Constructions of Distance-Almost-Increasing Mappings from Binary Vectors to Permutations

Jen-Chun Chang
Department of Computer Science \& Information Engineering
National Taipei University
jcchang@csie.nctu.edu.tw

Shiao-Fan Chang
Department of Computer Science \& Information Engineering
National Chiayi University
csf0427@hotmail.com

Abstract

Mappings from the set of binary vectors of a fixed length to the set of permutations of the same length that increase the Hamming distance except the original Hamming distance is maximal (equal to the vector length) are useful for the construction of permutation codes. In this paper we propose recursive and explicit constructions of such mappings of length greater than 3 but not equal to 7 . Some comparisons show that the new mappings have better distributions of distance increasing than other known distance-preserving mappings (DPMs). We also give some examples to illustrate the applications of these mappings to the constructions of permutation arrays (PAs).

Keywords: Code constructions, distance, mapping, distance-preserving mappings (DPMs), permutation arrays (PAs).

1. Introduction

A distance-preserving mapping, shortly DPM, is a mapping from the set of all binary vectors of length n to the set of all n ! permutations of $Z_{n}=\{1,2, \ldots, n\}$ that preserves or increases the Hamming distance. Recently Chang (me) and others [1] proposed several constructions of DPMs and used their DPMs to improve some lower bounds on the size of permutation arrays. Lee [2] also devised a construction of DPMs of odd length. DPMs for vectors of length n are called n-DPMs.
The main objects studied in this paper are special distance-preserving mapping (DPMs) from the set of all binary vectors of length n to the set of all n ! permutations of $Z_{n}=\{1,2, \ldots, n\}$ that increase the Hamming distance except the original Hamming distance is maximal (equal to n). We call them n DAIMs (distance-almost-increasing mappings for vectors of length n). From the view of DAIMs, for n $=4$ or $n>4$ and $n \bmod 4=2$, Chang and others' n DPMs are in fact n-DAIMs. Unfortunately, Lee's n DPMs are not n-DAIMs.

In this paper we devise recursive and explicit
constructions of n-DAIMs for all n greater than 3 but not equal to 7 . Some comparisons of the distributions of distance increasing of the newly constructed DAIMs and other known DPMs are then given. In the last section, we also give some examples to illustrate the applications of these mappings to the constructions of permutation arrays (PAs).

2. Basic Notations

Let S_{n} be the set of all $n!$ permutations of $Z_{n}=\{1$, $2, \ldots, n\}$. A permutation $\pi: Z_{n} \rightarrow Z_{n}$ is represented by an n-tuple: $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ where $\pi_{i}=\pi(i)$. The set $Z_{2}{ }^{n}$ denotes the set of all binary vectors of length n. A binary vector $x \in Z_{2}{ }^{n}$ is denoted by an n-tuple: x $=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where x_{i} is the i-th bit of x.

The Hamming distance between two n-tuple $\boldsymbol{a}=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is the number of positions where they differ, and is represented by $d(\boldsymbol{a}, \boldsymbol{b})$.

$$
d(\boldsymbol{a}, \boldsymbol{b})=\left|\left\{j \in Z_{n} \mid a_{j} \neq b_{j}\right\}\right|
$$

A distance-almost-increasing mapping for length n (for short: an n-DAIM) is a mapping $f: Z_{2}{ }^{n} \rightarrow S_{n}$ such that for any pair of binary vectors $x, y \in Z_{2}{ }^{n}$,
if $d(x, y)=n$, then $d(f(x), f(y))=d(x, y)=n$;
otherwise, $d(f(x), f(y))>d(x, y)$.

Let \boldsymbol{F}_{n} denote the set of all n-DAIMs.

