
Constructions of Distance-Almost-Increasing Mappings from Binary
Vectors to Permutations

Jen-Chun Chang
Department of Computer Science &

Information Engineering
National Taipei University
jcchang@csie.nctu.edu.tw

Shiao-Fan Chang
Department of Computer Science &

Information Engineering
National Chiayi University

csf0427@hotmail.com

Abstract- Mappings from the set of binary vectors
of a fixed length to the set of permutations of the
same length that increase the Hamming distance
except the original Hamming distance is maximal
(equal to the vector length) are useful for the
construction of permutation codes. In this paper we
propose recursive and explicit constructions of such
mappings of length greater than 3 but not equal to 7.
Some comparisons show that the new mappings have
better distributions of distance increasing than other
known distance-preserving mappings (DPMs). We
also give some examples to illustrate the
applications of these mappings to the constructions
of permutation arrays (PAs).

Keywords: Code constructions, distance, mapping,
distance-preserving mappings (DPMs), permutation
arrays (PAs).

1. Introduction

A distance-preserving mapping, shortly DPM, is a
mapping from the set of all binary vectors of length n
to the set of all n! permutations of Zn = {1, 2, …, n}
that preserves or increases the Hamming distance.
Recently Chang (me) and others [1] proposed several
constructions of DPMs and used their DPMs to
improve some lower bounds on the size of
permutation arrays. Lee [2] also devised a
construction of DPMs of odd length. DPMs for
vectors of length n are called n-DPMs.

The main objects studied in this paper are special
distance-preserving mapping (DPMs) from the set of
all binary vectors of length n to the set of all n!
permutations of Zn = {1, 2, …, n} that increase the
Hamming distance except the original Hamming
distance is maximal (equal to n). We call them n-
DAIMs (distance-almost-increasing mappings for
vectors of length n). From the view of DAIMs, for n
= 4 or n > 4 and n mod 4 = 2, Chang and others’n-
DPMs are in fact n-DAIMs. Unfortunately, Lee’s n-
DPMs are not n-DAIMs.

In this paper we devise recursive and explicit

constructions of n-DAIMs for all n greater than 3 but
not equal to 7. Some comparisons of the distributions
of distance increasing of the newly constructed
DAIMs and other known DPMs are then given. In
the last section, we also give some examples to
illustrate the applications of these mappings to the
constructions of permutation arrays (PAs).

2. Basic Notations

Let Sn be the set of all n! permutations of Zn = {1,
2, …, n}. A permutation : Zn Zn is represented
by an n-tuple: = (1, 2, …, n) where i = (i). The
set Z2

n denotes the set of all binary vectors of length
n. A binary vector x Z2

n is denoted by an n-tuple: x
= (x1, x2, …, xn) where xi is the i-th bit of x.

The Hamming distance between two n-tuple a =
(a1, a2, …, an) and b = (b1, b2, …, bn) is the number
of positions where they differ, and is represented by
d(a, b).

d(a, b) = |{ j Zn | aj bj }|

A distance-almost-increasing mapping for length n
(for short: an n-DAIM) is a mapping f : Z2

n Sn

such that for any pair of binary vectors x, y Z2
n,

if d(x, y) = n, then d(f(x), f(y)) = d(x, y) = n ;
otherwise, d(f(x), f(y)) > d(x, y).

Let Fn denote the set of all n-DAIMs.

3. Basic DAIMs of Length 6

For n < 4, it is obvious that |Fn| = 0. From [1] we
know that for m=2 or m > 2 and odd, |F2m| > 0. The
2m-DAIMs are constructed with the following
algorithm quoted from [1]:

Mapping algorithm for h2m

Input: (x1, x2, …, x2m) Z2
2m

Output: (1, 2, …, 2m) = h2m(x1, x2, …, x2m) S2m

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1252

Begin
(1, 2, …, 2m) (1, 2, …, 2m) ;
for i from 1 to m do

if (xi = 1) then swap (2i1, 2i) ;
for i from m+1 to 2m do

if (xi = 1) then swap (im, i) ;
End

With this algorithm, it is clear that |Fn| > 0 for n =

4 or n > 4 and n mod 4 = 2. In our constructions of
DAIMs in following sections, the existence of n-
DAIMs for n 7 is based on the existence of n-
DAIMs for n 6. Here we define r4 = h4 and r6 = h6,
thus both r4 and r6 are DAIMs. The 5-DAIM r5 is
defined by the following table (which is found with
an customized efficient search program):

