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(b) QueryMany XML query processing techniques have 

been proposed for processing structural joins. These 
algorithms find all element sets that satisfy the query 
pattern efficiently. However, sometimes we only need 
an aggregate value of the final result. Simpler algo-
rithms are needed for processing the aggregate 
operations. Using start and end tags and a chain of 
linked stacks, we propose new algorithms for proc-
essing aggregate queries. Since no extra index 
structure is used in our method, the algorithm is 
suitable for processing streaming XML data. In 
addition, the experimental results indicate that the 
performance of our method is better than the in-
dex-based approach. 
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1. Introduction 
 

Data transferred on the Internet are not just in the 
form of data files. Some of the data, such as financial 
tickers, on-line auctions, and sensor data, are trans-
ferred as continuous data streams. For these kinds of 
application, the data are continuously changing and 
traditional relational database management systems 
(RDBMSs) can no longer efficiently support them. 
New methods have been proposed for processing 
data streams [2] [3]. 

XML (eXtensible Markup Language) [18] has 
become a standard format for data representation and 
exchange on the Internet. XML uses a tree-structured 
model to store data. When querying XML data, 
patterns are specified to identify the structural rela-
tionships between the elements in the tree structure. 
For example, query path expression “//book//title” 
indicates that element book has a descendant element 
title. In the path expression, “//” represents ances-
tor-descendent relationship and “/” represents par-
ent-child relationship [19]. In order to find all ele-
ments that satisfy the query, many strategies have 
been proposed to evaluate XML data against the 
pattern specified in the query [1] [4] [5] [11] [12] [15]  
[20].  

One of the methods, holistic twig join algorithm 
[4], uses a numbering scheme to represent the posi-
tion of element occurrences in the tree structure and a 
chain of linked stacks to obtain matches for the query 

pattern. For example, as shown in Figure 1a, a 
3-tuple (LeftPos, RightPos, LevelNum) is used to 
encode the data. The query shown in Figure 1b has a 
pattern “A//B//C”. Each node in the query pattern has 
a corresponding stack as shown in Figure 1c. Pointers 
are used to indicate the next element in the stream. 
Since C1 points to B2 and B2 points to A2, [A2, B2, C1] 
is an answer. Since A1 is below A2 on stack SA, [A1, 
B2, C1] is an answer, too. In addition, [A1, B1, C1] is 
also in the query results as shown in Figure 1d. 
Holistic twig join algorithm is an index-based XML 
query processing technique. Since it is a set-at-a-time 
strategy, the index-based method is not designed for 
processing streaming XML data.  

Navigation-based algorithms compute query re-
sults by analyzing the input XML data one tag at a 
time. It has been shown that the index-based algo-
rithm is more efficient than navigation-based algo-
rithm if the required indices are already built [5]. 
Many navigation-based approaches have been pro-
posed in the literature [6] [7] [8] [10] [14]. 

Most of the above-mentioned query processing 
techniques return the final results that satisfy the 
pattern specified in the query. However, in many 
situations we only want exact result size of a path 
expression instead of the final results. In other words, 
the aggregate value over the result set is desirable. An 
example of such aggregate queries is 
“count(//Book//Author)”, which returns the number 
of “Author” under “Book” in the XML data input. 
The simplest method to evaluate an aggregate query 
is to find the final results for the query pattern first 
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Figure 1. Compact encoding of answers using stacks.
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//input: sequential XML data. 
//output: aggregate value 

for each newnode from the SAX Parser { 
    if (newnode is node) { 
      if (newnode is start tag) { 
        node’s count + 1; 
        if newnode is pat_end then CheckStack(); 
        if “average” then sum = sum / total; 
      } 
      else { 
        if (node’s count != 0) node’s count – 1; 
        else { 
          pop node’s count from node’s stack; 
          node’s count – 1;  
        } 
        node = newnode;  
      } 
    } 

else { 
      if (newnode is start tag) { 
        if (node’s count != 0) { 

        push node’s count to node’s stack; 
          if previous stack satisfies the pattern 

and is not empty then add pointer; 
        } 
        node’s count = 0; 

node = newnode;  node’s count + 1; 
        if node is pat_end then CheckStack(); 
        if “average” then sum = sum / total; 
      } 
      else { 
        node = newnode; 
        pop node’s count from node’s stack; 
        node’s count – 1; 
      } 
    } 
  } 

and then apply the aggregate function to the resulting 
set. Obviously, this approach is inefficient. 

