
Aggregate Query Processing of Streaming XML Data

Yaw-Huei Chen and Ming-Chi Ho
Department of Computer Science and Information Engineering

National Chiayi University
{ychen, s0920206}@mail.ncyu.edu.tw

Abstract A//B//C (1:9, 1)

)

)

)

)

A1

B1

A2

B2

C1

(b) QueryMany XML query processing techniques have

been proposed for processing structural joins. These
algorithms find all element sets that satisfy the query
pattern efficiently. However, sometimes we only need
an aggregate value of the final result. Simpler algo-
rithms are needed for processing the aggregate
operations. Using start and end tags and a chain of
linked stacks, we propose new algorithms for proc-
essing aggregate queries. Since no extra index
structure is used in our method, the algorithm is
suitable for processing streaming XML data. In
addition, the experimental results indicate that the
performance of our method is better than the in-
dex-based approach.

(2:8, 2

Keywords: aggregation, XML, databases, query
processing, data streams.

1. Introduction

Data transferred on the Internet are not just in the
form of data files. Some of the data, such as financial
tickers, on-line auctions, and sensor data, are trans-
ferred as continuous data streams. For these kinds of
application, the data are continuously changing and
traditional relational database management systems
(RDBMSs) can no longer efficiently support them.
New methods have been proposed for processing
data streams [2] [3].

XML (eXtensible Markup Language) [18] has
become a standard format for data representation and
exchange on the Internet. XML uses a tree-structured
model to store data. When querying XML data,
patterns are specified to identify the structural rela-
tionships between the elements in the tree structure.
For example, query path expression “//book//title”
indicates that element book has a descendant element
title. In the path expression, “//” represents ances-
tor-descendent relationship and “/” represents par-
ent-child relationship [19]. In order to find all ele-
ments that satisfy the query, many strategies have
been proposed to evaluate XML data against the
pattern specified in the query [1] [4] [5] [11] [12] [15]
[20].

One of the methods, holistic twig join algorithm
[4], uses a numbering scheme to represent the posi-
tion of element occurrences in the tree structure and a
chain of linked stacks to obtain matches for the query

pattern. For example, as shown in Figure 1a, a
3-tuple (LeftPos, RightPos, LevelNum) is used to
encode the data. The query shown in Figure 1b has a
pattern “A//B//C”. Each node in the query pattern has
a corresponding stack as shown in Figure 1c. Pointers
are used to indicate the next element in the stream.
Since C1 points to B2 and B2 points to A2, [A2, B2, C1]
is an answer. Since A1 is below A2 on stack SA, [A1,
B2, C1] is an answer, too. In addition, [A1, B1, C1] is
also in the query results as shown in Figure 1d.
Holistic twig join algorithm is an index-based XML
query processing technique. Since it is a set-at-a-time
strategy, the index-based method is not designed for
processing streaming XML data.

Navigation-based algorithms compute query re-
sults by analyzing the input XML data one tag at a
time. It has been shown that the index-based algo-
rithm is more efficient than navigation-based algo-
rithm if the required indices are already built [5].
Many navigation-based approaches have been pro-
posed in the literature [6] [7] [8] [10] [14].

Most of the above-mentioned query processing
techniques return the final results that satisfy the
pattern specified in the query. However, in many
situations we only want exact result size of a path
expression instead of the final results. In other words,
the aggregate value over the result set is desirable. An
example of such aggregate queries is
“count(//Book//Author)”, which returns the number
of “Author” under “Book” in the XML data input.
The simplest method to evaluate an aggregate query
is to find the final results for the query pattern first

(a) Data

(3:7, 3

(4:6, 4

(5:5, 5

(c) Multiple stacks
SA

A2

A1

B2

SB

B1 C1

SC

A1 B1 C1

A1 B2 C1

A2 B2 C1

(d) Query results

Figure 1. Compact encoding of answers using stacks.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1150

