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ABSTRACT 

In the conventional IP protocol, whenever a mobile 
device moves to a different network, it must change its IP 
address to communicate with other nodes in the Internet. 
Mobile IP protocol keeps mobile nodes online without 
changing theirs IP addresses while changing the attachment 
points. The packets destined to MNs are relayed by their 
HAs. However, once the only one HA fails, all MNs 
managed by the HA will not receive packets normally. In the 
paper, we propose a novel protocol with multiple MAs 
where only double mobility bindings are maintained in the 
whole system. When an HA is failed, its backup HA can 
take over it in a short time without fetching the bindings 
from other places. Besides, we also consider the load 
balancing between these HAs during HA takeover and 
recovery. Through the simulation, we observe that our 
method has less registration overheads, better 
MN-scalability and less sensitivity on MN mobility than 
others. 
 
1 INTRODUCTION 
 

Due to the development of the wireless technology, 
many personal information products such as laptops, 
personal digital assistants (PDA), and cell phones are 
equipped with a wireless communication interface, thereby 
bringing the convenience for people. However it has some 
problems when the current TCP/IP protocol [8, 9] works on 
these portable devices, since the TCP/IP protocol was 
designed under the assumption that the end-points are 
stationary. When a mobile node (MN) moves to another 
network without changing its IP address, it will not receive 
the packets destined to it. These packets still route to the 
home network of the MN, but not to the current attachment 
point. Thus, the work group of IETF (Internet Engineering 
Task Force) develops the Mobile IP protocol [5, 6, 10] to 
overcome the problems. 

In a single MA system, it will face to the challenges 
such as efficiency and robustness when the supervised MN 
number increases dramatically. Thus some methods with 
multiple MAs were proposed to solve this problem [1, 2, 4], 
and even concerned about the load balancing between these 
MAs [11]. In [4], each HA in the home network must 
maintain mobility bindings of all MNs registered with the 
network, even if it only manages a portion of these MNs. In 
[1], there exists a stable storage to keep all mobility bindings 
in the network. However, the stable storage forms a single 

point failure. To solve the problems above, we propose a 
novel protocol with multiple MAs where only double 
mobility bindings are maintained in the whole system; i.e., 
only one backup for an MA. When an HA is failed, its 
backup HA can take over it in a short time without fetching 
the bindings from other places. Besides, we also consider 
the load balancing between these MAs. We always select the 
lightest loading HA as a new backup when the old backup 
HA takes over the failed HA. In summary, our method has 
less registration overheads, better MN-scalability, and less 
sensitivity on MN mobility than others. 

The remainder of the paper is organized as follows. In 
Section 2, we briefly introduce the concepts of Mobile IP. In 
addition, the system model with assumptions and problem 
definitions is described in the section. Then the fault-tolerant 
protocol involving failure detection, HA takeover, and 
backup selection is proposed in Section 3. In Section 4, we 
describe HA recovery when an HA comes up from crash. A 
simulation model is presented to evaluate the system 
performance in Section 5. Finally, we make conclusions in 
Section 6. 
 
2 SYSTEM MODEL 
 
2.1 Mobile IP 
 

A mobile IP protocol consists of the following 
components: 1) mobile nodes (MN), 2) home agents (HA), 3) 
foreign agents (FA), and 4) correspondent nodes (CN). Basic 
mobile IP operations are shown in Fig. 1. A mobility agent 
(HA or FA) transmits agent advertisements periodically to 
advertise its services on a link. Mobile nodes use these 
advertisements to determine their current point of 
attachment to the Internet. When an MN stays in a home 
network, it can receive and send packets according to the 
conventional IP protocol, just like the other stationary nodes 
in the network. Whenever the MN moves away from the 
home network into a foreign network, the MN will obtain a 
care-of-address (COA) from the foreign network. There are 
two ways to obtain a COA. First, if the MN finds an FA in 
the foreign network, it can register with the FA and acquire a 
care-of-address using the agent discovery protocol. Second, 
if the MN finds no FA, it can obtain a collocated care-of- 
address assigned by using the DHCP protocol [3]. After 
getting a COA, the MN must register with its HA. If the HA 
accepts its registration, the HA will update the mapping 
between the home address and the newest COA of the MN, 
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called mobility binding, and then send a registration reply to 
the MN. 
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Fig. 1 Mobile IP operations 

