On the Jensen-Shannon Divergence and Variational Distance

Shi-Chun Tsai
Dept of Computer Science and Info Engineering

Wen-Guey Tzeng
Dept of Computer
and Info Science

Hsin-Lung Wu
Dept of Computer Science
and Info Engineering

National Chiao-Tung University
sctsai@csie.nctu.edu.tw tzeng@cis.nctu.edu.tw hsinlung@csie.nctu.edu.tw

Abstract

We study the distance measures between two probability distributions via two different distance metrics, a new metric induced from Jensen-Shannon Divergence[4] and the well known L_{1} metric. First we show that the bounds between these two distance metrics are tight for some particular distributions. Then we show that the L_{1} distance of a binomial distribution does not imply the entropy power inequality for the binomial family, proposed in [5].

Moreover, we show that, several important results and constructions in computational complexity under the L_{1} metric carry over to the new metric, such as Yao's next-bit predictor [13], the existence of extractors [11], the leftover hash lemma/?] and the construction of expander graph based extractor. Finally we show that the useful parity lemma [12] in studying pseudo-randomness does not hold in the new metric.

Keywords: Jensen-Shannon Divergence, variational distance, extractors.

1 Introduction

For any two distributions P and Q over the sample space $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$, the variational distance (under L_{1} metric) between P and Q denoted by $S D(P, Q)$ is defined as $\frac{1}{2} \sum_{i=1}^{n}\left|\operatorname{Pr}\left[P=\omega_{i}\right]-\operatorname{Pr}\left[Q=\omega_{i}\right]\right|$. This definition is equivalent to the existence of the best distinguisher B such that $B\left(\omega_{i}\right)=1$ if and only if $\operatorname{Pr}\left[P=\omega_{i}\right] \geq \operatorname{Pr}\left[Q=\omega_{i}\right]$ and $\mid \operatorname{Pr}_{\omega_{i} \leftarrow P}\left[B\left(\omega_{i}\right)=\right.$ $1]-\operatorname{Pr}_{\omega_{i} \leftarrow Q}\left[B\left(\omega_{i}\right)=1\right] \mid=S D(P, Q)$. We say that two distributions P and Q on a sample space are ϵ-close in L_{1}-norm if $S D(P, Q) \leq \epsilon$. In computa-
tional complexity, many results have been obtained based on the L_{1} metric, such as pseudo-randomness and extractors[11] and Yao's next-bit predictor[13], etc. It prompts a natural question why we should use the L_{1} metric in the first place. Can we use another metric of distributions instead of the variational distance? Suppose we have a new distance metric for probability distributions. Do the computational complexity results still hold under the new distance metric? Endres and Schindelin recently proposed a new metric $N D$ for probability distributions [4]. The square of the new distance measure is the so-called Jensen-Shannon Divergence. This motivates us to answer the above question for this new metric.

Jensen-Shannon Divergence was proposed by $\operatorname{Lin}[7]$. For breaking the condition of absolute continuity of Kullback divergence. These researches are information-theoretic. We will use Jensen-Shannon Divergence to investigate some computational complexity issues.

In this paper, we bound variational distance $S D$ by the new distance $N D$ and show that the bound is tight. Then we show that it is unlikely to prove entropy power inequality for binomial family via the bound from L_{1} metric. Moreover, we show that, several important results and constructions in computational complexity under the L_{1} metric carry over to the new metric, such as Yao's next-bit predictor [13], the existence of extractors [11], leftover hash lemma[?] and the construction of expander graph based extractors. Finally we show that the useful parity lemma [12] in studying pseudo-randomness does not hold in the new metric.