A better performance can be achieved by using an 
XA-tree index structure, which indexes the aggregate 
value for each necessary XML element [13]. For 
example, in order to process the aggregate query 
“count(//Book//Author)”, an XA-tree is built over all 
“Book” elements that contain at least one “Author” 
element. Then, the XA-tree is used to generate the 
resulting aggregate value. However, this approach 
needs to build and maintain the XA-tree index 
structure for necessary elements. This extra index 
structure causes the increases of the processing costs. 
Moreover, since the index structure needs to be built 
over all necessary elements, this approach is not 
suitable for processing streaming XML data. 

In this paper, we propose a new method for proc-
essing aggregate queries of streaming XML data. 
Start and end tags are used to guide the process and 
linked stacks are used to record the count numbers of 
the necessary elements in the query pattern. We use 
the data stored temporally in the stacks to compute 
the aggregate values. Since no extra index structure is 
needed in our method, it is suitable for processing 
streaming XML data. In addition, the experimental 
results indicate that the performance of our method is 
better than the index-based approach. 

The rest of the paper is organized as follows: Sec-
tion 2 introduces the XML data model and aggregate 
queries. Section 3 presents the proposed method for 
processing aggregate queries of streaming XML data. 
Section 4 illustrates the experimental results. Section 
5 contains concluding remarks. 

 Figure 2. Algorithm AggrStack. 
2. Data model and aggregate queries 

 
An XML document consists of a hierarchically 

nested structure of elements. Elements can be nested 
to any depth and the scope of an element is defined 
by a pair of start and end tags. An XML document 
can be treated as a rooted, ordered, and labeled tree, 
where each node represents an element. The XPath 
language [19] provides a way of specifying structural 
patterns that can be matched to nodes in the XML 
data tree. For example, “//Book//Author” represents 
the paths that contain an “Author” node as a descen-
dent of a “Book” node in the XML data tree. Fur-
thermore, paired start and end tags cannot interleave 
between each other, so that a sequence of tags like 
<A> <B> </A> </B> is not allowed in an XML 
document. Due to this characteristic, we can use start 
and end tags to guide the query evaluation process.  

Count, minimum, maximum, summary, and av-
erage are common aggregate operations. Aggregate 
queries on XML data can be specified as opera-
tor(pattern), where operator represents one of the 
aggregate operations and pattern represents a path 
expression in XPath format. Conceptually, we first 

evaluate the path expression against the XML data 
and find all element sets that satisfy the query pattern. 
Then, the aggregate operator is applied to the result-
ing element sets to get the desired aggregation value. 
Count(pattern) computes the total number of result-
ing element sets that satisfy the query pattern; mini-
mum(pattern) finds the minimum over the aggregate 
attribute values of all resulting element sets; maxi-
mum(pattern) finds the maximum over the aggregate 
attribute values of all resulting element sets;   
summary(pattern) computes the summary over the 
aggregate attribute values of all resulting element sets; 
and average(pattern) computes the average over the 
aggregate attribute values of all resulting element 
sets. 

 
3. Aggregate query processing 

 
Among the aggregate operations, count is an im-

portant one. We will present an algorithm for proc-
essing the count operation and discuss how to im-
plement the other aggregate operations. 
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<A1> <A2> <B1> <B2> <C1> </C1> </B2> </B1> </A2> </A1> Count (A//B//C) 

(b) Query (a) Data 

Read <A1>    A’s count = 1 
Read <A2>    A’s count = 2 
Read <B1>    B’s count = 1, 

Push A’s count to Stack A. 
 
 
 
 
 
Read <B2>    B’s count = 2 
Read <C1>    C’s count = 1, 

Push B’s count to Stack B. 
Then, the query result is 2 * 2 = 4.

3.1. Count operation 
 

The count operation is a fundamental aggregate 
operation. It can be expressed as count(pattern), in 
which the pattern is an XPath expression. In order to 
process this operation, we need to find out the num-
ber of element sets that satisfy the query pattern. 
However, because the actual structural join results are 
not required in the answer, we may use simplified 
structural join algorithms to get the aggregate value. 

We use start tags and end tags (e.g., <A> </A>) in 
the XML data to direct the aggregate query process-
ing. The input XML data are first processed by a 
SAX parser [16] and the resulting nodes are used as 
input data for our algorithm. As shown in Figure 2, 
algorithm AggrStack reads in nodes and checks 
whether the nodes can satisfy the query pattern. This 
algorithm is similar to the holistic twig algorithm in 
the sense of using a chain of linked stacks to store 
partial results. However, instead of storing structural 
relationships between elements in the stacks we store 
the count numbers of each necessary node in the 
corresponding stacks. More importantly, we do not 
use index to decide parent-child and ances-
tor-descendent relationships. Start tags and end tags 
are used to guide the pop or push operations of the 
stacks. Therefore, index structures are not necessary 
and more efficient processing can be achieved. 