3. Basic DAIMs of Length ≤ 6

For $n<4$, it is obvious that $\left|\boldsymbol{F}_{n}\right|=0$. From [1] we know that for $m=2$ or $m>2$ and odd, $\left|\boldsymbol{F}_{2 m}\right|>0$. The $2 m$-DAIMs are constructed with the following algorithm quoted from [1]:

Mapping algorithm for $h_{2 m}$

Input: $\left(x_{1}, x_{2}, \ldots, x_{2 m}\right) \in Z_{2}^{2 m}$
Output: $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{2 m}\right)=h_{2 m}\left(x_{1}, x_{2}, \ldots, x_{2 m}\right) \in S_{2 m}$

Begin

$$
\begin{aligned}
& \left(\pi_{1}, \pi_{2}, \ldots, \pi_{2 m}\right) \leftarrow(1,2, \ldots, 2 m) \\
& \text { for } i \text { from } 1 \text { to } m \text { do } \\
& \text { if }\left(x_{i}=1\right) \text { then swap }\left(\pi_{2 i-1}, \pi_{2 i}\right) \\
& \text { for } i \text { from } m+1 \text { to } 2 m \text { do } \\
& \text { if }\left(x_{i}=1\right) \text { then swap }\left(\pi_{i-m}, \pi_{i}\right) ; \\
& \text { End }
\end{aligned}
$$

With this algorithm, it is clear that $\left|\boldsymbol{F}_{n}\right|>0$ for $n=$ 4 or $n>4$ and $n \bmod 4=2$. In our constructions of DAIMs in following sections, the existence of n DAIMs for $n \geq 7$ is based on the existence of n DAIMs for $n \leq 6$. Here we define $r_{4}=h_{4}$ and $r_{6}=h_{6}$, thus both r_{4} and r_{6} are DAIMs. The 5-DAIM r_{5} is defined by the following table (which is found with an customized efficient search program):

x	$r_{5}(x)$	x	$r_{5}(x)$
$(0,0,0,0,0)$	$(1,2,3,4,5)$	$(1,1,1,1,1)$	$(5,1,2,3,4)$
$(0,0,0,0,1)$	$(4,5,1,2,3)$	$(1,1,1,1,0)$	$(5,1,4,3,2)$
$(0,0,0,1,0)$	$(4,5,3,1,2)$	$(1,1,1,0,1)$	$(5,4,2,3,1)$
$(0,0,0,1,1)$	$(2,5,3,1,4)$	$(1,1,1,0,0)$	$(5,2,4,3,1)$
$(0,0,1,0,0)$	$(4,3,5,2,1)$	$(1,1,0,1,1)$	$(3,1,2,5,4)$
$(0,0,1,0,1)$	$(2,3,5,4,1)$	$(1,1,0,1,0)$	$(3,1,4,5,2)$
$(0,0,1,1,0)$	$(4,3,5,1,2)$	$(1,1,0,0,1)$	$(3,2,1,5,4)$
$(0,0,1,1,1)$	$(4,3,2,1,5)$	$(1,1,0,0,0)$	$(1,2,4,5,3)$
$(0,1,0,0,0)$	$(3,5,1,4,2)$	$(1,0,1,1,1)$	$(2,1,5,3,4)$
$(0,1,0,0,1)$	$(1,5,2,4,3)$	$(1,0,1,1,0)$	$(2,1,4,3,5)$
$(0,1,0,1,0)$	$(3,5,4,1,2)$	$(1,0,1,0,1)$	$(2,4,5,3,1)$
$(0,1,0,1,1)$	$(3,5,2,1,4)$	$(1,0,1,0,0)$	$(4,2,5,3,1)$
$(0,1,1,0,0)$	$(5,3,1,4,2)$	$(1,0,0,1,1)$	$(2,1,3,5,4)$
$(0,1,1,0,1)$	$(5,3,2,4,1)$	$(1,0,0,1,0)$	$(3,1,4,2,5)$
$(0,1,1,1,0)$	$(5,3,4,1,2)$	$(1,0,0,0,1)$	$(2,4,3,5,1)$
$(0,1,1,1,1)$	$(5,3,2,1,4)$	$(1,0,0,0,0)$	$(2,4,1,5,3)$

4. A Recursive Construction of DAIMs

In this section, we propose a recursive construction of DAIMs.