 
2.2 The Assumptions and Problem Definitions 
 

When the number of MNs registered with the home 
network increases, the workload of managing and relaying 
packets will fall on an HA. Once the only one HA fails, all 
MNs managed by the HA will not receive packets normally. 
Therefore, multiple mobility agents (MA) can be used to 
deal with this problem. In our model, we have some 
assumptions outlined as follows: 1) not more than one MA 
of a home network will fail at the same time, 2) whenever an 
MA fails, any data in the volatile media of the MA will be 
gone, and can not be restored anymore, 3) the control 
signals used in the proposed protocol will be reliable in the 
network, and 4) when an MA recovers from the failed status, 
no MA fails during the recovery. 

Here for a home network with n MAs, our goal is that 
if the MA memory is large enough, we can still service all 
MNs registered with the home network, even when n-1 MAs 
are failed. Besides, in order to save the memory usage, we 
only need to maintain double mobility bindings in the whole 
system; i.e., only one backup for an MA. The protocol 
proposed here is transparent to MNs such that MNs are not 
aware of any MA failures, and no upgraded software should 
be installed within them. 
 
3 FAULT-TOLERANT PROTOCOL 
 
3.1 HA Table and Backup Table 
 

In order to still service all MNs registered with a home 
network even when more than one HA is failed, we must 
maintain double mobility bindings in the whole system; i.e., 
one backup for an HA. A logical system framework is 
illustrated as Fig. 2. A bi-directed graph is used to show the 
takeover and backup relationships between HAs. Each node 
represents a physical HA in the home network. The 
underlined number inside a node indicates that it is acting as 
a supervising HA (also a logical HA), whereas the other 
numbers inside the node represent logical HAs that the 
physical HA is taking over. Besides, the numbers labeled 
outside a node represent logical HAs that the physical HA 

backs up. Initially, the logical system framework as depicted 
in Fig. 2 shows that only one logical HA acts on a physical 
HA, and it is also a supervising HA. Besides, each physical 
HA also backs up mobility bindings of the MNs registered 
with another logical HA. However, after several alternate 
failures and recoveries, a physical HA might take over or 
back up more than one logical HAs at the same time. To 
maintain the takeover and backup relationships between 
HAs, two tables called HA table and Backup table are used 
in each physical HA. HA table records 1) the logical HAs 
(including the supervising HA) being taken over by the 
physical HA, and 2) their backup locations. Besides, Backup 
table records the backup HAs, thereby enabling the physical 
HA to take over them when the logical HAs fail. 
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Fig. 2 Logical system framework 

 
3.2 Failure Detection and HA Takeover 
 

During the system operation, each physical HA in the 
home network must monitor whether all related logical HAs 
are alive or not. These related logical HAs includes the 
supervising HAs where the logical HAs being taken over by 
the physical HA are backed up (i.e., “Backup location” of 
HA table), and the logical HAs of which bindings are 
backed up here (i.e., “Backup HA” of Backup table). Here 
agent advertisement messages sent by logical HAs are used 
to check whether these logical HAs are alive or not. If a 
physical HA receives an agent advertisement from a logical 
HA persistently, the logical HA can be considered alive; 
otherwise, it could be failed. 