The basic idea of the algorithm is to store count 

information of each node in the corresponding stacks. 
We use pointer between nodes in consecutive stacks 
to keep track of a node’s previous node in the query 
pattern. When we read in the start tag of the first 
node satisfied the query pattern (e.g., <A1>), we 
increase the node’s count number by 1. If the next 
qualified node is the same as the previous node (e.g., 
<A2>, where the number 2 indicates that this node is 
the second occurrence of node A), we just increase 
the node’s count number by 1. However, if the next 
qualified node is a new type node (e.g., <B1>), we 
need to push the original node’s count number 
information into its corresponding stack. If the node 
just pushed into the stack is not the first node in the 
query pattern, we need to add a pointer to the top 
node in its previous stack. When reading in an end 
tag (e.g., </B1>), we decrease the node’s count 
number by 1. If the count number is 0, we need to 
pop the node’s count information from the corre-
sponding stack and decrease it by 1. However, if the 
start tag of the node read is the last element in the 
query pattern, we need to check all stacks’ count 
information and calculate and return the aggregate 
value.  

Figure 3 illustrates an example of computing 
count operation using stacks. The input data consist 
of 5 elements, whose start and end tags are shown in 
Figure 3a. As shown in Figure 3b the query is 
count(A//B//C). Figure 3c depicts the process of 

null 
A

A(2) 

B

B(2) 

null 
A

A(2) 

(c) Process start tags 

Read </C1>  C’s count = 0 
Read </B2>  Pop top from Stack B.
            B’s count = 1. 
 
 
 
 
 
Read </B1>  B’s count = 0 
Read </A2>  Pop top from Stack A.
            A’s count = 1. 
Read </A1>  A’s count = 0 

null A

A(2)

B

B(2) A(2)

null
A

(d) Process end tags 

Figure 3. Compute count operation using stacks. 
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reading in the start tags of 2 A’s, 2 B’s and 1 C. Since 
C is the last element in the query pattern A//B//C, 
<C1> triggers the calculation of count aggregate 
value from the stacks. Figure 3d shows the process of 
reading in the end tags. 

<!-- <?xml encoding="US-ASCII"?> --> 
<!ELEMENT nation (nation | country | city |  

company | department | manager | employee)+> 
<!ELEMENT place (place | nation | country | city | 

company | department | manager | employee)+> 
<!ELEMENT country (country | place | city |  

company | department | manager |employee)+> 
<!ELEMENT city (city | country | place |  

company | department | manager | employee)+> 
<!ELEMENT company (company | place | 

 department | manager | employee)+> 
<!ELEMENT manager (manager | employee |  

department | company | place)+> 
<!ELEMENT department (department | manager |  

employee| company | place)+> 
<!ELEMENT employee (name, email*, url*)> 
<!ELEMENT family (#PCDATA)> 
<!ELEMENT given (#PCDATA)> 
<!ELEMENT name (family, given)> 
<!ELEMENT email (#PCDATA)> 
<!ELEMENT url EMPTY> 

 
3.2. Other aggregate operations 

 
Other aggregate operations will need different 

algorithms to compute. For example, when process-
ing a minimum operation, we need to find the mini-
mum value of an aggregate attribute in all element 
sets that satisfy the query pattern. The algorithm 
AggrStack can be modified to use current minimum 
value as an eliminating criterion to compute the 
minimum operation. All nodes that are not associated 
with the current minimum attribute in the stacks need 
to be eliminated from the stacks. Maximum operation 
can be implemented in a similar fashion. The other 
aggregate operations, summary and average, need to 
keep track of all aggregate attribute values and use 
the count operation to calculate the wanted aggregate 
values. 

 
4. Experimental evaluation 

Figure 4. The DTD of the synthetic dataset.  
In this section we evaluate the performance of 

algorithm AggrStack. Two sets of data, including a 
synthetic dataset and a real dataset, were used in the 
experiment. The AggrStack algorithm was compared 
with an index-based algorithm using the two data sets. 
We first introduce the experimental setup and then 
present the experimental results. 