	SD	ND
Entropy power inequality for binomial family	Non-Applicable	Applicable
Next-bit predictor	Applicable	Applicable but Factor Loss
Existence of extractor	Applicable	Applicable but Factor Loss
Leftover hash lemma	Applicable	Applicable
Expander graph	Applicable	Applicable
Parity lemma	Applicable	Non-Applicable

Table 1: Comparison between $S D$ and $N D$

2 Preliminaries

We use $[n]$ to denote the set $\{1,2, . ., n\}$. The base of \log function is 2 . For any distribution X with sample space $\Omega_{n}=\left\{\omega_{1}, . ., \omega_{n}\right\}$, define the entropy of X to be $H(X)=\sum_{i=1}^{n}-\operatorname{Pr}\left[X=\omega_{i}\right] \log \operatorname{Pr}\left[X=\omega_{i}\right]$. For every positive integer m, U_{m} denotes the uniform distribution over $\{0,1\}^{m}$. We say a distribution D_{n} in $\{0,1\}^{n}$ is a k-source if for all $x \in\{0,1\}^{n}, D_{n}(x) \leq$ 2^{-k}. The notation $\|\cdot\|$ always means the ℓ_{2} norm.

Let Π be the set of distributions whose sample space is Ω_{n}. We use a metric function to measure the distance between two distributions. A metric function satisfies the following properties.

Definition 1 We say that a function $F: \Pi \times \Pi \rightarrow$ $[0,1]$ is a metric if $(\mathbf{a}) F(P, Q)=0$ if and only if $P=$ $Q,(\mathbf{b}) F(P, Q)=F(Q, P)$, and (\mathbf{c}) for any $P, Q, R \in$ $\Pi, F(P, Q) \leq F(P, R)+F(R, Q)$.

We could easily prove that variational distance is a metric. The following facts are useful in this paper.

Fact 1 Function $S D$ is a metric where $S D(P, Q)=$ $\frac{1}{2} \sum_{i=1}^{n}\left|\operatorname{Pr}\left[P=\omega_{i}\right]-\operatorname{Pr}\left[Q=\omega_{i}\right]\right|$.

Fact $2 \ln 2=\sum_{j=1}^{\infty} \frac{1}{2 j(2 j-1)}$.

3 A tight relation between $N D$ and $S D$

Let P and Q be two distributions with the same probability space and T be a $0-1$ random variable with $\operatorname{Pr}[T=0]=1 / 2$ and independent of P and Q. Define the following distribution:

$$
Z_{P Q}= \begin{cases}P & \text { if } T=0 \\ Q & \text { if } T=1 .\end{cases}
$$

Definition 2 The Jensen-Shannon Divergence is $\left(H\left(Z_{P Q}\right)-(H(P)+H(Q)) / 2\right) . N D$ is defined as

$$
N D(P, Q)=\sqrt{H\left(Z_{P Q}\right)-\frac{H(P)+H(Q)}{2}} .
$$

Endres and Schindelin proved that $N D$ is a metric[4]. Suppose $P=<p_{1}, \cdots, p_{n}>$ and $Q=<q_{1}, \cdots, q_{n}>$ where $p_{i}=\operatorname{Pr}\left[P=\omega_{i}\right]$ and $q_{i}=\operatorname{Pr}\left[Q=\omega_{i}\right]$ for $1 \leq i \leq n$. We need a lemma proved by Topsøe [10].

Lemma 1 [10] For any distributions P and Q in Π,
$\frac{2}{\log e}(N D(P, Q))^{2}=\sum_{j=1}^{\infty} \frac{1}{2 j(2 j-1)}\left(\sum_{i=1}^{n} \frac{\left|p_{i}-q_{i}\right|^{2 j}}{\left(p_{i}+q_{i}\right)^{2 j-1}}\right)$.