x r5(x) x r5(x)
(0,0,0,0,0) (1,2,3,4,5) (1,1,1,1,1) (5,1,2,3,4)
(0,0,0,0,1) (4,5,1,2,3) (1,1,1,1,0) (5,1,4,3,2)
(0,0,0,1,0) (4,5,3,1,2) (1,1,1,0,1) (5,4,2,3,1)
(0,0,0,1,1) (2,5,3,1,4) (1,1,1,0,0) (5,2,4,3,1)
(0,0,1,0,0) (4,3,5,2,1) (1,1,0,1,1) (3,1,2,5,4)
(0,0,1,0,1) (2,3,5,4,1) (1,1,0,1,0) (3,1,4,5,2)
(0,0,1,1,0) (4,3,5,1,2) (1,1,0,0,1) (3,2,1,5,4)
(0,0,1,1,1) (4,3,2,1,5) (1,1,0,0,0) (1,2,4,5,3)
(0,1,0,0,0) (3,5,1,4,2) (1,0,1,1,1) (2,1,5,3,4)
(0,1,0,0,1) (1,5,2,4,3) (1,0,1,1,0) (2,1,4,3,5)
(0,1,0,1,0) (3,5,4,1,2) (1,0,1,0,1) (2,4,5,3,1)
(0,1,0,1,1) (3,5,2,1,4) (1,0,1,0,0) (4,2,5,3,1)
(0,1,1,0,0) (5,3,1,4,2) (1,0,0,1,1) (2,1,3,5,4)
(0,1,1,0,1) (5,3,2,4,1) (1,0,0,1,0) (3,1,4,2,5)
(0,1,1,1,0) (5,3,4,1,2) (1,0,0,0,1) (2,4,3,5,1)
(0,1,1,1,1) (5,3,2,1,4) (1,0,0,0,0) (2,4,1,5,3)

4. A Recursive Construction of DAIMs

In this section, we propose a recursive
construction of DAIMs.

Construction 1: Let f Fm and g Fn. For x = (x1,
x2, …, xm+n), f(x1, x2, …, xm) = (u1, u2, …, um) and
g(xm+1, xm+2, …, xm+n) = (v1, v2, …, vn), we define
fg : Z2

m+n Sm+n as

fg(x) = ((1xm+n)u1+xm+n(vn+m), u2, u3, …, um1,
(1xm)um+xm(v1+m), xmum+(1xm)(v1+m), v2+m,
v3+m, …, vn1+m, xm+nu1+(1xm+n)(vn+m)).

The following example is helpful to illustrate the

construction.

Example 1: Let f = r5 F5 and g = r4 F4. Using
Construction 1, we get a mapping r5r4. Consider x
= (1, 0, 1, 1, 1, 1, 1, 0, 1) Z2

9 for example. Since
r5(1, 0, 1, 1, 1) = (2, 1, 5, 3, 4) and r4(1, 1, 0, 1) = (2,
3, 4, 1), thus we get

r5r4(1, 0, 1, 1, 1, 1, 1, 0, 1) = (6, 1, 5, 3, 7, 4, 8, 9,
2).

In fact, mappings generated from Construction 1

are DAIMs. We prove this fact in the following
theorem.

Theorem 1: If f Fm and g Fn , then fg Fm+n.
Proof: Let x = (x1, x2, …, xm+n), y = (y1, y2, …, ym+n),
f(x1, x2, …, xm) = (u1, u2, …, um), g(xm+1, xm+2, …, xm+n)
= (v1, v2, …, vn), f(y1, y2, …, ym) = (w1, w2, …, wm),
and g(ym+1, ym+2, …, ym+n) = (t1, t2, …, tn).

We divide the proof into 4 cases.

Case I: xm = ym and xm+n = ym+n.