Construction 1: Let $f \in \boldsymbol{F}_{m}$ and $g \in \boldsymbol{F}_{n}$. For $x=\left(x_{1}\right.$, $\left.x_{2}, \ldots, x_{m+n}\right), f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ and $g\left(x_{m+1}, x_{m+2}, \ldots, x_{m+n}\right)=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, we define $f \otimes g: Z_{2}^{m+n} \rightarrow S_{m+n}$ as
$f \otimes g(x)=\left(\left(1-x_{m+n}\right) u_{1}+x_{m+n}\left(v_{n}+m\right), u_{2}, u_{3}, \ldots, u_{m-1}\right.$, $\left(1-x_{m}\right) u_{m}+x_{m}\left(v_{1}+m\right), \quad x_{m} u_{m}+\left(1-x_{m}\right)\left(v_{1}+m\right), \quad v_{2}+m$, $\left.v_{3}+m, \ldots, v_{n-1}+m, x_{m+n} u_{1}+\left(1-x_{m+n}\right)\left(v_{n}+m\right)\right)$.

The following example is helpful to illustrate the construction.

Example 1: Let $f=r_{5} \in \boldsymbol{F}_{5}$ and $g=r_{4} \in \boldsymbol{F}_{4}$. Using Construction 1 , we get a mapping $r_{5} \otimes r_{4}$. Consider x $=(1,0,1,1,1,1,1,0,1) \in Z_{2}{ }^{9}$ for example. Since $r_{5}(1,0,1,1,1)=(2,1,5,3,4)$ and $r_{4}(1,1,0,1)=(2$, $3,4,1)$, thus we get
$r_{5} \otimes r_{4}(1,0,1,1,1,1,1,0,1)=(6,1,5,3,7,4,8,9$, $2)$.

In fact, mappings generated from Construction 1 are DAIMs. We prove this fact in the following theorem.

Theorem 1: If $f \in \boldsymbol{F}_{m}$ and $g \in \boldsymbol{F}_{n}$, then $f \otimes g \in \boldsymbol{F}_{m+n}$.
Proof: Let $x=\left(x_{1}, x_{2}, \ldots, x_{m+n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{m+n}\right)$, $f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left(u_{1}, u_{2}, \ldots, u_{m}\right), g\left(x_{m+1}, x_{m+2}, \ldots, x_{m+n}\right)$ $=\left(v_{1}, v_{2}, \ldots, v_{n}\right), f\left(y_{1}, y_{2}, \ldots, y_{m}\right)=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$, and $g\left(y_{m+1}, y_{m+2}, \ldots, y_{m+n}\right)=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.

We divide the proof into 4 cases.
Case I: $x_{m}=y_{m}$ and $x_{m+n}=y_{m+n}$.
Let $d\left(\left(x_{1}, x_{2}, \ldots, x_{m}\right),\left(y_{1}, y_{2}, \ldots, y_{m}\right)\right)=d_{1}<m$, and $\mathrm{d}\left(\left(x_{m+1}, x_{m+2}, \ldots, x_{m+n}\right),\left(y_{m+1}, y_{m+2}, \ldots, y_{m+n}\right)\right)=d_{2}<n$. Then we have $d(x, y)=d_{1}+d_{2}, d\left(\left(u_{1}, u_{2}, \ldots, u_{m}\right),\left(w_{1}\right.\right.$, $\left.\left.w_{2}, \ldots, w_{m}\right)\right) \geq d_{1}+1$, and $d\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),\left(t_{1}, t_{2}, \ldots\right.\right.$, $\left.\left.t_{n}\right)\right) \geq d_{2}+1$. Considering $d(f \otimes g(x), f \otimes g(y))$, we have

```
d(f\otimesg(x),f\otimesg(y))
= d( ((1-\mp@subsup{x}{m+n}{})\mp@subsup{u}{1}{}+\mp@subsup{x}{m+n}{}(\mp@subsup{v}{n}{}+m),\quadu}\mp@subsup{u}{2}{},\quad\mp@subsup{u}{3}{},\quad\ldots,\quad\mp@subsup{u}{m-1}{}
(1-\mp@subsup{x}{m}{})\mp@subsup{u}{m}{}+\mp@subsup{x}{m}{}(\mp@subsup{v}{1}{}+m),\quad\mp@subsup{x}{m}{}\mp@subsup{u}{m}{}+(1-\mp@subsup{x}{m}{})(\mp@subsup{v}{1}{}+m),\quad\mp@subsup{v}{2}{}+m,
v
    ((1-\mp@subsup{x}{m+n}{})\mp@subsup{w}{1}{}+\mp@subsup{x}{m+n}{}(\mp@subsup{t}{n}{}+m),\quad\mp@subsup{w}{2}{},\quad\mp@subsup{w}{3}{},\ldots,\quad\mp@subsup{w}{m-1}{},
(1-\mp@subsup{x}{m}{})\mp@subsup{w}{m}{}+\mp@subsup{x}{m}{}(\mp@subsup{t}{1}{}+m),\quad\mp@subsup{x}{m}{}\mp@subsup{w}{m}{}+(1-\mp@subsup{x}{m}{})(\mp@subsup{t}{1}{}+m),}\mp@subsup{t}{2}{}+m
t}+m,\ldots,\mp@subsup{t}{n-1}{}+m,\mp@subsup{x}{m+n}{}\mp@subsup{w}{1}{}+(1-\mp@subsup{x}{m+n}{})(\mp@subsup{t}{n}{}+m))
=d((u, u},\mp@subsup{u}{2}{},\ldots,\mp@subsup{u}{m}{},\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{n}{})
    ( w},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{m}{},\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\ldots,\mp@subsup{t}{n}{})
=d((u, u},\mp@subsup{u}{2}{},\ldots,\mp@subsup{u}{m}{}),(\mp@subsup{w}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{m}{}))
    d((v, v},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{n}{}),(\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\ldots,\mp@subsup{t}{n}{})
\geqd
>d(x,y).
```