We reprove the following in a more direct way.
Theorem $1[10] \sqrt{S D(P, Q)} \geq N D(P, Q) \geq$
$\sqrt{\frac{(1+S D(P, Q)) \log (1+S D(P, Q))+(1-S D(P, Q)) \log (1-S D(P, Q))}{2}}$.
Actually, the above bounds are tight. For the left-hand-side inequality, we consider the following two
distributions: $P=<\epsilon, \underbrace{\frac{1-\epsilon}{n-2}, \cdots, \frac{1-\epsilon}{n-2}}_{n-2}, 0>$ and $Q=<0, \underbrace{\frac{1-\epsilon}{n-2}, \cdots, \frac{1-\epsilon}{n-2}}_{n-2}, \epsilon>$. Clearly $S D(P, Q)=$ ϵ. We can compute $N D(P, Q)=\sqrt{\epsilon}$. Hence the left-hand side is tight. For the right-hand side we set: $P=<\underbrace{\frac{1+\epsilon}{2 n}, \cdots, \frac{1+\epsilon}{2 n}}, \underbrace{\frac{1-\epsilon}{2 n}, \cdots, \frac{1-\epsilon}{2 n}}>$ and $Q=<\underbrace{\frac{1-\epsilon}{2 n}, \cdots, \frac{1-\epsilon}{2 n}}_{n}, \underbrace{\frac{1+\epsilon}{2 n}, \cdots, \frac{1+\epsilon}{2 n}}_{n}>$. Clearly $S D(P, Q)=\epsilon$. And we have:

$$
N D(P, Q)^{2}=\frac{(1+\epsilon) \log (1+\epsilon)+(1-\epsilon) \log (1-\epsilon)}{2}
$$

Therefore the right-hand side is a tight bound.

4 Advantage of $N D$

In this section we show that Theorem 1 does not help to prove the entropy power inequality for the binomial family in [5]. This shows that ND is more suitable than $S D$ in this case. The following facts will be handy in the rest of this section.

Fact 3 [3] Suppose P and Q are two distributions on \mathcal{A}. Let $\mathcal{B}=\{x \in \mathcal{A}: P(x) \geq Q(x)\}$. Then $S D(P, Q)=\operatorname{Pr}[P \in \mathcal{B}]-\operatorname{Pr}[Q \in \mathcal{B}]$.

Fact $4[2]\binom{n}{\left\lceil\frac{n}{2}\right\rceil}<2^{n} \sqrt{\frac{2}{\pi}} \sqrt{\frac{2 n+1}{2 n^{2}}}$.
Let $X_{1}, \cdots, X_{n}, \cdots$ be an i.i.d. random process where each $X_{i} \sim U_{1}$. Let $Y_{n}=\sum_{i=1}^{n} X_{i}$. Then Y_{n} is a binomial distribution with parameters n and $\frac{1}{2}$. The entropy power inequality for the binomial family states that: for any $m, n \geq 1,2^{2 H\left(Y_{n}\right)}+$ $2^{2 H\left(Y_{m}\right)} \leq 2^{2 H\left(Y_{n}+Y_{m}\right)}$. An easy observation is that if $\frac{2^{2 H\left(Y_{n}\right)}}{n}$ is increasing in n then the power inequality holds. Hence we just need to show that $\frac{2^{2 H\left(Y_{n}\right)}}{n}$ is increasing. It is sufficient to prove the following lower bound: $H\left(Y_{n+1}\right)-H\left(Y_{n}\right) \geq \frac{1}{2} \log \frac{n+1}{n}$. Denote P_{Y} as the probability distribution of Y. It is clear that $P_{Y_{n+1}}=\frac{P_{Y_{n}}+P_{Y_{n}+1}}{2}$. By the definition of Jensen-Shannon Divergence, we have $H\left(Y_{n+1}\right)=$
$H\left(Y_{n}+1\right) / 2+H\left(Y_{n}\right) / 2+N D^{2}\left(P_{Y_{n}}, P_{Y_{n}+1}\right)$. Note that $H\left(Y_{n}\right)=H\left(Y_{n}+1\right)$. Hence we have $H\left(Y_{n+1}\right)=$ $H\left(Y_{n}\right)+N D^{2}\left(P_{Y_{n}}, P_{Y_{n}+1}\right)$. The following has been proved by Harremoës and Vignat[5]

$$
\begin{equation*}
N D^{2}\left(P_{Y_{n}}, P_{Y_{n}+1}\right) \geq \frac{1}{2} \log \frac{n+1}{n} . \tag{1}
\end{equation*}
$$

