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Abstract-We consider the problem of sequential fault 
diagnosis in hypercube multiprocessor system under 
the PMC model. The diagnosability is defined as the 
ability to provide a correct and complete diagnosis. 
In this paper, we proposed a novel and simple 
sequential diagnosis method called the Major 
Aggregate (MA) Algorithm. Moreover, the lower 
bound of diagnosability in our method is proved as 
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1. Introduction 
 

Large multiprocessor systems play a getting 
important role in high-performance computing. 
Meanwhile, it becomes an important issue to develop 
practical techniques for the fault diagnosis of such 
systems. System-level fault diagnosis is to identify 
faults in a system to the processor level. The system-
level diagnosis has been extensively studied in the 
literature in connection with fault-tolerant multi-
processor systems. An original graph-theoretical 
model, as well as PMC model for system diagnosis, 
which have been introduced by Preparata, Metze and 
Chien [1]. Adapting this model to the hypercube 
systems, each node can test all its neighboring nodes 
to determine whether they are faulty or non-faulty 
from its own viewpoint. A non-faulty testing node 
always gives reliable test results, whereas a faulty 
one provide any test results regardless of the status 
of the tested node. A set of test results is called the 
syndrome of the system. For global diagnosis, all the 
syndromes are gathered by a special monitoring 
processor, which is called syndrome analyzer and 
proceeds to determine the status of all nodes on this 
basis. 

The currently available methods for system-
level diagnosis can be broadly categorized into 
deterministic and probabilistic methods. 

Deterministic diagnosis methods are defined as those 
methods, in which the entire fault set (or a well 
defined subset of the fault set) can be uniquely 
identified from the syndrome provided that certain 
assumptions on the structure of the testing graph and 
the behavior of faulty and non-faulty nodes are 
satisfied. By contrast, probabilistic diagnosis 
methods [6] that only attempt to correctly diagnose 
faulty nodes with high probability and require no 
restrictive assumptions on the structure of the testing 
graph. 

In the deterministic diagnosis methods, which 
are the concern in this paper, a certain restriction is 
imposed on the faulty hypercube systems, such as 
diagnosability. The diagnosability of a system under 
the selected diagnosis strategy is the maximum 
number of faulty nodes that can exist in a system at 
any given time without invalidating the diagnosis 
strategy. Thus a system is said to be t-diagnosable if 
all faulty nodes within the system can be identified 
that the number of faulty nodes does not exceed t. A 
large number of extensions of PMC model have been 
proposed in order to expand the range of 
applicability of the diagnosis model. These includes 
one-step [11], pessimistic [4, 14], adaptive [12, 13] 
and sequential [1, 3, 5-7] diagnosis strategies. The 
efforts of one-step diagnosis (or diagnosis without 
repair) are made to locate all faulty nodes in one test 
phase, and thereafter the repair phase, in which all 
identified faulty nodes are repaired follows. Later 
Friedman and Kavianpour [14] proposed a strategy 
under which a set of fewer nodes containing all 
faulty nodes and possibly some nodes of unknown 
status were identified and repaired. This strategy is 
called a pessimistic diagnosis strategy. In adaptive 
diagnosis, the next test can be determined after 
seeing the result of previous ones. The adaptive 
diagnosis of the hypercube systems was studied in 
[12] for the first time. Instead of higher 
diagnosability, the object of adaptive diagnosis is to 
minimize the number of tests and the number of 
testing rounds. Sequential diagnosis is also known as 
diagnosis with repair [1] done in stages with 
previously identified faulty nodes replaced at each 
stage. Since one-step diagnosability of a system is 
limited above by the minimum of the node in-
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degrees [1], sequential diagnosis is more feasible 
under realistic fault situations.  

Sequential diagnosis of hypercubes has been 
addressed in several papers. In [5], Kavianpour and 
Kim presented a sequential diagnosis strategy that 
the diagnosability of this strategy is 

( )ddt 2⋅Θ∈ . Khanna and Fuchs [7] introduced 
a cluster-based sequential diagnosis algorithm for 
hypercubes. The algorithm also has diagnosability 

( )ddt 2⋅Θ∈ . In [6], the same authors 
introduced the PARTITIOIN sequential diagnosis 
algorithm for regular graphs. When it applied to 

hypercubes, the diagnosability is ⎟⎟
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⎞
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In this paper, we proposed a novel and simple 
sequential diagnosis method called the Major 
Aggregate (MA) Algorithm. Moreover, the lower 
bound of diagnosability in our method is proved as 
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 of a d-dimensional hypercube. This result 

obviously improves the best lower bound of 
diagnosability in previous researches. 