Case II: $x_{m}=y_{m}$ and $x_{m+n} \neq y_{m+n}$.
Let $d\left(\left(x_{1}, x_{2}, \ldots, x_{m}\right),\left(y_{1}, y_{2}, \ldots, y_{m}\right)\right)=d_{1}<m$, and $\mathrm{d}\left(\left(x_{m+1}, x_{m+2}, \ldots, x_{m+n}\right),\left(y_{m+1}, y_{m+2}, \ldots, y_{m+n}\right)\right)=d_{2} \leq n$. Then we have $d(x, y)=d_{1}+d_{2}, d\left(\left(u_{1}, u_{2}, \ldots, u_{m}\right),\left(w_{1}\right.\right.$, $\left.\left.w_{2}, \ldots, w_{m}\right)\right) \geq d_{1}+1$, and $d\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),\left(t_{1}, t_{2}, \ldots\right.\right.$, $\left.\left.t_{n}\right)\right) \geq d_{2}$. Considering $d(f \otimes g(x), f \otimes g(y))$, we have

```
d(f\otimesg(x),f\otimesg(y))
= d( ((1-\mp@subsup{x}{m+n}{})\mp@subsup{u}{1}{}+\mp@subsup{x}{m+n}{}(\mp@subsup{v}{n}{}+m), u}\mp@subsup{u}{2}{},\quad\mp@subsup{u}{3}{},\quad\ldots,\quad\mp@subsup{u}{m-1}{}
(1-\mp@subsup{x}{m}{})\mp@subsup{u}{m}{}+\mp@subsup{x}{m}{}(\mp@subsup{v}{1}{}+m),\quad\mp@subsup{x}{m}{}\mp@subsup{u}{m}{}+(1-\mp@subsup{x}{m}{})(\mp@subsup{v}{1}{}+m),\quad\mp@subsup{v}{2}{}+m,
v}+m,\ldots,\mp@subsup{v}{n-1}{+}+m,\mp@subsup{x}{m+n}{}\mp@subsup{u}{1}{}+(1-\mp@subsup{x}{m+n}{})(\mp@subsup{v}{n}{}+m))
    ((1-\mp@subsup{y}{m+n}{})\mp@subsup{w}{1}{}+\mp@subsup{y}{m+n}{}(\mp@subsup{t}{n}{}+m), w}\mp@subsup{w}{2}{},\mp@subsup{w}{3}{},\ldots,\mp@subsup{w}{m-1}{}
(1-\mp@subsup{x}{m}{})\mp@subsup{w}{m}{}+\mp@subsup{x}{m}{}(\mp@subsup{t}{1}{}+m),\quad\mp@subsup{x}{m}{}\mp@subsup{w}{m}{}+(1-\mp@subsup{x}{m}{})(\mp@subsup{t}{1}{}+m),\quad\mp@subsup{t}{2}{}+m,
t}+m,\ldots,\mp@subsup{t}{n-1}{}+m,\mp@subsup{y}{m+n}{}\mp@subsup{w}{1}{}+(1-\mp@subsup{y}{m+n}{})(\mp@subsup{t}{n}{}+m))
\geqd((u, u},\mp@subsup{u}{2}{},\ldots,\mp@subsup{u}{m}{},\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{n}{})
    ( (w, , w},\mp@code{,}.,\mp@subsup{w}{m}{},\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\ldots,\mp@subsup{t}{n}{})
=d((u, u},\mp@subsup{u}{2}{},\ldots,\mp@subsup{u}{m}{}),(\mp@subsup{w}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{m}{}))
    d((v, v},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{n}{}),(\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\ldots,\mp@subsup{t}{n}{})
\geqd
>d(x,y).
```