//input: sequential XML data.
//output: aggregate value

for each newnode from the SAX Parser {
 if (newnode is node) {
 if (newnode is start tag) {
 node’s count + 1;
 if newnode is pat_end then CheckStack();
 if “average” then sum = sum / total;
 }
 else {
 if (node’s count != 0) node’s count – 1;
 else {
 pop node’s count from node’s stack;
 node’s count – 1;
 }
 node = newnode;
 }
 }

else {
 if (newnode is start tag) {
 if (node’s count != 0) {

 push node’s count to node’s stack;
 if previous stack satisfies the pattern

and is not empty then add pointer;
 }
 node’s count = 0;

node = newnode; node’s count + 1;
 if node is pat_end then CheckStack();
 if “average” then sum = sum / total;
 }
 else {
 node = newnode;
 pop node’s count from node’s stack;
 node’s count – 1;
 }
 }
 }

and then apply the aggregate function to the resulting
set. Obviously, this approach is inefficient.

A better performance can be achieved by using an
XA-tree index structure, which indexes the aggregate
value for each necessary XML element [13]. For
example, in order to process the aggregate query
“count(//Book//Author)”, an XA-tree is built over all
“Book” elements that contain at least one “Author”
element. Then, the XA-tree is used to generate the
resulting aggregate value. However, this approach
needs to build and maintain the XA-tree index
structure for necessary elements. This extra index
structure causes the increases of the processing costs.
Moreover, since the index structure needs to be built
over all necessary elements, this approach is not
suitable for processing streaming XML data.

In this paper, we propose a new method for proc-
essing aggregate queries of streaming XML data.
Start and end tags are used to guide the process and
linked stacks are used to record the count numbers of
the necessary elements in the query pattern. We use
the data stored temporally in the stacks to compute
the aggregate values. Since no extra index structure is
needed in our method, it is suitable for processing
streaming XML data. In addition, the experimental
results indicate that the performance of our method is
better than the index-based approach.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the XML data model and aggregate
queries. Section 3 presents the proposed method for
processing aggregate queries of streaming XML data.
Section 4 illustrates the experimental results. Section
5 contains concluding remarks.

 Figure 2. Algorithm AggrStack.
2. Data model and aggregate queries

An XML document consists of a hierarchically

nested structure of elements. Elements can be nested
to any depth and the scope of an element is defined
by a pair of start and end tags. An XML document
can be treated as a rooted, ordered, and labeled tree,
where each node represents an element. The XPath
language [19] provides a way of specifying structural
patterns that can be matched to nodes in the XML
data tree. For example, “//Book//Author” represents
the paths that contain an “Author” node as a descen-
dent of a “Book” node in the XML data tree. Fur-
thermore, paired start and end tags cannot interleave
between each other, so that a sequence of tags like
<A> is not allowed in an XML
document. Due to this characteristic, we can use start
and end tags to guide the query evaluation process.

Count, minimum, maximum, summary, and av-
erage are common aggregate operations. Aggregate
queries on XML data can be specified as opera-
tor(pattern), where operator represents one of the
aggregate operations and pattern represents a path
expression in XPath format. Conceptually, we first

evaluate the path expression against the XML data
and find all element sets that satisfy the query pattern.
Then, the aggregate operator is applied to the result-
ing element sets to get the desired aggregation value.
Count(pattern) computes the total number of result-
ing element sets that satisfy the query pattern; mini-
mum(pattern) finds the minimum over the aggregate
attribute values of all resulting element sets; maxi-
mum(pattern) finds the maximum over the aggregate
attribute values of all resulting element sets;
summary(pattern) computes the summary over the
aggregate attribute values of all resulting element sets;
and average(pattern) computes the average over the
aggregate attribute values of all resulting element
sets.

3. Aggregate query processing

Among the aggregate operations, count is an im-

portant one. We will present an algorithm for proc-
essing the count operation and discuss how to im-
plement the other aggregate operations.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1151

<A1> <A2> <B1> <B2> <C1> </C1> </B2> </B1> </A2> </A1> Count (A//B//C)

(b) Query (a) Data

Read <A1> A’s count = 1
Read <A2> A’s count = 2
Read <B1> B’s count = 1,

Push A’s count to Stack A.