Thus we obtain a lower bound for $H\left(Y_{n+1}\right)-H\left(Y_{n}\right)$ via $N D$.
We may hope that Theorem 1 will help us to prove Inequality (1). However we cannot prove it via Theorem 1. In fact we can prove the following inequality for large n

$$
\begin{equation*}
(2 \ln 2)\left(S D\left(P_{Y_{n}}, P_{Y_{n}+1}\right)\right)^{2}<\frac{1}{n}-\frac{1}{2 n^{2}} \tag{2}
\end{equation*}
$$

This implies (as in the proof of Theorem 1) that

$$
\sum_{j=1}^{\infty} \frac{1}{j(2 j-1)}\left(S D\left(P_{Y_{n}}, P_{Y_{n}+1}\right)\right)^{2 j}<\ln \frac{1+n}{n}(3)
$$

Inequality (3) tells us that Theorem 1 does not help us prove Inequality (1). Finally we show that Inequality (2) is correct for large n. We can view $P_{Y_{n}}$ and $P_{Y_{n}+1}$ as two distributions on $\{0,1, \cdots, n+1\}$.

By Fact 3 and 4 we have $S D\left(P_{Y_{n}}, P_{Y_{n}+1}\right)=$ $2^{-n}\binom{n}{\left[\frac{n}{2}\right\rceil}<\sqrt{\frac{2}{\pi}} \sqrt{\frac{2 n+1}{2 n^{2}}}$. It is easy to check that the following inequalities: $(2 \ln 2)\left(S D\left(P_{Y_{n}}, P_{Y_{n}+1}\right)\right)^{2}<$ $\frac{1}{n}-\frac{1}{2 n^{2}}$.

5 Randomized computation via $N D$

Randomized computation has been a very useful method for algorithm design. Randomized algorithms are the only known efficient methods for many difficult problems [8]. In this section we illustrate that several important results in randomized computation based on $S D$ carry over to $N D$. While we also show a non-applicable case.

5.1 Distinguisher v.s. predictor

Yao [13] proved that a boolean function G is a good distinguisher between two distributions (where one of
which is uniform) if and only if G is a good next-bit predictor. First of all we give some definitions.

Definition 3 For any distribution D_{n} on the probability space $\{0,1\}^{n}$, an ϵ-good distinguisher between D_{n} and U_{n} is a boolean function C such that

$$
\left|\operatorname{Pr}_{x \leftarrow D_{n}}[C(x)=1]-\operatorname{Pr}_{x \leftarrow U_{n}}[C(x)=1]\right| \geq \epsilon .
$$

Definition 4 For any distribution D_{n}, an ϵ-good next-bit predictor for D_{n} is a function, for some $i \in[n]$ and given the first $(i-1)$ bits of the input, such that $\left|P_{x \leftarrow D_{n}}\left[G\left(x_{1}, \cdots, x_{i-1}\right)=x_{i}\right]\right| \geq \epsilon$.

With a distinguisher as an oracle, Yao proved the following lemma.

Lemma 2 [13] If C is an ϵ-good distinguisher between D_{n} and U_{n}, then there exists an $\frac{\epsilon}{n}$-good nextbit predictor for D_{n}.

By Theorem 1, we have the following result:

Theorem 2 Suppose $N D\left(D_{n}, U_{n}\right) \geq \epsilon$. Then we have a next-bit predictor G with the following property: there exists $i \in[n]$ such that $\operatorname{Pr}\left[G\left(x_{1}, \cdots, x_{i-1}\right)=x_{i}\right] \geq \frac{\epsilon^{2}}{n}$, where x_{1}, \cdots, x_{i} are sampled from D_{n}.

Proof. By Theorem 1, we have $S D\left(D_{n}, U_{n}\right) \geq$ $N D\left(D_{n}, U_{n}\right)^{2} \geq \epsilon^{2}$. By Lemma 2, there exists an $\frac{\epsilon^{2}}{n}$-good next-bit predictor G for D_{n}.