Case III: $x_{m} \neq y_{m}$ and $x_{m+n}=y_{m+n}$.
The proof of this case is similar to that of Case II.
Case IV: $x_{m} \neq y_{m}$ and $x_{m+n} \neq y_{m+n}$.
Let $d\left(\left(x_{1}, x_{2}, \ldots, x_{m}\right),\left(y_{1}, y_{2}, \ldots, y_{m}\right)\right)=d_{1} \leq m$, and $d\left(\left(x_{m+1}, x_{m+2}, \ldots, x_{m+n}\right),\left(y_{m+1}, y_{m+2}, \ldots, y_{m+n}\right)\right)=d_{2} \leq n$. We further divide this case into two subcases.

Subcase IV-1: $d_{1}+d_{2}=m+n$.
In this subcase, it is clear that $d_{1}=m$ and $d_{2}=n$. Thus we have $d\left(\left(u_{1}, u_{2}, \ldots, u_{m}\right),\left(w_{1}, w_{2}, \ldots, w_{m}\right)\right)+$ $d\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)=d_{1}+d_{2}=m+n$. Considering $d(f \otimes g(x), f \otimes g(y))$, we have

```
\(d(f \otimes g(x), f \otimes g(y))\)
\(=d\left(\left(\left(1-x_{m+n}\right) u_{1}+x_{m+n}\left(v_{n}+m\right), u_{2}, u_{3}, \ldots, u_{m-1}\right.\right.\),
\(\left(1-x_{m}\right) u_{m}+x_{m}\left(v_{1}+m\right), \quad x_{m} u_{m}+\left(1-x_{m}\right)\left(v_{1}+m\right), \quad v_{2}+m\),
\(\left.v_{3}+m, \ldots, v_{n-1}+m, x_{m+n} u_{1}+\left(1-x_{m+n}\right)\left(v_{n}+m\right)\right)\),
    \(\left(\left(1-y_{m+n}\right) w_{1}+y_{m+n}\left(t_{n}+m\right), \quad w_{2}, \quad w_{3}, \ldots, \quad w_{m-1}\right.\),
\(\left(1-y_{m}\right) w_{m}+y_{m}\left(t_{1}+m\right), \quad y_{m} w_{m}+\left(1-y_{m}\right)\left(t_{1}+m\right), \quad t_{2}+m\),
\(\left.\left.t_{3}+m, \ldots, t_{n-1}+m, y_{m+n} w_{1}+\left(1-y_{m+n}\right)\left(t_{n}+m\right)\right)\right)\)
\(\geq d\left(\left(u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right)\right.\),
    \(\left.\left(w_{1}, w_{2}, \ldots, w_{m}, t_{1}, t_{2}, \ldots, t_{n}\right)\right)\)
\(=d\left(\left(u_{1}, u_{2}, \ldots, u_{m}\right),\left(w_{1}, w_{2}, \ldots, w_{m}\right)\right)+\)
    \(d\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)\)
\(=m+n=d(x, y)\).
```

This result does not negate $f \otimes g$ to be a DAIM since $d(x, y)$ has reached the maximum $m+n$.

