeover HAs or for the failed HA,
as mentioned in Section 3.2. Each backup action must be
performed individually. All physical HAs alive could be the
backup candidates as long as their remaining memory is
large enough to back up the HA. The physical HA selected
here should be the one with the lightest loading in the home
network. What we call the loading is based on the following
factors ordered by their priorities, such as 1) the numbers of
logical HAs backed up at the physical HA, 2) the number of
logical HAs acting on the physical HA, 3) the number of the
MNs which from other home networks, now are being
served by the physical HA, and 4) the remaining memory
size at the physical HA. If more than one new backup
should be found on a physical HA, the “Backup” message
for the takeover HA requiring more memory is issued before

the one requiring less memory, since the former has less
chances to find a new backup than the latter. Procedure
Select_backup() is described as follows:

Procedure Select_backup(j){
/* Each logical HA has a Tbk and a Backup_ACK_count */

Tbk 0;
Backup_ACK_count 0;
Send Backup messages to all physical HAs in the home
network;
Wait Backup_ACK messages for a period of time Tbk;
Tbk 1;
If (Backup_ACK_count=0)

Fill “fail” into “Backup location” of HA table;
Keep on waiting for other Backup_ACK messages;

/* Receiving multiple Backup_ACK messages during Tbk */
Else Compare the information from these Backup_ACK

 messages and choose one physical HAk with the
lightest loading;
Send Confirm message to the physical HAk;
Send Release messages to the other physical HAs;
Occupied_flag 1;
Fill HAk into “Backup location” of HA table;
Transmit bindings of the MNs registered with HAj to
the physical HAk;
Occupied_flag 0;

}// Select_backup end

In order to avoid that more than one logical HA selects
the same physical HA as the backup at the same time, a
semaphore is used to synchronize their backup actions. A
physical HA can reply to a Backup message only when it
can satisfy the memory requirement of the Backup message
and is not being “occupied” by other Backup message. The
synchronization among the physical HAs is accomplished
with message passing. Whenever a physical HA receives a
message, it would call procedure Message_handler() to
execute the corresponding action using multi-thread
techniques. As mentioned, since a physical HA can process
only one Backup message at a time, a semaphore is used to
synchronize these message-trigger threads. Procedure
Message_handler() is given as follows:

Procedure Message_handler(msg){

/* Occupied_flag: global flag for a physical HA,
S: semaphore initialized to 1 */

Switch(msg){
Case Backup

wait(S);
Occupied_flag 1;
/* Back_ACK contains loading information */
Reply Backup_ACK message;

break;

Case Backup_ACK

If (Tbk=0)
/* Receiving ACK before timeout */

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

627

Record the loading information in the message;
Backup_ACK_count Backup_ACK_count+1;

Else /* Receiving ACK after timeout */
If (the corresponding “Backup location” of HA

table=“fail”)
/* Choose the first sender as the backup */
Reply Confirm message;
Occupied_flag 1;
Fill the sender into “Backup location” of
HA table;
Transmit bindings of the MNs registered
with the takeover HA to the sender;
Occupied_flag 0;

Else Reply Release message;
break;

Case Confirm

Occupied_flag 0;
signal(S);
Fill the sender into “Backup HA” of Backup table;
Receive bindings of the MNs registered with the
sender;

break;

Case Release

Occupied_flag 0;
signal(S);

 break;

Case Balance

Occupied_flag 1;
/* Balance_ACK contains loading information */
Reply Balance_ACK message;

break;

Case Balance_ACK

Record the loading information in the message;
break;
}// Switch end

}// Message_handler end

Here the example as shown in Fig. 2 is used to explain
the HA takeover and backup. When the physical HA3 fails,
the physical HA2 will take over HA3 and also need to find a
new backup for HA3. Besides, since the physical HA3 backs
up HA4, the physical HA4 must find a new backup for HA4.
After the physical HA2 selects the physical HA1 as a new
backup for HA3 and the physical HA4 selects the physical
HA2 as a new backup for HA4, the statuses become as
shown in Fig. 3.