In a physical HA, each logical HA monitored here has 
a timer Failure_timer. Whenever receiving an 
advertisement message from a logical HA, the physical HA 
would call procedure Adv_monitor( ) to reset the 
corresponding Failure_timer with value Max_failure_time. 
Besides, each physical HA would call procedure 
Failure_detect( ) periodically to decrease all the timers by 
one. If the timer of one logical HA expires, the HA is 
considered failed. If the failed HA has the backups of the 
logical HAs being taken over by the physical HA (i.e., 
“Backup location” of HA table), new backups should be 
found for the takeover HAs. On the other hand, if the 
backup of the failed HA is in the physical HA (i.e., “Backup 
HA” of Backup table), the physical HA will take over the 
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failed HA. Then, it also needs to find a new backup for the 
failed HA. Procedure Adv_monitor( ) and Failure_detect( ) 
are given as follows: 
 
Procedure Adv_monitor(i){ 

Failure_timer[i] Max_failure_time; 
}// Adv_monitor end 
 
Procedure Failure_detect( ){ 

For all monitored HAi 
Failure_timer[i] Failure_timer[i]-1; 

For all monitored HAj with timer=0 
If (HAj exists in “Backup location” of HA table) 

/* Find new backups for all corresponding 
“HA”s of HA table */ 

For all HAk in “HA” of HA table 
Select_backup(k); 

Else Takeover(j); 
/* Find a new backup for “Backup HA” of 

Backup table */ 
Select_backup(j); 

}// Failure_detect end 
 

If a physical HA takes over a failed HA, it must 
perform Gratuitous ARP mapping the IP address of the 
failed HA to its physical address [7], and then fills the IP 
address into its HA table. Afterward, the failed HA can be 
operational on the physical HA, including sending agent 
advertisements for the failed HA and forwarding packets to 
the MNs registered with the failed HA. Procedure 
Takeover( ) is given as follows: 
 
Procedure Takeover(j){ 

Perform Gratuitous ARP for HAj; 
Add HAj into ‘HA’ of HA table; 
Send agent advertisements for HAj; 
Forward packets to the MNs registered with HAj; 

}// Takeover end 
 
3.3 Selecting the Backup HA 
 

After the failure of a physical HA, new backups 
should be found for the takeover HAs or for the failed HA, 
as mentioned in Section 3.2. Each backup action must be 
performed individually. All physical HAs alive could be the 
backup candidates as long as their remaining memory is 
large enough to back up the HA. The physical HA selected 
here should be the one with the lightest loading in the home 
network. What we call the loading is based on the following 
factors ordered by their priorities, such as 1) the numbers of 
logical HAs backed up at the physical HA, 2) the number of 
logical HAs acting on the physical HA, 3) the number of the 
MNs which from other home networks, now are being 
served by the physical HA, and 4) the remaining memory 
size at the physical HA. If more than one new backup 
should be found on a physical HA, the “Backup” message 
for the takeover HA requiring more memory is issued before 

the one requiring less memory, since the former has less 
chances to find a new backup than the latter. Procedure 
Select_backup( ) is described as follows: 
 
Procedure Select_backup(j){ 
/* Each logical HA has a Tbk and a Backup_ACK_count */ 

Tbk 0; 
Backup_ACK_count 0; 
Send Backup messages to all physical HAs in the home 
network; 
Wait Backup_ACK messages for a period of time Tbk; 
Tbk 1; 
If (Backup_ACK_count=0) 

Fill “fail” into “Backup location” of HA table; 
Keep on waiting for other Backup_ACK messages; 

/* Receiving multiple Backup_ACK messages during Tbk */ 
Else Compare the information from these Backup_ACK 

  messages and choose one physical HAk with the 
lightest loading; 
Send Confirm message to the physical HAk; 
Send Release messages to the other physical HAs; 
Occupied_flag 1; 
Fill HAk into “Backup location” of HA table; 
Transmit bindings of the MNs registered with HAj to 
the physical HAk; 
Occupied_flag 0; 

}// Select_backup end 
 

In order to avoid that more than one logical HA selects 
the same physical HA as the backup at the same time, a 
semaphore is used to synchronize their backup actions. A 
physical HA can reply to a Backup message only when it 
can satisfy the memory requirement of the Backup message 
and is not being “occupied” by other Backup message. The 
synchronization among the physical HAs is accomplished 
with message passing. Whenever a physical HA receives a 
message, it would call procedure Message_handler( ) to 
execute the corresponding action using multi-thread 
techniques. As mentioned, since a physical HA can process 
only one Backup message at a time, a semaphore is used to 
synchronize these message-trigger threads. Procedure 
Message_handler( ) is given as follows: 
 