Read <B2> B’s count = 2
Read <C1> C’s count = 1,

Push B’s count to Stack B.
Then, the query result is 2 * 2 = 4.

3.1. Count operation

The count operation is a fundamental aggregate
operation. It can be expressed as count(pattern), in
which the pattern is an XPath expression. In order to
process this operation, we need to find out the num-
ber of element sets that satisfy the query pattern.
However, because the actual structural join results are
not required in the answer, we may use simplified
structural join algorithms to get the aggregate value.

We use start tags and end tags (e.g., <A>) in
the XML data to direct the aggregate query process-
ing. The input XML data are first processed by a
SAX parser [16] and the resulting nodes are used as
input data for our algorithm. As shown in Figure 2,
algorithm AggrStack reads in nodes and checks
whether the nodes can satisfy the query pattern. This
algorithm is similar to the holistic twig algorithm in
the sense of using a chain of linked stacks to store
partial results. However, instead of storing structural
relationships between elements in the stacks we store
the count numbers of each necessary node in the
corresponding stacks. More importantly, we do not
use index to decide parent-child and ances-
tor-descendent relationships. Start tags and end tags
are used to guide the pop or push operations of the
stacks. Therefore, index structures are not necessary
and more efficient processing can be achieved.

The basic idea of the algorithm is to store count

information of each node in the corresponding stacks.
We use pointer between nodes in consecutive stacks
to keep track of a node’s previous node in the query
pattern. When we read in the start tag of the first
node satisfied the query pattern (e.g., <A1>), we
increase the node’s count number by 1. If the next
qualified node is the same as the previous node (e.g.,
<A2>, where the number 2 indicates that this node is
the second occurrence of node A), we just increase
the node’s count number by 1. However, if the next
qualified node is a new type node (e.g., <B1>), we
need to push the original node’s count number
information into its corresponding stack. If the node
just pushed into the stack is not the first node in the
query pattern, we need to add a pointer to the top
node in its previous stack. When reading in an end
tag (e.g., </B1>), we decrease the node’s count
number by 1. If the count number is 0, we need to
pop the node’s count information from the corre-
sponding stack and decrease it by 1. However, if the
start tag of the node read is the last element in the
query pattern, we need to check all stacks’ count
information and calculate and return the aggregate
value.

Figure 3 illustrates an example of computing
count operation using stacks. The input data consist
of 5 elements, whose start and end tags are shown in
Figure 3a. As shown in Figure 3b the query is
count(A//B//C). Figure 3c depicts the process of

null
A

A(2)

B

B(2)

null
A

A(2)

(c) Process start tags

Read </C1> C’s count = 0
Read </B2> Pop top from Stack B.
 B’s count = 1.

Read </B1> B’s count = 0
Read </A2> Pop top from Stack A.
 A’s count = 1.
Read </A1> A’s count = 0

null A

A(2)

B

B(2) A(2)

null
A

(d) Process end tags

Figure 3. Compute count operation using stacks.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1152

reading in the start tags of 2 A’s, 2 B’s and 1 C. Since
C is the last element in the query pattern A//B//C,
<C1> triggers the calculation of count aggregate
value from the stacks. Figure 3d shows the process of
reading in the end tags.

<!-- <?xml encoding="US-ASCII"?> -->
<!ELEMENT nation (nation | country | city |

company | department | manager | employee)+>
<!ELEMENT place (place | nation | country | city |

company | department | manager | employee)+>
<!ELEMENT country (country | place | city |

company | department | manager |employee)+>
<!ELEMENT city (city | country | place |

company | department | manager | employee)+>
<!ELEMENT company (company | place |

 department | manager | employee)+>
<!ELEMENT manager (manager | employee |

department | company | place)+>
<!ELEMENT department (department | manager |

employee| company | place)+>
<!ELEMENT employee (name, email*, url*)>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>
<!ELEMENT name (family, given)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT url EMPTY>

3.2. Other aggregate operations

Other aggregate operations will need different

algorithms to compute. For example, when process-
ing a minimum operation, we need to find the mini-
mum value of an aggregate attribute in all element
sets that satisfy the query pattern. The algorithm
AggrStack can be modified to use current minimum
value as an eliminating criterion to compute the
minimum operation. All nodes that are not associated
with the current minimum attribute in the stacks need
to be eliminated from the stacks. Maximum operation
can be implemented in a similar fashion. The other
aggregate operations, summary and average, need to
keep track of all aggregate attribute values and use
the count operation to calculate the wanted aggregate
values.