1

3

4

5

2 3

HA Backup location
140.125.32.4 140.125.32.5

Backup HA
140.125.32.2

HA Table

Backup Table

2
5

1
Backup HA
140.125.32.1

HA Backup location
140.125.32.5 140.125.32.4

HA Backup location
140.125.32.2 140.125.32.1
140.125.32.3 140.125.32.1

HA Backup location
140.125.32.1 140.125.32.5

Backup HA
140.125.32.4

Backup HA
140.125.32.2
140.125.32.3

3

4

Fig. 3 After the physical HA3 fails

4 HA RECOVERY

When a physical HA comes up from the failed state, it
immediately listens to whether any agent advertisement on
the link contains its IP address. If none (i.e., the physical HA
starts up for the first time), it performs Gratuitous ARP
mapping the IP address to its physical address, and start
functioning with no mobility bindings. On the contrary, in
addition to perform Gratuitous ARP, it must restore the
mobility bindings accumulated by the physical HA that took
over it when it failed. Procedure Recovery() is given as
follows:

Procedure Recovery(j){

If (no agent advertisement on the link, sent by HAk,
contains the IP address of HAj)
Perform Gratuitous ARP for HAj;
Add HAj into ‘HA’ of HA table;
Send agent advertisements for HAj;
Choose the precedent physical HAi as the backup of
HAj;
Fill HAi into “Backup location” of HA table;
Transmit bindings of the MNs registered with HAj to
the physical HAi;

Else Perform Gratuitous ARP for HAj;
Add HAj into ‘HA’ of HA table;
Send agent advertisements for HAj;
Get backup location and mobility bindings of HAj
from HAk;
Fill the backup location into “Backup location” of HA
table;
Forward packets to the MNs registered with HAj;

Balance();
}// Recovery end

After a physical HA recovers from crash, the HA
loading in the home network, such as the number of
takeover HAs and backup HAs, will be balanced. The
recovered physical HA is responsible for issuing balance
signals to all physical HAs in the home network. After
gathering the loading information from other physical HAs,
the recovered HA can start the deducing process to reassign
the takeover HAs and backup HAs in the home network.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

628

Procedure Balance() is omitted here.

5 PERFORMANCE EVALUATIONS

5.1 Simulation Model

The simulation model is illustrated in Fig. 4. Five
packet generators are used to generate MN_pk, MN_re_reg,
MN_mv_reg, FMN_pk, and FMN_reg packets, respectively.
These packets are submitted to waiting queues of MAs in
the home network, and their flow paths are described in Fig.
5. Each MA would process different packet types with
different processing costs and flows. The simulation was
done using GPSS World developed by Minuteman Software,
Inc.

MN_pk generator MN_re_reg generator MN_mv_reg generator FMN_pk generator FMN_reg generator

Terminate packets

••••••

Processing
cost

FMN_reg_reply

MA

1

Packet
queue

2 3

MN_reg_fw?

yes

no
MN_reg_fwreply?

FMN_reg

MN_pk
FMN_pk

no

MN_re_reg
MN_mv_reg
MN_reg_fw
MN_reg_fwreply
FMN_reg_reply

yes
MN_reg_fwreply

3

FMN_reg_reply

MN_reg_fw

Back to
active site

yes

To backup site

FMN_reg_reply

MA

1

Packet
queue

2 3

MN_reg_fw?

yes

no
MN_reg_fwreply?

FMN_reg

MN_pk
FMN_pk

no

MN_re_reg
MN_mv_reg
MN_reg_fw
MN_reg_fwreply
FMN_reg_reply

yes
MN_reg_fwreply

3

FMN_reg_reply

MN_reg_fw

Back to
active site

yes

To backup site

no no

Fig. 4 Simulation model

MN

 MN
CN

FA HA

FA

 MN

FA

HA

1

2

34

5 1 MN_pk
2 MN_re_reg
3 MN_mv_reg
4 FMN_pk
5 FMN_reg

Fig. 5 Flow paths of generated packets

5.2 Experimental Results

Experiment 1: overheads of different MN numbers

In the experiment, we observe the overheads of our
method and FTMIP [4]. Those include registration delay,
extra registration messages (i.e., registration forwarding and
registration forwarding reply), and average numbers of
bindings maintained per HA. The registration delay is the
interval between the time an HA receives a registration
request and the time it finishes processing the corresponding
reply from its backup site. As shown in Fig. 6(a) and Fig.
6(b), our method has less registration delay and less extra
registration messages than FTMIP. The reason is that, in

FTMIP, each HA maintains all bindings of MNs registered
with other peers, and thus an HA must wait all other peers to
complete binding synchronization when it receives a
registration request from its MN. The situation would be
worse especially when there are more MNs registered in the
network. Besides, we also plot the binding numbers
maintained per HA in both methods, as shown in Fig. 6(c).