The paper is organized as follows: In section 2, 
preliminary definitions are introduced. In Section 3, 
the lower bound of diagnosability is discussed and 
proved. We also presented a novel sequential 
diagnosis algorithm and the performance analysis. 
Section 4 describes the improvement and 
comparison of previous research. Finally, Section 5 
draws some conclusions. 
 
2. Preliminaries 
 

A d-dimensional hypercube system or d-
hypercube for short is composed of 2d nodes and 
modeled as an undirected graph G. Each node u is 
labeled with a d-digits binary unique identifier. 
Nodes are connected based on the Hamming distance 
of their labels: edge(u, v) exists iff the Hamming 
distance of the labels of u and v is 1. We use V(G) 
and E(G) to represent the set of nodes and 
communication links respectively. 

In order to concisely represent the performance 
characteristics of our algorithm for a given graph, a 
three-tuple notation of the form <tF, tT, tI> is used 
where tF is a lower bound on the degree of 
diagnosability, tT is an upper bound on the testing 
and syndrome decoding time, and tI denotes an upper 
bound on the number of iterations of diagnosis and 
repair needed by the algorithm. 

In the PMC model [1], diagnosis is based on a 
suitable set of tests between adjacent nodes. For each 
edge (u, v)∈E(G), let node u and v perform tests on 
one another. It assumes that tests of faulty (or fault-
free) nodes performed by fault-free nodes always 

return 1 (or 0), while the test outcome of tests 
performed by faulty nodes is arbitrary.  

The outcomes of the 2|E(G)| tests can be 
abstracted into a labeled undirected graph called the 
syndrome graph GS. Then V(GS) = V(G) and E(GS) 
simply consists of the edges in E(G) with labels. An 
edge(u, v) is labeled as “pass” if the outcome of u 
test v is 0 and vice versa. Similarly, an edge(u, v) is 
labeled as “fail” if both outcomes of that u and v test 
each other are 1. Any other edges are given label 
“conflict”.  

An aggregate A is a connected component of 
node set in the syndrome graph GS. An aggregate A 
is a P-aggregate if every edge in A is labeled as 
“pass”. Lemma 1 characterizes the important 
property of P-aggregate in the syndrome graph. 
 
Lemma 1. All nodes in a P-aggregate are either 
complete fault-free or complete faulty. 
 

Because both nodes on edge labeled as “pass” 
must be the same state, lemma 1 is immediately 
proved. 

Since all nodes in this connected component are 
in the same state, the cardinality of a P-aggregate 
provides significant information for diagnosis 
algorithms. For example in [6], Khanna and Fuchs 
applied the cardinality of P-aggregate to be the 
criterion of fault-free subset identification. The main 
idea of the PARTITION algorithm is that under the 
assumption of diagnosability t, actual number of 
faulty nodes |Vf(G)| will not exceed t (i.e. |Vf(G)| ≤ t). 
Therefore, if the cardinality of a P-aggregate is 
larger than the actual number of faulty nodes |Vf(G)|, 
then one can declare the whole nodes in this 
aggregate is fault-free. 

According to the analysis in the above section, 
the issue of these aggregate-based methods can be 
transferred to the problem of determining the bound 
of diagnosability. Khanna and Fuchs [6] derived a 
lower bound to diagnosability of hypercubes is 

⎟
⎠
⎞

⎜
⎝
⎛⋅=

d
dNt logδ  for a nonnegativeδ < 1 and 

sufficiently large N (N = 2d). Although this result is 
surprising high, the exact value of coefficient δ was 
not given and δ  approaches to 1 only when N 
approaches infinity. Caruso et al. [2] went a step 
further to verify the same lower bound of 
diagnosability provided in [6]. They circumvented 
some difficulty of involved computational problems 
by devising approximations which rely on edge-
isoperimetric inequalities of regular graphs. 

 
3. A New Sequential Diagnosis Algorithm 

 
We introduced here a nwe sequential diagnosis 

algorithm called the Major Aggregate (or MA) 
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algorithm, which can obviously improve the 
diagnosability for hypercubes. 

 
3.1. Vertex-isoperimetric inequality 
 

Before introducing our algorithm, let us review 
an important theorem which determined the 
minimum number of boundary nodes to an aggregate. 
Given any u, v∈V(G), the distance between u and v 
is the length of the shortest path from u to v and is 
denoted d(u, v). Since G is undirected, d(u, v) = d(v, 
u) and d(u, v) can be used as a metric on G. Given 
any A V(G), let d(A, v) = min{ d(u, v) : u⊆ ∈A }. 
Observe that d(A, v) = 0 if and only if v⊆A. 
 