Subcase IV-2: $d_{1}+d_{2}<m+n$.
In this subcase, it is clear that $d_{1}<m$ or $d_{2}<n$. Thus we have $d\left(\left(u_{1}, u_{2}, \ldots, u_{m}\right),\left(w_{1}, w_{2}, \ldots, w_{m}\right)\right)+$ $d\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right) \geq d_{1}+d_{2}+1$. Considering $d(f \otimes g(x), f \otimes g(y))$, we have

```
d(f\otimesg(x),f\otimesg(y))
= d( ((1-\mp@subsup{x}{m+n}{})\mp@subsup{u}{1}{}+\mp@subsup{x}{m+n}{}(\mp@subsup{v}{n}{}+m), u}\mp@subsup{u}{2}{},\mp@subsup{u}{3}{},\ldots,\mp@subsup{u}{m-1}{}
(1-\mp@subsup{x}{m}{})\mp@subsup{u}{m}{}+\mp@subsup{x}{m}{}(\mp@subsup{v}{1}{}+m),\quad\mp@subsup{x}{m}{}\mp@subsup{u}{m}{}+(1-\mp@subsup{x}{m}{})(\mp@subsup{v}{1}{}+m),\quad\mp@subsup{v}{2}{}+m,
v}+m,\ldots,\mp@subsup{v}{n-1}{+}+m,\mp@subsup{x}{m+n}{}\mp@subsup{u}{1}{}+(1-\mp@subsup{x}{m+n}{})(\mp@subsup{v}{n}{}+m))
    ((1-\mp@subsup{y}{m+n}{})\mp@subsup{w}{1}{}+\mp@subsup{y}{m+n}{}(\mp@subsup{t}{n}{}+m),\quad\mp@subsup{w}{2}{},\quad\mp@subsup{w}{3}{},\ldots,\quad\mp@subsup{w}{m-1}{},
(1-ym)\mp@subsup{w}{m}{}+\mp@subsup{y}{m}{}(\mp@subsup{t}{1}{}+m),\quad\mp@subsup{y}{m}{}\mp@subsup{w}{m}{}+(1-\mp@subsup{y}{m}{})(\mp@subsup{t}{1}{}+m),\quad\mp@subsup{t}{2}{}+m,
t}+m,\ldots,\mp@subsup{t}{n-1}{}+m,\mp@subsup{y}{m+n}{}\mp@subsup{w}{1}{}+(1-\mp@subsup{y}{m+n}{})(\mp@subsup{t}{n}{}+m))
\geqd((u, u},\mp@subsup{u}{2}{},\ldots,\mp@subsup{u}{m}{},\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{n}{})
    ( }\mp@subsup{w}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{m}{},\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\ldots,\mp@subsup{t}{n}{})
=d((u, u},\mp@subsup{u}{2}{},\ldots,\mp@subsup{u}{m}{}),(\mp@subsup{w}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{m}{}))
    d((v, v},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{n}{}),(\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\ldots,\mp@subsup{t}{n}{})
\geqd}+\mp@subsup{d}{2}{}+1=d(x,y)+
>d(x,y).
```

QED

Corollary 1: For all $m, n \geq 4,\left|\boldsymbol{F}_{m+n}\right| \geq\left|\boldsymbol{F}_{m}\right| \cdot\left|\boldsymbol{F}_{n}\right|$.
Proof: This corollary is directly based on two facts:

1. If $f_{1} \neq f_{2}$, then $f_{1} \otimes g_{1} \neq f_{2} \otimes g_{2}$, no matter g_{1} and g_{2} are different or not.
2. If $g_{1} \neq g_{2}$, then $f \otimes g_{1} \neq f \otimes g_{2}$.

We prove these two facts.
(Proof of fact 1): Let f_{1} and f_{2} be any two different m DAIMs. Since $f_{1} \neq f_{2}$, there must exist a binary vector of length m, say $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, such that $f_{1}(x) \neq$ $f_{2}(x)$. For any two n-DAIMs g_{1} and g_{2}, it is always true that $f_{1} \otimes g_{1}(x, y) \neq f_{2} \otimes g_{2}(x, y)$, where y can be any binary vector of length n. Therefore $f_{1} \otimes g_{1} \neq f_{2} \otimes g_{2}$.
(Proof of fact 2): Let f be any m-DAIM, and g_{1}, g_{2} are any two different n-DAIMs. Since $g_{1} \neq g_{2}$, there must be a binary vector of length n, say $x=\left(x_{1}, x_{2}, \ldots\right.$, x_{n}), such that $g_{1}(x) \neq g_{2}(x)$. Let y be any binary vector of length m, it is obviously true that $f \otimes g_{1}(y, x) \neq$ $f \otimes g_{2}(y, x)$. Therefore $f \otimes g_{1} \neq f \otimes g_{2}$.