4. Experimental evaluation

Figure 4. The DTD of the synthetic dataset.
In this section we evaluate the performance of

algorithm AggrStack. Two sets of data, including a
synthetic dataset and a real dataset, were used in the
experiment. The AggrStack algorithm was compared
with an index-based algorithm using the two data sets.
We first introduce the experimental setup and then
present the experimental results.

<!ENTITY % carSet SYSTEM 'CarSet.cfg'>%carSet;
 <!ELEMENT SigmodRecord (issues)>
 <!ELEMENT issues (issue)*>
 <!ELEMENT issue (volume,number,articles)>
 <!ELEMENT volume (#PCDATA)>
 <!ELEMENT number (#PCDATA)>
 <!ELEMENT articles (article)*>
 <!ELEMENT article (title,authors)>
 <!ELEMENT title (#PCDATA)>
 <!ATTLIST title articleCode CDATA #IMPLIED>
 <!ELEMENT authors (author)*>
 <!ELEMENT author (#PCDATA)>
 <!ATTLIST author AuthorPosition

CDATA #IMPLIED>

4.1. Experimental setup

The experiments were conducted on a machine

with two 733 MHz Pentium III processors and 512
MB main memory running Windows 2003 Server. All
algorithms were implemented in JAVA2 and Borland
JBuilder 9. We used two XML datasets in the ex-
periments. The first one was a synthetic XML dataset,
which was generated by the XML Generator from
IBM [9]. The DTD of the synthetic dataset is shown
in Figure 4. The other dataset was a real application
from the SIGMOD RECORD articles database [17].
The DTD of the real dataset is shown in Figure 5.
Due to memory size limitation, the size of the data-
sets was about 500 KB. Although the datasets were
not very large, we still could use them to evaluate the
algorithms.

Figure 5. The DTD of the real dataset.

We compared our algorithm AggrStack with algo-
rithm PathStack, that was modified from the holistic
twig join algorithm proposed in [4]. XML documents
were first parsed into nodes by SAX and then distrib-
uted into the corresponding stacks. Index values were
also assigned to elements so that they could be
processed by the PathStack algorithm.

4.2. Experimental results

We first conducted experiments on synthetic data
to evaluate the algorithms. We used queries with path
length from 3 to 9. For example, the length 4 query
was “manager//department//employee//name”. As
shown in Figure 6, for all tested queries, the execu-
tion time for the count operation of our method
AggrStack was less than both algorithms PathStack
and PathStack+Index. In the implementation, Path-
Stack could use existing index structures but Path-
Stack+Index had to create index for the XML tree
structures. Therefore, PathStack+Index took much
longer time to process the same queries. Comparing
PathStack and AggrStack, PathStack needed to
distribute nodes into the corresponding stacks and
used index values to obtain correct element sets and

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1153

0

5

10

15

3 4 5 6 7 8 9

Path length

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
es
)

AggrStack PathStack PathStack+Index

0

0.5

1

1.5

2

Path 1 Path 2

E
xe
cu
tio
n
tim
e
(s
ec
on
ds
)

AggrStack PathStack PathStack+Index

Figure 6. Execution time for synthetic datasets. Figure 9. Execution time for real datasets.