Let d((x1, x2, …, xm), (y1, y2, …, ym)) = d1 < m, and
d((xm+1, xm+2, …, xm+n), (ym+1, ym+2, …, ym+n)) = d2 < n.
Then we have d(x, y) = d1+d2, d((u1, u2, …, um), (w1,
w2, …, wm)) d1+1, and d((v1, v2, …, vn), (t1, t2, …,
tn)) d2+1. Considering d(fg(x), fg(y)), we have

d(fg(x), fg(y))
= d(((1xm+n)u1+xm+n(vn+m), u2, u3, …, um1,
(1xm)um+xm(v1+m), xmum+(1xm)(v1+m), v2+m,
v3+m, …, vn1+m, xm+nu1+(1xm+n)(vn+m)),

((1xm+n)w1+xm+n(tn+m), w2, w3, …, wm1,
(1xm)wm+xm(t1+m), xmwm+(1xm)(t1+m), t2+m,
t3+m, …, tn1+m, xm+nw1+(1xm+n)(tn+m)))
= d((u1, u2, …, um, v1, v2, …, vn),

(w1, w2, …, wm, t1, t2, …, tn))
= d((u1, u2, …, um), (w1, w2, …, wm)) +

d((v1, v2, …, vn), (t1, t2, …, tn))
d1 + 1 + d2 + 1 = d1 + d2 + 2 = d(x, y) + 2
> d(x, y).

Case II: xm = ym and xm+n ym+n.

Let d((x1, x2, …, xm), (y1, y2, …, ym)) = d1 < m, and
d((xm+1, xm+2, …, xm+n), (ym+1, ym+2, …, ym+n)) = d2 n.
Then we have d(x, y) = d1+d2, d((u1, u2, …, um), (w1,
w2, …, wm)) d1+1, and d((v1, v2, …, vn), (t1, t2, …,
tn)) d2. Considering d(fg(x), fg(y)), we have

d(fg(x), fg(y))
= d(((1xm+n)u1+xm+n(vn+m), u2, u3, …, um1,
(1xm)um+xm(v1+m), xmum+(1xm)(v1+m), v2+m,
v3+m, …, vn1+m, xm+nu1+(1xm+n)(vn+m)),

((1ym+n)w1+ym+n(tn+m), w2, w3, …, wm1,
(1xm)wm+xm(t1+m), xmwm+(1xm)(t1+m), t2+m,
t3+m, …, tn1+m, ym+nw1+(1ym+n)(tn+m)))
d((u1, u2, …, um, v1, v2, …, vn),

(w1, w2, …, wm, t1, t2, …, tn))
= d((u1, u2, …, um), (w1, w2, …, wm)) +

d((v1, v2, …, vn), (t1, t2, …, tn))
d1 + 1 + d2 = d1 + d2 + 1 = d(x, y) + 1
> d(x, y).

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1253

Case III: xm ym and xm+n = ym+n.

The proof of this case is similar to that of Case II.

Case IV: xm ym and xm+n ym+n.

Let d((x1, x2, …, xm), (y1, y2, …, ym)) = d1 m, and
d((xm+1, xm+2, …, xm+n), (ym+1, ym+2, …, ym+n)) = d2 n.
We further divide this case into two subcases.

Subcase IV-1: d1 + d2 = m + n.

In this subcase, it is clear that d1 = m and d2 = n.
Thus we have d((u1, u2, …, um), (w1, w2, …, wm)) +
d((v1, v2, …, vn), (t1, t2, …, tn)) = d1 + d2 = m + n.
Considering d(fg(x), fg(y)), we have

d(fg(x), fg(y))
= d(((1xm+n)u1+xm+n(vn+m), u2, u3, …, um1,
(1xm)um+xm(v1+m), xmum+(1xm)(v1+m), v2+m,
v3+m, …, vn1+m, xm+nu1+(1xm+n)(vn+m)),

((1ym+n)w1+ym+n(tn+m), w2, w3, …, wm1,
(1ym)wm+ym(t1+m), ymwm+(1ym)(t1+m), t2+m,
t3+m, …, tn1+m, ym+nw1+(1ym+n)(tn+m)))
d((u1, u2, …, um, v1, v2, …, vn),

(w1, w2, …, wm, t1, t2, …, tn))
= d((u1, u2, …, um), (w1, w2, …, wm)) +

d((v1, v2, …, vn), (t1, t2, …, tn))
= m + n = d(x, y).

This result does not negate fg to be a DAIM
since d(x, y) has reached the maximum m+n.

Subcase IV-2: d1 + d2 < m + n.