Procedure Message_handler(msg){ 

/* Occupied_flag: global flag for a physical HA, 
S: semaphore initialized to 1 */ 

Switch(msg){ 
Case Backup 

wait(S); 
Occupied_flag 1; 
/* Back_ACK contains loading information */ 
Reply Backup_ACK message; 

break; 
 
Case Backup_ACK 

If (Tbk=0) 
/* Receiving ACK before timeout */ 
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Record the loading information in the message; 
Backup_ACK_count Backup_ACK_count+1; 

Else /* Receiving ACK after timeout */ 
If (the corresponding “Backup location” of HA 

table=“fail”) 
/* Choose the first sender as the backup */ 
Reply Confirm message; 
Occupied_flag 1; 
Fill the sender into “Backup location” of 
HA table; 
Transmit bindings of the MNs registered 
with the takeover HA to the sender; 
Occupied_flag 0; 

Else Reply Release message; 
break; 
 
Case Confirm 

Occupied_flag 0; 
signal(S); 
Fill the sender into “Backup HA” of Backup table; 
Receive bindings of the MNs registered with the 
sender; 

break; 
 
Case Release 

Occupied_flag 0; 
signal(S); 

 break; 
 
Case Balance 

Occupied_flag 1; 
/* Balance_ACK contains loading information */ 
Reply Balance_ACK message; 

break; 
 
Case Balance_ACK 

Record the loading information in the message; 
break; 
}// Switch end 

}// Message_handler end 
 

Here the example as shown in Fig. 2 is used to explain 
the HA takeover and backup. When the physical HA3 fails, 
the physical HA2 will take over HA3 and also need to find a 
new backup for HA3. Besides, since the physical HA3 backs 
up HA4, the physical HA4 must find a new backup for HA4. 
After the physical HA2 selects the physical HA1 as a new 
backup for HA3 and the physical HA4 selects the physical 
HA2 as a new backup for HA4, the statuses become as 
shown in Fig. 3. 
 

1

3

4

5

2 3

HA Backup location
140.125.32.4 140.125.32.5

Backup HA
140.125.32.2

HA Table

Backup Table

2
5

1
Backup HA
140.125.32.1

HA Backup location
140.125.32.5 140.125.32.4

HA Backup location
140.125.32.2 140.125.32.1
140.125.32.3 140.125.32.1

HA Backup location
140.125.32.1 140.125.32.5

Backup HA
140.125.32.4

Backup HA
140.125.32.2
140.125.32.3

3

4

 
Fig. 3 After the physical HA3 fails 

 
4 HA RECOVERY 
 

When a physical HA comes up from the failed state, it 
immediately listens to whether any agent advertisement on 
the link contains its IP address. If none (i.e., the physical HA 
starts up for the first time), it performs Gratuitous ARP 
mapping the IP address to its physical address, and start 
functioning with no mobility bindings. On the contrary, in 
addition to perform Gratuitous ARP, it must restore the 
mobility bindings accumulated by the physical HA that took 
over it when it failed. Procedure Recovery( ) is given as 
follows: 
 
Procedure Recovery(j){ 

If (no agent advertisement on the link, sent by HAk, 
contains the IP address of HAj) 
Perform Gratuitous ARP for HAj; 
Add HAj into ‘HA’ of HA table; 
Send agent advertisements for HAj; 
Choose the precedent physical HAi as the backup of 
HAj; 
Fill HAi into “Backup location” of HA table; 
Transmit bindings of the MNs registered with HAj to 
the physical HAi; 