Definition (vertex boundary). Given any A V(G), 
the vertex boundary of A, denoted as , is defined 
as the set of vertices at distance at most 1 from A, 
formally,  = { v∈V(G) : d(A, v) ≤ 1 }. 

⊆
A∂

A∂
 
Definition (vertex-isoperimetric inequality). A 
vertex-isoperimetric inequality for a graph G is 
defined by a function g(m) such that | | ≥ g(m) for 
any A⊆V(G) with |A| = m. 

A∂

 
In general, many vertex-isoperimetric 

inequalities for a given graph G can be defined. A 
vertex-isoperimetric inequality for hypercubes has 
been derived in [15], [16], and is stated in the 
following theorem. 
 
Theorem 1. Let G be the d-dimensional hypercube 
and let A V(G), with |A| = m. Then, |⊆ A∂ | 

≥ , where ∑ +
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From theorem 1, the minimum number of 

boundary nodes of aggregate A1 is 1+  when A d
rC 1 is 

a Hamming-sphere [15] and |A1| = . Since 

the total number of nodes in a d-dimensional 
hypercube is 2

∑ =

r

i
d
iC

0

d which can be represented by series 
of binomial coefficients as follows, 
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d

i
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Therefore, the number of boundary node is also 
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3.2. Major Aggregate 
 

To illustrate our ideas, we define the major 
aggregate as follows, 
 
Definition (major aggregate). Given a syndrome 
graph GS, a major aggregate AM is a P-aggregate 
with maximum cardinality. 
 

In our method, we assume that the major 
aggregate is fault-free when the number of faulty 
nodes is less than t, where t is the upper bound to 
diagnosability. Following theorem 2 gives the 
precise value of t for our method: 
 
Theorem 2. Given a syndrome graph GS of a d-
dimensional hypercube (d > 4), if number of faulty 
nodes is not greater than  (or ) 

when d is even (or odd), then the major aggregate is 
fault-free. 

d
dC 2/

1
2/)1(2 −

−⋅ d
dC

 
Proof: For demonstrating the proof clearly, we 
propose a problem in advance that given a set of 
faulty nodes F, how minimum the major aggregate, 
AM can be divided. If the min. |AM| > |F|, then AM 
must be fault-free. 
 As we known in previous subsection, when the 
number of faulty nodes is , the minimum major 

aggregate is . First of all, 

we assume d is even. If we want the cardinality of 
major aggregate to be the minimum, two summation 
terms in braces should be equal. Therefore r = (d / 
2) – 1 and the number of faulty node is  which 
is called the minimum even cut-set. In the same way, 
the number of minimum cut-set is exactly twice of 
(d – 1),  when d is odd. Moreover, the 

cardinality of major aggregate ∑  is 

always greater than the number of faulty nodes 
 when d > 4. From the above deduction, we 

can say that if the number of faulty nodes is not 
greater than the minimum cut-set, the major 
aggregate must be fault-free. 
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3.3. The MA Algorithm 
 

The procedure of MA algorithm is similar to the 
PARTITION algorithm introduced in [6] which is 
composed of two phases: fault-free subset 
identification and iterative diagnosis and repair. 
However phase 1 in MA algorithm differs from the 
identification fashion in [6] that only major 
aggregate is concerned but not the cardinality of P-
aggregate greater than (t + 1). 
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Phase 1: Fault-free Subset Identification. The 
goal of this phase is to identify a subset of fault-
free nodes. Each nodes test each one of its 
neighbors. The outcomes of these tests are used to 
form the syndrome graph GS. We do a depth-first 
search to locate the major aggregate, denotes as 
AM. Then all the nodes in this aggregate are 
guaranteed to be fault-free. 
 
Phase 2: Iterative Diagnosis and Repair. The goal 
of this phase is to iteratively diagnosis and repair 
faulty nodes. Select an arbitrary node, say u, from 
the AM identified in Phase 1 and then construct a 
breadth-first search tree of G rooted at this node. 
Let h denote the height of the tree, and let Li, 0 ≤ i 
≤ h, be the set of nodes at distance i from u. 
Starting from the top of the tree, nodes in Li are 
used to diagnose nodes in Li+1. At step h, all the 
faulty nodes have been repaired. 