0

200,000

400,000

600,000

3 4 5 6 7 8 9

Path length

N
od

es
 r
ea
d

AggrStack PathStack

0

5,000

10,000

15,000

20,000

Path 1 Path 2

N
od
es
 r
ea
d

AggrStack PathStack

Figure 7. Nodes read for synthetic datasets. Figure 10. Nodes read for real datasets.

then counted the aggregate values. Thus, AggrStack
took less time to compute the count aggregate opera-
tion. Note that the difference of execution time was
larger when the path length in the query was longer.

Figure 7 shows the number of nodes read from
stacks by algorithms PathStack and AggrStack when
processing the count aggregate operation. Algorithm
AggrStack always read less number of nodes because
the node information pushed into the stacks was only
aggregate count values accumulated in the algorithm.
On the other hand, algorithm PathStack pushed every
individual node encountered into the stacks. Figure 8
indicates the execution time for the other aggregate
operations on the synthetic datasets. Similarly,
algorithm AggrStack had the least execution time
among the three algorithms for all the other aggregate
operations.

We processed two count queries in the experi-
ments using real datasets of SIGMOD RECORD
articles database. The path of the first query was
“articles//authors//author” and the path of the second

query was “issues//articles//authors//author”. Figures
9 and 10 show the execution time and the number of
nodes read for the operations, respectively. The
execution time of other aggregate operations on the
real datasets is shown in Figure 11.

In the real datasets, the same data did not repeat
itself in the path. In addition, both paths of the
queries used in the experiments were relatively short.
Although algorithm AggrStack could not take advan-
tage of storing aggregate count values in the stacks
using the datasets, these experiments showed that
AggrStack was still more efficient than PathStack.
This is because PathStack needed to examine all
stacks specified in the query but AggrStack could
skip the “last” stack. Algorithm AggrStack did not
need to handle the index structures as algorithm
PathStack did was another reason that AggrStack was
more efficient than PathStack. Since most streaming
data do not have index structures already built in
them, AggrStack is suitable for processing streaming
XML data.

Figure 8. Other operations on synthetic datasets.

0

5

10

15

E
xe
cu
ti
on
 t
im
e
(s
ec
on
ds
)

AggrStack PathStack PathStack+Index

AggrStack 1.968 1.969 1.963 1.969

PathStack 2.804 2.807 2.806 2.805

PathStack+Index 12.307 12.35 12.3 12.318

MAX MIN SUM AVG 0

0.5

1

1.5

2

E
xe
cu
ti
on
 t
im
e
(s
ec
on
ds
)

AggrStack PathStack PathStack+Index

AggrStack 0.282 0.281 0.279 0.285

PathStack 0.422 0.422 0.419 0.419

PathStack+Index 1.631 1.623 1.627 1.626

MAX MIN SUM AVG

Figure 11. Other operations on real datasets.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1154

5. Conclusions

 this paper, we propose new techniques for
pro

Acknowledgements: This research is supported in

References

] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M.

[2] k, S. Babu, M. Datar, R. Motwani,

[3] eries

[4]

[5] ravano, N. Koudas, and D.

[6] , M. Garofalakis, and R.

[7] High-Performance

[8] H. Zhang,

[9]

[10] G. Miklau, M. Onizuka, and D.

[11] shik, R. Krishnamurthy, J.F. Naughton,

[12] r, and R.K.

[13]

[14] s on

[15] on, “PRIX: Indexing And

[16] oject.org/, 2002.
se,

r

[18] Recommendation, “Extensible Markup

[19] guage

[20] aughton, D. DeWitt, Q. Luo, and

In
cessing aggregate operations, such as count,

minimum, maximum, summary, and average, on
streaming XML data. In order to efficiently process
streaming XML data, we do not rely on index struc-
tures that are widely used in previously proposed
XML query processing techniques. We use the start
and end tags of each XML element to process the
XML data. In addition, we use a chain of linked
stacks to store intermediate aggregate count values so
that the overall aggregate operations can be per-
formed more efficiently. We have conducted a series
of experiments using both synthetic and real datasets
to evaluate the proposed techniques. The experimen-
tal results indicate that our method is more efficient
than index-based aggregate query processing meth-
ods. While we present algorithms for a single path
query, they can be extended to work for aggregation
on more complex query patterns. Beyond that,
aggregation on multiple XML data streams is another
interesting research area.

part by the National Science Council under grant
NSC93-2213-E-415-007.