QED
Corollary 2: For all $n \geq 4$ and $n \neq 7,\left|\boldsymbol{F}_{n}\right|>0$.
Proof: In Section 3 we have defined some basic n DAIMs for $4 \leq n \leq 6$. Specifically, r_{4}, r_{5}, and r_{6} are 4-DAIM, 5-DAIM, and 6-DAIM, respectively. That is, $\left|\boldsymbol{F}_{n}\right|>0$ for $4 \leq n \leq 6$. Wth Corollary 1, the general statement in this corollary immediately follows by induction.

QED

5. An Explicit Construction of DAIMs

In this section, an explicit construction of DAIMs is to be proposed. We first describe the explicit construction with the following algorithm. Note that r_{4}, r_{5}, and r_{6} are already known.

Construction 2:

Mapping algorithm for $r_{n}(n \geq 4$ and $n \neq 7)$
Input: $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Z_{2}{ }^{n}$
Output: $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \in S_{n}$
Begin
if $(n \leq 6)$ then
\{

$$
\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \leftarrow r_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) ;
$$

stop and exit ;
\}
if $(n \bmod 4 \neq 3)$ then
\{
$k \leftarrow(n \bmod 4)+4 ;$
$\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right) \leftarrow r_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) ;$
\}
if $(n \bmod 4=3)$ then
\{
$\left(\pi_{1}, \pi_{2}, \ldots, \pi_{5}\right) \leftarrow r_{5}\left(x_{1}, x_{2}, \ldots, x_{5}\right) ;$
$\left(\pi_{6}, \pi_{7}, \ldots, \pi_{11}\right) \leftarrow r_{6}\left(x_{6}, x_{7}, \ldots, x_{11}\right) ;$
$\pi_{i} \leftarrow \pi_{i}+5$, for all $i=6,7, \ldots, 11$;
if $\left(x_{5}=1\right)$ then swap $\left(\pi_{5}, \pi_{6}\right)$;
$k \leftarrow 11$;
\}

```
while \((k<n)\) repeat
\{
    \(\left(\pi_{k+1}, \pi_{k+2}, \pi_{k+3}, \pi_{k+4}\right) \leftarrow r_{4}\left(x_{k+1}, x_{k+2}, x_{k+3}, x_{k+4}\right) ;\)
    \(\pi_{i} \leftarrow \pi_{i}+k\), for all \(i=k+1, k+2, k+3, k+4\);
    if \(\left(x_{k}=1\right)\) then \(\operatorname{swap}\left(\pi_{k}, \pi_{k+1}\right)\);
    \(k \leftarrow k+4\);
\}
if \(\left(x_{n}=1\right)\) then \(\operatorname{swap}\left(\pi_{n}, \pi_{1}\right)\);
End
```

In fact, r_{n} constructed in Construction 2 is an n DAIM. This fact will be proved in the next theorem.

Theorem 2: For any positive integer $n \geq 4$ and $n \neq 7$, mapping r_{n} generated from Construction 2 is an n DAIM, that is, $r_{n} \in \boldsymbol{F}_{n}$.
Proof: It is clear that for any $4 \leq n \leq 6, r_{n}$ is always an n-DAIM. For $n \geq 8$, there are 4 cases. If $(n \bmod 4)$ $=0$, we construct r_{n} by combining two or more copies of the 4-DAIM r_{4}. If $(n \bmod 4)=1$, we construct r_{n} by combining the 5-DAIM r_{5} with one or more copies of the 4-DAIM r_{4}. If $(n \bmod 4)=2$, we construct r_{n} by combining the 6-DAIM r_{6} with one or more copies of the 4-DAIM r_{4}. If $(n \bmod 4)=3$, we construct r_{n} by combining the 5-DAIM r_{5} and the 6 DAIM r_{6} with zero or more copies of the 4-DAIM r_{4}. Though the combining procedure is slightly different from that of Construction 1, the proof is similar and skipped here.