5.2 Extractors

We continue to show the existence of extractors under the setting of $N D$ with some appropriate parameters. Similar to the definition of extractor [9], we have the following definition.

Definition 5 EXT : $\{0,1\}^{n} \times\{0,1\}^{t} \rightarrow\{0,1\}^{m}$ is called a (k, ϵ)-extractor for $N D$ if for every k-source $D_{n}, N D\left(E X T\left(D_{n}, U_{t}\right), U_{m}\right) \leq \epsilon$.

For $N D$ we have the following analogous result.

Proposition 1 For every $n, \epsilon>0$ and $k \leq n$, there exists a (k, ϵ)-extractor EXT : $\{0,1\}^{n} \times\{0,1\}^{t} \rightarrow$ $\{0,1\}^{m}$ for $N D$ with $t=\log n-k-4 \log \epsilon+O(1)$ and $m=k+t+4 \log \epsilon-O(1)$.

Proof. We prove the proposition by the probabilistic method $[1,8]$. Consider the random extractor f which maps $x \in\{0,1\}^{n+t}$ into $\{0,1\}^{m}$ randomly and independently. Since a k-source can be represented as a convex combination of flat k-sources and $N D$ is a metric, it is sufficient to prove the proposition for flat sources. For any distribution P in $\{0,1\}^{m}$ and any boolean function $T:\{0,1\}^{m} \rightarrow\{0,1\}$ we denote P_{T} as a distribution in $\{0,1\}$ with $\operatorname{Pr}\left[P_{T}=1\right]=$ $\sum_{x: T(x)=1} P(x)$. We first prove the following claim.

Claim 1 For any flat $(k+t)$-source Q, if m and t satisfy the conditions of Proposition 1, then $\operatorname{Pr}\left[N D\left(f(Q), U_{m}\right)>\epsilon\right]<2^{2^{m}} \cdot 2^{-\Omega\left(2^{k+t} \cdot \epsilon^{4}\right)}$.

Proof. Let the support of distribution Q be $\operatorname{Supp}(Q)=\{x: Q(x)>0\}$. For each $x \in$ $\operatorname{Supp}(Q)$, the distribution of $f(x)$ is the same as U_{m}. Also $\{f(x): x \in \operatorname{Supp}(Q)\}$ is a set of random variables which are i.i.d. For each boolean function $T:\{0,1\}^{m} \rightarrow\{0,1\},\{T(f(x))$: $x \in \operatorname{Supp}(Q)\}$ is also a set of 0-1 random variables which are i.i.d. and $\operatorname{Exp}[T(f(x))]=$ $\frac{|\{z: T(z)=1\}|}{2^{m}}=\operatorname{Pr}\left[\left(U_{m}\right)_{T}=1\right]$. By the Chernoff Bound $[1,8], \operatorname{Pr}\left[\left|\frac{\sum_{x \in \operatorname{Supp}(Q)} T(f(x))}{2^{k+t}}-\frac{|\{z: T(z)=1\}|}{2^{m}}\right|>\right.$ $\left.\epsilon^{2}\right]<2^{-\Omega\left(2^{k+t} \epsilon^{4}\right)}$. By Theorem 1, we can get $\operatorname{Pr}\left[N D\left(f(Q), U_{m}\right)>\epsilon\right] \leq \operatorname{Pr}\left[S D\left(f(Q), U_{m}\right)>\epsilon^{2}\right] \leq$ $\operatorname{Pr}\left[\exists T, S D\left(f(Q)_{T},\left(U_{m}\right)_{T}\right)>\epsilon^{2}\right]<2^{2^{m}} \cdot 2^{-\Omega\left(2^{k+t} \cdot \epsilon^{4}\right)}$.

The probability that f is not a good extractor for some flat k-source is at most $\binom{2^{n}}{2^{k}} \cdot 2^{2^{m}} \cdot 2^{-\Omega\left(2^{k+t} \cdot \epsilon^{4}\right)}<$ 1. This proves the existence of the extractor for $N D$.