[1

Patel, D. Srivastava, and Y. Wu, “Structural
Joins: A Primitive for Efficient XML Query
Pattern Matching,” Proc. of the 18th Int’l Conf.
on Data Engineering (ICDE’02), February,
2002.
B. Babcoc
and J. Widom, “Models and Issues in Data
Stream Systems,” Proc. of 21st ACM SIG-
MOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, pp. 1-16, 2002.
S. Babu and J. Widom, “Continuous Qu
over Data Streams,” ACM SIGMOD Record,
vol. 30, issue 3, pp.109-120, September, 2001.
N. Bruno, N. Koudas, and D. Srivastava,
“Holistic Twig Join: Optimal XML Pattern
Matching,” Proc. of the 2002 ACM SIGMOD
Int’l Conf. on Management of Data, pp.
310-321, 2002.
N. Bruno, L. G
Srivastava, “Navigation- vs. Index-Based XML
Multi-Query Processing,” Proc. of the 19th Int’l
Conf. on Data Engineering (ICDE’03),
March, 2003.
C.Y. Chan, P. Felber
Rastogi, “Efficient Filtering of XML Docu-
ments with XPath Expressions,” Proc. of the
18th Int’l Conf. on Data Engineering

(ICDE’02), February, 2002.
Y. Diao and M.J. Franklin, “
XML Filtering: An Overview of YFilter,” Bul-
letin of the IEEE Computer Society Technical
Committee on Data Engineering, vol. 26,
number 1, pp. 41-48, March, 2003.
Y. Diao, M. Altinel, M.J. Franklin,
and P. Fischer, “Path Sharing and Predicate
Evaluation for High-Performance XML Filter-
ing,” ACM Transactions on Database Systems,
vol. 28, issue 4, pp. 467-516, December, 2003.
A.L. Diaz and D. Lovell, XML Generator,
http://www.alphaworks.ibm.com/tech/xmlgener
ator, 1999.
T.J. Green,
Suciu, “Processing XML Streams with Deter-
ministic Automata,” Proc. of the 9th Int’l Conf.
on Database Theory, pp. 173-189, January,
2003.
R. Kau
and R. Ramakrishnan, “On the Integration of
Structure Indexes and Inverted Lists,” Proc. of
the 2004 ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 779-790, 2004.
F. Lam, W.M. Shui, D.K. Fishe
Wong, “Skipping Strategies for Efficient
Structural Joins,” Proc. of the 9th Int’l Conf. on
Database Systems for Advanced Applications
(DASFAA 2004), pp. 196-207, March, 2004.
K. Liu and F.H. Lochovsky, “Efficient Compu-
tation of Aggregate Structural Joins,” Proc. of
the 4th Int’l Conf. on Web Information Systems
Engineering (WISE’03), December, 2003.
F. Peng and S.S. Chawathe, “XPath Querie
Streaming Data,” Proc. of the 2003 ACM
SIGMOD Int’l Conf. on Management of Data,
pp. 431-442, 2003.
P. Rao and B. Mo
Querying XML Using Prufer Sequences,” Proc.
of the 20th Inter. Conf. on Data Engineering
(ICDE’04), March, 2004.
SAX 2.0, http://www.saxpr

[17] SIGMOD RECORD articles databa
http://www.acm.org/sigs/sigmod/reco d/xml/,
2002.
W3C
Language (XML) 1.0 (Third Edition)”,
http://www.w3.org/TR/REC-xml/, 2004.
W3C Recommendation, “XML Path Lan
(XPath) Version 1.0”, http://www.w3.org/TR
/xpath, 1999.
C. Zhang, J. N
G. Lohman, “On Supporting Containment Que-
ries in Relational Database Management Sys-
tems,” Proc. of the 2001 ACM SIGMOD Int’l
Conf. on Management of Data, pp. 425-436,
2001.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1155