<!ENTITY % carSet SYSTEM 'CarSet.cfg'>%carSet;
 <!ELEMENT SigmodRecord (issues)> 
 <!ELEMENT issues (issue)*> 
 <!ELEMENT issue (volume,number,articles)> 
 <!ELEMENT volume (#PCDATA)> 
 <!ELEMENT number (#PCDATA)> 
 <!ELEMENT articles (article)*> 
 <!ELEMENT article (title,authors)> 
 <!ELEMENT title (#PCDATA)> 
 <!ATTLIST title articleCode CDATA #IMPLIED> 
 <!ELEMENT authors (author)*> 
 <!ELEMENT author (#PCDATA)> 
 <!ATTLIST author AuthorPosition  

CDATA  #IMPLIED> 

 
4.1. Experimental setup 

 
The experiments were conducted on a machine 

with two 733 MHz Pentium III processors and 512 
MB main memory running Windows 2003 Server. All 
algorithms were implemented in JAVA2 and Borland 
JBuilder 9. We used two XML datasets in the ex-
periments. The first one was a synthetic XML dataset, 
which was generated by the XML Generator from 
IBM [9]. The DTD of the synthetic dataset is shown 
in Figure 4. The other dataset was a real application 
from the SIGMOD RECORD articles database [17]. 
The DTD of the real dataset is shown in Figure 5. 
Due to memory size limitation, the size of the data-
sets was about 500 KB. Although the datasets were 
not very large, we still could use them to evaluate the 
algorithms.  

Figure 5. The DTD of the real dataset.  

We compared our algorithm AggrStack with algo-
rithm PathStack, that was modified from the holistic 
twig join algorithm proposed in [4]. XML documents 
were first parsed into nodes by SAX and then distrib-
uted into the corresponding stacks. Index values were 
also assigned to elements so that they could be 
processed by the PathStack algorithm.  

 
4.2. Experimental results 

We first conducted experiments on synthetic data 
to evaluate the algorithms. We used queries with path 
length from 3 to 9. For example, the length 4 query 
was “manager//department//employee//name”. As 
shown in Figure 6, for all tested queries, the execu-
tion time for the count operation of our method 
AggrStack was less than both algorithms PathStack 
and PathStack+Index. In the implementation, Path-
Stack could use existing index structures but Path-
Stack+Index had to create index for the XML tree 
structures. Therefore, PathStack+Index took much 
longer time to process the same queries. Comparing 
PathStack and AggrStack, PathStack needed to 
distribute nodes into the corresponding stacks and 
used index values to obtain correct element sets and 
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Figure 6. Execution time for synthetic datasets. Figure 9. Execution time for real datasets. 
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Figure 7. Nodes read for synthetic datasets. Figure 10. Nodes read for real datasets. 

then counted the aggregate values. Thus, AggrStack 
took less time to compute the count aggregate opera-
tion. Note that the difference of execution time was 
larger when the path length in the query was longer.  

Figure 7 shows the number of nodes read from 
stacks by algorithms PathStack and AggrStack when 
processing the count aggregate operation. Algorithm 
AggrStack always read less number of nodes because 
the node information pushed into the stacks was only 
aggregate count values accumulated in the algorithm. 
On the other hand, algorithm PathStack pushed every 
individual node encountered into the stacks. Figure 8 
indicates the execution time for the other aggregate 
operations on the synthetic datasets. Similarly, 
algorithm AggrStack had the least execution time 
among the three algorithms for all the other aggregate 
operations.  

We processed two count queries in the experi-
ments using real datasets of SIGMOD RECORD 
articles database. The path of the first query was 
“articles//authors//author” and the path of the second 

query was “issues//articles//authors//author”. Figures 
9 and 10 show the execution time and the number of 
nodes read for the operations, respectively. The 
execution time of other aggregate operations on the 
real datasets is shown in Figure 11. 

In the real datasets, the same data did not repeat 
itself in the path. In addition, both paths of the 
queries used in the experiments were relatively short. 
Although algorithm AggrStack could not take advan-
tage of storing aggregate count values in the stacks 
using the datasets, these experiments showed that 
AggrStack was still more efficient than PathStack. 
This is because PathStack needed to examine all 
stacks specified in the query but AggrStack could 
skip the “last” stack. Algorithm AggrStack did not 
need to handle the index structures as algorithm 
PathStack did was another reason that AggrStack was 
more efficient than PathStack. Since most streaming 
data do not have index structures already built in 
them, AggrStack is suitable for processing streaming 
XML data.  

Figure 8. Other operations on synthetic datasets.
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Figure 11. Other operations on real datasets.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1154



5. Conclusions 

 this paper, we propose new techniques for 
pro
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