In this subcase, it is clear that d1 < m or d2 < n.
Thus we have d((u1, u2, …, um), (w1, w2, …, wm)) +
d((v1, v2, …, vn), (t1, t2, …, tn)) d1 + d2 + 1.
Considering d(fg(x), fg(y)), we have

d(fg(x), fg(y))
= d(((1xm+n)u1+xm+n(vn+m), u2, u3, …, um1,
(1xm)um+xm(v1+m), xmum+(1xm)(v1+m), v2+m,
v3+m, …, vn1+m, xm+nu1+(1xm+n)(vn+m)),

((1ym+n)w1+ym+n(tn+m), w2, w3, …, wm1,
(1ym)wm+ym(t1+m), ymwm+(1ym)(t1+m), t2+m,
t3+m, …, tn1+m, ym+nw1+(1ym+n)(tn+m)))
d((u1, u2, …, um, v1, v2, …, vn),

(w1, w2, …, wm, t1, t2, …, tn))
= d((u1, u2, …, um), (w1, w2, …, wm)) +

d((v1, v2, …, vn), (t1, t2, …, tn))
d1 + d2 + 1 = d(x, y) + 1
> d(x, y).

QED
Corollary 1: For all m, n 4, |Fm+n| |Fm||Fn|.
Proof: This corollary is directly based on two facts:

1. If f1 f2, then f1g1 f2g2, no matter g1 and g2

are different or not.
2. If g1 g2, then fg1 fg2.

We prove these two facts.
(Proof of fact 1): Let f1 and f2 be any two different m-
DAIMs. Since f1 f2, there must exist a binary vector
of length m, say x = (x1, x2, …, xm), such that f1(x)
f2(x). For any two n-DAIMs g1 and g2, it is always
true that f1g1(x, y) f2g2(x, y), where y can be any
binary vector of length n. Therefore f1g1 f2g2.
(Proof of fact 2): Let f be any m-DAIM, and g1, g2

are any two different n-DAIMs. Since g1 g2, there
must be a binary vector of length n, say x = (x1, x2, …,
xn), such that g1(x) g2(x). Let y be any binary vector
of length m, it is obviously true that fg1(y, x)
fg2(y, x). Therefore fg1 fg2.

QED
Corollary 2: For all n 4 and n 7, |Fn| > 0.
Proof: In Section 3 we have defined some basic n-
DAIMs for 4 n 6. Specifically, r4, r5, and r6 are
4-DAIM, 5-DAIM, and 6-DAIM, respectively. That
is, |Fn| > 0 for 4 n 6. Wth Corollary 1, the general
statement in this corollary immediately follows by
induction.

QED

5. An Explicit Construction of DAIMs

In this section, an explicit construction of DAIMs
is to be proposed. We first describe the explicit
construction with the following algorithm. Note that
r4, r5, and r6 are already known.

Construction 2:
Mapping algorithm for rn (n4 and n7)
Input: (x1, x2, …, xn) Z2

n

Output: (1, 2, …, n) Sn

Begin
if (n 6) then
{

(1, 2, …, n) rn(x1, x2, …, xn) ;
stop and exit ;

}
if (n mod 4 3) then
{

k (n mod 4) + 4 ;
(1, 2, …, k) rk(x1, x2, …, xk) ;

}
if (n mod 4 = 3) then
{

(1, 2, …, 5) r5(x1, x2, …, x5) ;
(6, 7, …, 11) r6(x6, x7, …, x11) ;
i i + 5, for all i = 6, 7, …, 11 ;
if (x5 = 1) then swap (5, 6) ;
k 11 ;

}

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1254

while (k < n) repeat
{

(k+1, k+2, k+3, k+4) r4(xk+1, xk+2, xk+3, xk+4) ;
i i + k, for all i = k+1, k+2, k+3, k+4 ;
if (xk = 1) then swap (k, k+1) ;
k k + 4 ;

}
if (xn = 1) then swap (n, 1) ;

End

In fact, rn constructed in Construction 2 is an n-
DAIM. This fact will be proved in the next theorem.

Theorem 2: For any positive integer n 4 and n 7,
mapping rn generated from Construction 2 is an n-
DAIM, that is, rn Fn.
Proof: It is clear that for any 4 n 6, rn is always
an n-DAIM. For n 8, there are 4 cases. If (n mod 4)
= 0, we construct rn by combining two or more
copies of the 4-DAIM r4. If (n mod 4) = 1, we
construct rn by combining the 5-DAIM r5 with one or
more copies of the 4-DAIM r4. If (n mod 4) = 2, we
construct rn by combining the 6-DAIM r6 with one or
more copies of the 4-DAIM r4. If (n mod 4) = 3, we
construct rn by combining the 5-DAIM r5 and the 6-
DAIM r6 with zero or more copies of the 4-DAIM r4.
Though the combining procedure is slightly different
from that of Construction 1, the proof is similar and
skipped here.