Else Perform Gratuitous ARP for HAj; 
Add HAj into ‘HA’ of HA table; 
Send agent advertisements for HAj; 
Get backup location and mobility bindings of HAj 
from HAk; 
Fill the backup location into “Backup location” of HA 
table; 
Forward packets to the MNs registered with HAj; 

Balance( ); 
}// Recovery end 
 

After a physical HA recovers from crash, the HA 
loading in the home network, such as the number of 
takeover HAs and backup HAs, will be balanced. The 
recovered physical HA is responsible for issuing balance 
signals to all physical HAs in the home network. After 
gathering the loading information from other physical HAs, 
the recovered HA can start the deducing process to reassign 
the takeover HAs and backup HAs in the home network. 
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Procedure Balance( ) is omitted here. 
 
5 PERFORMANCE EVALUATIONS 
 
5.1 Simulation Model 
 

The simulation model is illustrated in Fig. 4. Five 
packet generators are used to generate MN_pk, MN_re_reg, 
MN_mv_reg, FMN_pk, and FMN_reg packets, respectively. 
These packets are submitted to waiting queues of MAs in 
the home network, and their flow paths are described in Fig. 
5. Each MA would process different packet types with 
different processing costs and flows. The simulation was 
done using GPSS World developed by Minuteman Software, 
Inc. 
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Fig. 4 Simulation model 
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5.2 Experimental Results 
 
Experiment 1: overheads of different MN numbers 
 

In the experiment, we observe the overheads of our 
method and FTMIP [4]. Those include registration delay, 
extra registration messages (i.e., registration forwarding and 
registration forwarding reply), and average numbers of 
bindings maintained per HA. The registration delay is the 
interval between the time an HA receives a registration 
request and the time it finishes processing the corresponding 
reply from its backup site. As shown in Fig. 6(a) and Fig. 
6(b), our method has less registration delay and less extra 
registration messages than FTMIP. The reason is that, in 

FTMIP, each HA maintains all bindings of MNs registered 
with other peers, and thus an HA must wait all other peers to 
complete binding synchronization when it receives a 
registration request from its MN. The situation would be 
worse especially when there are more MNs registered in the 
network. Besides, we also plot the binding numbers 
maintained per HA in both methods, as shown in Fig. 6(c). 
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Fig. 6(a) Registration delay of different MN numbers 
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Fig. 6(b) Extra registration messages of different MN 

numbers 
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Fig. 6(c) Bindings per HA of different MN numbers 

 
Experiment 2: overheads of different mobility rates 
 

In the experiment, we observe the registration delay 
and registration forwarding number for total 300 MNs with 
different mobility rates. As shown in Fig. 7(a) and Fig. 7(b), 
we found that our method has smoother overheads than 
FTMIP, regardless of the registration delay and registration 
forwarding number, when considering different mobility 
rates. 
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Fig. 7(a) Registration delay of different mobility rates 
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Fig. 7(b) Extra registration messages of different mobility 

rates 
 
Experiment 3: effects with/without doing balance during HA 
recovery 
 

In the experiment, after eight HAs are failed, we make 
the HAs recover from failure one by one in order to observe 
the effect on the system performance with/without doing 
balance during HA recovery. As shown in Fig. 8, we found 
that the registration delay without doing balance are 
obviously much longer than that with doing balance unless 
the number of alive HAs is more than half of the total HA 
number. 
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Fig. 8 Registration delay of different recovered HA numbers 
 
6 CONCLUSIONS 
 

In this paper, we point out some drawbacks of 
previous fault tolerant protocols for Mobile IP, such as 

longer registration delay, maintaining all bindings of MNs in 
each HA, and a single point failure or even a performance 
bottleneck based on centralized managements. Here we 
propose a novel distributed protocol only maintaining 
double mobility bindings in the whole system. Our method 
issues less extra registration messages in order to prevent 
long registration delay. Besides, we also consider the load 
balancing during HA takeover and recovery to make the 
system performance more efficient. Through the 
experiments, we found that our method has less registration 
overheads, better MN-scalability, and less sensitivity on MN 
mobility than others. 
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