The crucial part of the proof is the inequality between $S D$ and $N D$. Then we can use the property of $S D$ to show the existence of extractor with good parameters. There seems no constructive proof on the existence of the extractor for $N D$.

5.3 Leftover Hash Lemma

Linearity plays an important role in the proof of the Leftover Hash Lemma and expander-based extractors. It seems that $N D$ does not have such linear property. However in some setting $N D$ has a good upper bound in terms of ℓ_{2} norm. This bound can help us prove some results about extractors for $N D$.

Definition 6 [6] $\mathcal{H}=\{h: \mathcal{D} \rightarrow \mathcal{R}\}$ is universal family of hash functions if, for every $x, y \in \mathcal{D}, x \neq y$, $\operatorname{Pr}_{h \leftarrow \mathcal{H}}[h(x)=h(y)]=\frac{1}{|\mathcal{R}|} . \mathcal{H}$ is almost universal if $\operatorname{Pr}_{h \leftarrow \mathcal{H}}[h(x)=h(y)] \leq \frac{1}{|\mathcal{R}|}+\frac{1}{|\mathcal{D}|}$.

Now let $\mathcal{D}=\{0,1\}^{n}, \mathcal{R}=\{0,1\}^{m}$, and $|\mathcal{H}|=2^{t}$. The Leftover Hash Lemma states the following.

Theorem 3 [6] Suppose \mathcal{H} is almost universal, X is a flat k-source on $\{0,1\}^{n}$, and \mathbf{h} is a random function drawn from \mathcal{H}. Then $S D\left((\mathbf{h}, \mathbf{h}(X)), U_{t+m}\right) \leq$ $2^{(m-k) / 2}$.

Define $\operatorname{Col}[(\mathbf{h}, \mathbf{h}(X))]=\operatorname{Pr}\left[(\mathbf{h}, \mathbf{h}(X))=\left(\mathbf{h}^{\prime}, \mathbf{h}^{\prime}\left(X^{\prime}\right)\right)\right]$ where $\mathbf{h}^{\prime}, X^{\prime}$ are i.i.d. to \mathbf{h}, X, respectively. The crucial part of the proof of Theorem 3 is to show the following lemma.

Lemma 3 [6]

$$
\operatorname{Col}[(\mathbf{h}, \mathbf{h}(X))] \leq\left(1+2^{(1+m-k)}\right) /\left(2^{t+m}\right)
$$

Define Ext : $\{0,1\}^{n} \times\{0,1\}^{t} \rightarrow\{0,1\}^{t+m}$ by $\operatorname{Ext}(x, h)=(h, h(x))$. We show that Ext is an extractor for $N D$. Here, instead of directly applying the inequality between $N D$ and $S D$, we establish the relation between $N D$ and ℓ_{2}-norm.

Theorem 4 Suppose \mathcal{H} is an almost universal family of hash functions from $\{0,1\}^{n}$ to $\{0,1\}^{m}$ where $m=k+2 \log \epsilon-1 / 2$. Let $t=\lceil\log |\mathcal{H}|\rceil$. Then the above Ext is a (k, ϵ)-extractor for $N D$.

Proof. Without loss of generality we assume that X is a flat k-source. Let $\epsilon=2^{(1+m-k) / 2}$. By Lemma 3, we have $\operatorname{Col}[(\mathbf{h}, \mathbf{h}(X))] \leq \frac{1}{2^{t+m}}\left(1+\epsilon^{2}\right)$. Therefore $\left\|(\mathbf{h}, \mathbf{h}(X))-U_{t+m}\right\|^{2}=\operatorname{Col}[(\mathbf{h}, \mathbf{h}(X))]-$
$\frac{1}{2^{t+m}} \leq \frac{\epsilon^{2}}{2^{t+m}}$. By the proof of Theorem 1, for any distribution P over $\{0,1\}^{n}$, we have $\left(N D\left(P, U_{n}\right)\right)^{2} \leq$ $\frac{1}{2}\left(\sum_{x \in\{0,1\}^{n}} \frac{\left|P(x)-2^{-n}\right|^{2}}{\left(P(x)+2^{-n}\right)}\right)=2^{n-1} \cdot\left\|P-U_{n}\right\|^{2}$. Hence we have $\left(N D\left((\mathbf{h}, \mathbf{h}(X)), U_{(t+m)}\right) \leq \frac{1}{2^{(k-m) / 2}}\right.$. This concludes that Ext is an extractor for $N D$.