QED

6. Comparisons of our DAIMs and other mappings

The main objective in this section is to compare the distributions of Hamming distance increasing of different mappings, including DPMs from [1], DPMs of odd length from [2], and our new DAIMs. The notations we use to represent these mappings are listed in the following table.

N	n-DPM from $[1]$	n-DPM $[2]$	from n-DAIM
5	$h_{5}{ }^{4}$	l_{5}	r_{5}
6	h_{6}	-	$r_{6}=h_{6}$
7	$h_{7}{ }^{6}$	l_{7}	-
8	$h_{8}{ }^{6}$	-	r_{8}
9	$h_{9}{ }^{6}$	l_{9}	r_{9}

It is clear that we only need to compare mappings r_{5}, r_{8} and r_{9} with other DPMs. For each mapping f of length n, we use an $n \times n$ matrix $\left(D_{i, j}\right)_{n \times n}$ to show the distribution of distance increasing, where each element $D_{i, j}$ denotes the number of unordered pairs $\{x, y\}$ of binary vectors of length n such that $d(x, y)=$ i and $d(f(x), f(y))=j$.

Case $n=5$

Case $n=8$

Case $n=9$

$h_{9}{ }^{6}$								
0								
0	2304	0	0	0	0	0	0	0
	0	3072	6144	0	0	0	0	0
		0	4160	12096	5248	0	0	0
			0	5376	16384	9472	1024	0
				0	6592	16128	8768	768
				256	6272	11520	3456	
						448	4672	4096
							512	1792
								256

r_{9}								
0	1360	496	224	208	16	0	0	0
	0	1008	4256	2112	944	864	32	0
		0	784	6784	7696	4320	1472	448
			0	512	8944	13168	7520	2112
				0	528	10256	15200	6272
					0	992	10432	10080
						0	1776	7440
							0	2304
								256

7. Applications to Permutation Arrays

It was shown in [1] that distance preserving mappings (DPMs and also DAIMs) are useful for the construction of permutation arrays (PAs). An (n, d) PA is a subset of S_{n} where the Hamming distance of any two distinct permutations is at least d. Let $P(n, d)$ denote the maximal size of such an (n, d) PA. Furthermore, we use $A(n, d)$ to denote the maximal size of an (n, d) binary code of length n and minimum distance d.

We give a different and simpler proof of the same lower bound of $P(n, d)$ that was proved in Theorem 5 in [1]. Here the lower bound is proved without the help of the Plotkin bound,

$$
A(n, d) \leq \frac{2 d}{2 d-n} \text { for } d>\frac{n}{2}
$$

Theorem 3: For $n \geq 4, n \neq 7$, and $2 \leq d \leq n, P(n, d) \geq$ $A(n, d-1)$.

Proof: Let C be an ($n, d-1$) binary code of size $A(n$, $d-1)$. We first explicitly construct an n-DAIM r_{n} by applying Construction 2 , and then construct $r_{n}(C)$. It is obvious that $r_{n}(C)$ is an (n, d) permutation array. Therefore $P(n, d) \geq A(n, d-1)$.

QED
The following example uses the perfect [23, 12, 7] Golay code to construct a permutation array of minimum distance 8 and size 4096.

Example 3: It is known that the size of the perfect $[23,12,7]$ Golay code reaches the upper bound $A(23$, $7)=2^{12}=4096$. With the DAIM r_{23} constructed from the algorithm in Construction 2, we can obtain a (23, $8)$ permutation array. Thus $P(23,8) \geq 4096$.

Acknowledgment

This research was supported in part by the National Science Council of Taiwan, ROC under the contract NSC 93-2213-E-305-003.

References

[1] J.C. Chang, R.J. Chen, T. Klove, and S.C. Tsai, "Distance-preserving mappings from binary vectors to permutations," IEEE Trans. Information Theory, vol. 49, no. 4, pp. 1054-1059, Apr. 2003.
[2] K. Lee, "New distance-preserving maps of odd length," to appear in IEEE Trans. Information Theory, 2004.