 
4. Comparisons 
 

So far, the only known bound to the hypercube 

diagnosability, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω

d
dd log2

, have be provided in 

[2] and [6]. For illustrating the comparison 
conveniently, we use t1 to denote the lower bound to 
diagnosability in our method and t2 to the previous 

best one. First of all, since t1 = 22/ )!2/(
!

d
dC d

d =  is 

an expression of factorials and not easy to compare 
with t2. We have to apply here the Stirling’s Formula 
[9] to reveal the approximation of factorials. From 
the Stirling’s approximation expression, 

nn ennn −⋅⋅≈ π2! , we begin with calculating the 
ratio of t1 / N when d is even. For convenience to 
reduction, we use d = 2n to replace the parameter d 
in  as follows: d

dC 2/
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Since n = d/2, we can rewrite the above expression 

as 
2/

11

dN
t

⋅
=

π
……… (1) 

Then we can also calculate the ratio of t2 / N : 

d
d

dN
dN

N
t loglog2 =

⋅
= ……… (2) 

For clearly determining which one is greater, let 
us do reduction to the common denominator of two 
ratios as follows: 

d
d

dN
t

π
π

π
2

2/
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= ……… (3)  

and 
d

d
d

d
N
t

π
π loglog2 == ……… (4) 

Because π is a constant, (3) is only related to 
d  and (4) is related to . As we known, 

when d grows lager, the value of (3) will increase 
faster than the value of (4). 

dlog

In the same way, we can calculate t1 / N of MA 
algorithm when d is odd. We use d = (2n + 1) in 
convenience: 
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Since n = (d – 1)/2, the above expression can be 

rewritten as 
2/)1(

11

−⋅
=

dN
t

π
 which is very 

close to (1). 
 
Theorem 3. The Major Aggregate Algorithm is a 

< ⎟⎟
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⎝

⎛
Ω

d
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, O( ), d – r> sequential diagnosis 

algorithm in hypercubes. 

dd 2⋅

 
Proof: First, the lower bound to diagnosability of 
MA algorithm was proved in the preceding 
paragraphs. Next, let us analyze the total testing and 
syndrome decoding time taken by the MA algorithm. 
The depth-first search in Phase 1 is easily seen to be 
performed in O( |E(G)| ) time. Since Phase 2 is the 
same as the algorithm in [6] and h ≤ d, the number of 
iterations needed to complete diagnosis is d in the 
worst case. However, Santi and Chessa in [3] 
proposed the i-PARTITION algorithm which 
improved the iterative diagnosis and repair phase 
(phase 2) of PARTITION algorithm that reduced the 
number of iterations needed to d – r, where 

( )dr Θ∈ . Therefore, the phase 2 can be rewritten 
same as in [3] to reduce the number of iterations. 

Table 1 shows the comparison result of various 
algorithms in asymptotic form. In addition, the lower 
bound provided by the algorithms also has been 
evaluated numerically. A listing for selected values 
of N (the size of the hypercubes) is reported as entry 
t1 in Table 2, along with the numerical evaluation of 
[6] (entry t2) and [2] (entry t3). It is seen that the 
lower bound to diagnosability of MA obviously 
improves the previous result. 
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Table 1. Performance of various sequential 
algorithms for hypercubes 

 
d N t1 t2 [6] t3 [2] 
6 64 20 15 18 
8 256 70 54 62 

10 1024 252 196 220 
12 4096 924 711 786 
14 16384 3,432 2,607 2,846 
16 65536 12,870 9,651 10,432 

Table 2. Numerical evaluation of t for 
hypercube of different dimension 

 
5. Conclusions 
 

System-level diagnosis is a very important 
technique to preserve high reliability and availability 
in multiprocessor systems. The diagnostic power of 
the mutual testing based diagnosis method in 
diagnosing the hypercube systems has been the main 
subject of discussion in this paper. We presented a 
novel and simple sequential system-level diagnosis 
algorithm, MA algorithm, in hypercubes. From a 
syndrome graph GS of hypercubes, the MA 
algorithm can identify the fault-free subset by just 
determining the major aggregate. The algorithm also 

achieves high diagnosability ⎟
⎠
⎞

⎜
⎝
⎛Ω

d
N

 with linear 

overall testing and in no more than (d – r) iterations. 
Our result improves the best lower bound of 

diagnosability ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω

d
dd log2

 in previously known. 

In the end of this paper, we want to remark that, to 
the best of our knowledge, the problem of 
determining an exact lower bound of sequential 
diagnosis algorithm in hypercubes is still open. 
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