0
20
40
60
80

100
120
140

10
0

20
0

30
0

40
0

50
0

MN number

R
eg

is
tra

tio
n

de
la

y
(s

ec
.)

Ours
FTMIP

Fig. 6(a) Registration delay of different MN numbers

0
500

1000
1500
2000
2500
3000

10
0

20
0

30
0

40
0

50
0

MN number

Ex
tra

 re
gi

st
ra

tio
n

m
es

sa
ge

s
(th

ou
sa

nd
) Ours

FTMIP

Fig. 6(b) Extra registration messages of different MN

numbers

0
100
200
300
400
500
600

100 150 200 250 300 350 400 450 500

MN number

B
in

di
ng

s p
er

 H
A Ours

FTMIP

Fig. 6(c) Bindings per HA of different MN numbers

Experiment 2: overheads of different mobility rates

In the experiment, we observe the registration delay
and registration forwarding number for total 300 MNs with
different mobility rates. As shown in Fig. 7(a) and Fig. 7(b),
we found that our method has smoother overheads than
FTMIP, regardless of the registration delay and registration
forwarding number, when considering different mobility
rates.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

629

0
2
4
6
8

10
12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mobility rate

R
eg

is
tra

tio
n

de
la

y
(m

s)

Ours
FTMIP

Fig. 7(a) Registration delay of different mobility rates

0

500

1000

1500

2000

0.1 0.3 0.5 0.7 0.9

Mobility rate

Ex
tra

 re
gi

st
ra

tio
n

m
es

sa
ge

s
(th

ou
sa

nd
)

Ours
FTMIP

Fig. 7(b) Extra registration messages of different mobility

rates

Experiment 3: effects with/without doing balance during HA
recovery

In the experiment, after eight HAs are failed, we make
the HAs recover from failure one by one in order to observe
the effect on the system performance with/without doing
balance during HA recovery. As shown in Fig. 8, we found
that the registration delay without doing balance are
obviously much longer than that with doing balance unless
the number of alive HAs is more than half of the total HA
number.

0
20
40
60
80

100
120

1 2 3 4 5 6 7

Recovered HA numbers

R
eg

is
tra

tio
n

de
la

y
(s

ec
.)

Balance
No balance

Fig. 8 Registration delay of different recovered HA numbers

6 CONCLUSIONS

In this paper, we point out some drawbacks of
previous fault tolerant protocols for Mobile IP, such as

longer registration delay, maintaining all bindings of MNs in
each HA, and a single point failure or even a performance
bottleneck based on centralized managements. Here we
propose a novel distributed protocol only maintaining
double mobility bindings in the whole system. Our method
issues less extra registration messages in order to prevent
long registration delay. Besides, we also consider the load
balancing during HA takeover and recovery to make the
system performance more efficient. Through the
experiments, we found that our method has less registration
overheads, better MN-scalability, and less sensitivity on MN
mobility than others.

REFERENCES

[1] JinHo Ahn and ChongSun Hwang, “Efficient
fault-tolerant protocol for mobility agents in mobile
IP,” Proc. 15th International Conference on Parallel
and Distributed Processing Symposium, 2001, pp.
1273-1280.

[2] B. Chambless and J. Binkley, “HARP – home agent
redundancy protocol,” IETF Draft, 1997.

[3] R. Droms, “Dynamic host configuration protocol,”
IETF RFC 1541, 1993.

[4] R. Ghosh and G. Varghese, “Fault-tolerant mobile IP,”
Technical Report WUCS-98-11, Washington
University, 1998.

[5] C. E. Perkins, “IP mobility support,” IETF RFC 2002,
1996.

[6] C. E. Perkins, Mobile IP: Design Principles and
Practices, Addison-Wesley Longman, Reading, Mass.,
1998.

[7] D. C. Plummer, “An Ethernet address resolution
protocol-or-converting Network protocol address to
48 bit Ethernet address for transmission on Ethernet
hardware,” IETF RFC 826, 1982.

[8] J. Postel, “Internet protocol,” IETF RFC 791, 1981.
[9] J. Postel, “Transmission control protocol,” IETF RFC

793, 1981.
[10] J. D. Solomon, Mobile IP: The Internet Unplugged,

Prentice-Hall, Upper Saddle River, NJ, 1998.
[11] A. Vasilache, Jie Li, and H. Kameda, “Load balancing

policies for multiple home agents mobile IP
networks,” Proc. 2nd International Conference on Web
Information Systems Engineering, 2001, pp.
178 –185.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

630