5.4 Expander graphs

Similar to the Leftover Hash Lemma for $N D$, the expander-based extractor has the same property. Let G be a d-regular graph and M_{G} be its adjacency matrix. G is a λ-expander if the second largest eigenvalue of M_{G} is not greater than $\lambda[1,8]$. We view a distribution as a vector. A random walks on λ-expander converges to the uniform distribution. Precisely, for any distribution $P_{n},\left\|M_{G}{ }^{k} P_{n}-U_{n}\right\| \leq \lambda^{k}\left\|P_{n}-U_{n}\right\|$. From the prior discussion, we get, for any distribution P_{n} on $\{0,1\}^{n}, 2^{1-n}\left(N D\left(M_{G} P_{n}, U_{n}\right)\right)^{2} \leq\left\|M_{G} P_{n}-U_{n}\right\|^{2} \leq$ $\lambda^{2}\left(\operatorname{Col}\left(P_{n}\right)-2^{-n}\right)$. We define $\operatorname{Ext}_{G}:\{0,1\}^{n} \times$ $\{0,1\}^{t} \rightarrow\{0,1\}^{n}$ by setting $\operatorname{Ext}_{G}(x, y)$ to be the y-th neighbor of x. Suppose X_{n} is a flat k-source and $-2 \log \lambda \geq n-k-2 \log \epsilon$. Then we have $\left(N D\left(M_{G} X_{n}, U_{n}\right)\right)^{2} \leq 2^{n-1}\left\|M_{G} X_{n}-U_{n}\right\|^{2} \leq 2^{n-1}$. $\lambda^{2}\left(\operatorname{Col}\left(X_{n}\right)-2^{-n}\right) \leq \frac{\epsilon^{2}}{2}$ Hence we achieve the following expander-based extractor for $N D$.

Theorem 5 If G is a 2^{t}-regular λ-expander graph with $-2 \log \lambda \geq n-k-2 \log \epsilon$, then Ext $_{G}:\{0,1\}^{n} \times$ $\{0,1\}^{t} \rightarrow\{0,1\}^{n}$ is a (k, ϵ)-extractor for $N D$.

5.5 An example that doesn't carry over to $N D$

In the previous 2 subsections, we know that $N D$ has a good bound in terms of ℓ_{2} norm for some special setting. Nevertheless $N D$ is not linear in general. In this subsection, we give an example to show that L_{1} distance has more linear property. For $S D$ metric, the parity lemma is as following.

Lemma 4 (Parity Lemma)[12] For any t-bit random variable $T, S D\left(T, U_{t}\right) \leq \sum_{v \in\{0,1\}^{t} \backslash\left\{0^{t}\right\}} S D\left(T \cdot v, U_{1}\right)$.

However this statement is not true in general for $N D$. We find a counterexample. Let T_{2} be the distribution

A	$\operatorname{Pr}\left[T_{2}=A\right]$
00	0.389932
01	0.303991
10	0.201038
11	0.10504
$N D\left(T_{2}, U_{2}\right)$	0.073862
$\sum_{v \in\{0,1\}^{2} \backslash\{00\}} N D\left(T \cdot v, U_{1}\right)$	0.0689

Table 2: Distribution of T_{2}
as shown in Table 2. By a simple calculation, we see that $N D\left(T_{2}, U_{2}\right)>\sum_{v \in\{0,1\}^{2} \backslash\{00\}} N D\left(T_{2} \cdot v, U_{1}\right)$. Hence the new metric $N D$ does not hold for the parity lemma.