QED

6. Comparisons of our DAIMs and other
mappings

The main objective in this section is to compare
the distributions of Hamming distance increasing of
different mappings, including DPMs from [1], DPMs
of odd length from [2], and our new DAIMs. The
notations we use to represent these mappings are
listed in the following table.

N n-DPM from
[1]

n-DPM from
[2]

n-DAIM

5 h5
4 l5 r5

6 h6 r6 = h6

7 h7
6 l7

8 h8
6 r8

9 h9
6 l9 r9

It is clear that we only need to compare mappings
r5, r8 and r9 with other DPMs. For each mapping f of
length n, we use an nn matrix (Di,j)nn to show the
distribution of distance increasing, where each
element Di,j denotes the number of unordered pairs
{x, y} of binary vectors of length n such that d(x, y) =
i and d(f(x), f(y)) = j.

Case n=5

h5
4

0 80 0 0 0
0 96 64 0

0 112 48
16 64

16

l5
0 64 6 2 8

4 68 64 24
14 76 70

22 58
16

r5
0 49 8 10 13

0 68 68 24
0 93 67

0 80
16

Case n=8

h8
6

0 1024 0 0 0 0 0 0
0 1280 2304 0 0 0 0

0 1600 4160 1408 0 0
0 1920 4992 1920 128

0 2240 3840 1088
128 1792 1664

192 832
128

r8
0 768 256 0 0 0 0 0

0 512 2432 512 128 0 0
0 256 3840 2304 768 0

0 256 4224 3584 896
0 512 3840 2816

0 768 2816
0 1024

128

Case n=9

h9
6

0 2304 0 0 0 0 0 0 0
0 3072 6144 0 0 0 0 0

0 4160 12096 5248 0 0 0
0 5376 16384 9472 1024 0

0 6592 16128 8768 768
256 6272 11520 3456

448 4672 4096
512 1792

256

l9
0 2048 0 0 0 0 6 68 182

0 3076 4092 0 0 40 514 1494
0 4176 8016 2144 126 1646 5396

0 4848 9512 3560 3170 11166
0 4492 7650 5462 14652

4 3200 5496 12804
82 1980 7154

136 2168
256

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1255

r9
0 1360 496 224 208 16 0 0 0

0 1008 4256 2112 944 864 32 0
0 784 6784 7696 4320 1472 448

0 512 8944 13168 7520 2112
0 528 10256 15200 6272

0 992 10432 10080
0 1776 7440

0 2304
256

7. Applications to Permutation Arrays

It was shown in [1] that distance preserving
mappings (DPMs and also DAIMs) are useful for the
construction of permutation arrays (PAs). An (n, d)
PA is a subset of Sn where the Hamming distance of
any two distinct permutations is at least d. Let P(n, d)
denote the maximal size of such an (n, d) PA.
Furthermore, we use A(n, d) to denote the maximal
size of an (n, d) binary code of length n and
minimum distance d.

We give a different and simpler proof of the same
lower bound of P(n, d) that was proved in Theorem 5
in [1]. Here the lower bound is proved without the
help of the Plotkin bound,

nd
d

dnA

2

2
),(for

2
n

d .

Theorem 3: For n 4, n 7, and 2 d n, P(n, d)
A(n, d1).

Proof: Let C be an (n, d1) binary code of size A(n,
d1). We first explicitly construct an n-DAIM rn by
applying Construction 2, and then construct rn(C). It
is obvious that rn(C) is an (n, d) permutation array.
Therefore P(n, d) A(n, d1).

QED
The following example uses the perfect [23, 12, 7]

Golay code to construct a permutation array of
minimum distance 8 and size 4096.

Example 3: It is known that the size of the perfect
[23, 12, 7] Golay code reaches the upper bound A(23,
7)=212=4096. With the DAIM r23 constructed from
the algorithm in Construction 2, we can obtain a (23,
8) permutation array. Thus P(23, 8) 4096.

Acknowledgment

This research was supported in part by the
National Science Council of Taiwan, ROC under the
contract NSC 93-2213-E-305-003.

References

[1] J.C. Chang, R.J. Chen, T. Klove, and S.C. Tsai,
“Distance-preserving mappings from binary vectors to
permutations,”IEEE Trans. Information Theory, vol.
49, no. 4, pp. 1054-1059, Apr. 2003.

[2] K. Lee, “New distance-preserving maps of odd length,”
to appear in IEEE Trans. Information Theory, 2004.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1256