In order to find a general counterexample for $t \geq 2$ we define a distribution J_{t} on $\{0,1\}^{t}$ as $J_{t}=T_{2} \circ U_{t-2}$. It is easy to get $N D\left(J_{t}, U_{t}\right)=N D\left(T_{2}, U_{2}\right)$. Next we want to show the following proposition.

Proposition 2

$\sum_{v \in\{0,1\}^{t} \backslash\left\{0^{t}\right\}} N D\left(J_{t} \cdot v, U_{1}\right)=\sum_{v \in\{0,1\}^{2} \backslash\{00\}} N D\left(T_{2} \cdot v, U_{1}\right)$.

Proof. Note that for any $t_{2} \in\{0,1\}^{2}$ and for any nonzero vector $w \in\{0,1\}^{t-2},\left(t_{2} \circ w\right)$. $J_{t}=U_{1}$. Hence $N D\left(\left(t_{2} \circ w\right) \cdot J_{t}, U_{1}\right)=$ 0 . Therefore $\sum_{v \in\{0,1\}^{t} \backslash\left\{0^{t}\right\}} N D\left(J_{t} \cdot v, U_{1}\right)=$ $\sum_{t_{2} \in\{0,1\}^{2} \backslash\{00\}} N D\left(\left(T_{2} \circ U_{t-2}\right) \cdot\left(t_{2} \circ 0^{t-2}\right), U_{1}\right)=$ $\sum_{t_{2} \in\{0,1\}^{2} \backslash\{00\}} N D\left(T_{2} \cdot t_{2}, U_{1}\right)$.

In general we get, for any $t \geq 2, N D\left(J_{t}, U_{t}\right)>$ $\sum_{v \in\{0,1\}^{t} \backslash\left\{0^{t}\right\}} N D\left(J_{t} \cdot v, U_{1}\right)$. However, it is still possible that the parity lemma may exist for $N D$ in a different form.

References

[1] N. Alon and J. Spencer. The Probabilistic Method, 2nd Ed, John Wiley \& Sons, Inc., 2000.
[2] Kenneth. P. Bogart. Introductory Combinatorics. Third Edition. Academic Press. 2000.
[3] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley \& Sons, Inc., 1991.
[4] Dominik M. Endres and Johannes E. Schindelin. A New Metric for Probability Distributions. IEEE Transaction on Information Theory, vol 49, pp.1858-60. July 2003.
[5] Peter Harremoës and Christophe Vignat. An Entropy Power Inequality for th Binomial Family. Journal of Inequalities in Pure and Applied Mathematics. Vol 4, Issue 5, Article 93, 2003.
[6] Impagliazzo, R. and D. Zuckerman, How to Recycle Random Bits, Proceedings of 30th IEEE Symposium on the Foundations of Computer Science, Research Triangle Park, NC, October 1989, pp. 248-253.
[7] Jianhua Lin. Divergence Measures Based on the Shannon Entropy. IEEE Transaction on Information Theory, vol 37, No. 1. pp.145-151. January 1991.
[8] R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University Press, 1995.
[9] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences, 52(1):43-52, February 1996.
[10] F. Topsøe. Some inequalities for information divergence and related measures of discrimination. IEEE Transaction on Information Theory, vol IT-46 no.4, pp.1602-1609. July 2000.
[11] L. Trevisan. Construction of extractors using pseudorandom generators. In Proceedings of the 31st ACM Symposium on Theory of Computing, 1999.
[12] U. Vazirani. Strong Communication Complexity of Generating Quasi-Random Sequences from Two Communicating Semi-Random Sources. Combinatorica, 7(4):375-392, 1987.
[13] Andrew C. Yao. Theory and applications of trapdoor functions. In 23rd Annual Symposium on Foundations of Computer Science, pages 80-91, Chicago, Illinois, 3-5 November 1982. IEEE.

