
 1

PFC: A New High-Performance Packet Filter Cache

Chuan-Hsing Shen, * Tein-Yaw Chung
Department of Computer Science and Engineering Yuan Ze University

* csdchung@saturn.yzu.edu.tw

Abstract-As communication technology advances,
network capacity grows exponentially in recent years.
The performance of network monitoring tools is
getting more critical as they must process much lager
number of packets in a unit of time than ever before. A
common core component in any network monitoring
tools is a packet filter which processes every packet
header and passes those packets matching some filter
rules to user spaces for further processing. In this
paper, a packet filter architecture called Packet Filter
Cache (PFC) is proposed to improve the performance
of existing packet filters. The PFC architecture adds a
filter rule cache before an existing packet filter.
Instead of caching instruction set as in Warm cache,
the filter rule cache stores the hash value of a filter
rule as a hash table entry that can be searched in one
memory access. By taking advantage of the hash
lookup speed, PFC can boost filtering performance by
using only small cache size. Moreover, PFC also
caches unmatched packet flows to achieve high hit
rate. Since PFC is only a cache mechanism added
before a traditional packet filter, it does not need to
re-engineer existing filter module and hence can be
applied on most packet filters. Simulation shows PFC
can improve the processing time about four times at
cache hit rate of 70%.

Keyword: cache, packet filter, packet classification,
un-matched flow.

1. Introduction

The ever-increasing complexity in network
infrastructures is making critical demand for network
monitoring tools. Network monitoring tools allows
individual user processes to have great flexibility in
selecting which packets they will receive. A common
core component of network monitoring tools is a
packet filter [1] which is a programmable selection
criterion for selecting packets from a packet stream.
For the majority of networks, such functions are
implemented using commodity components: PC
workstations or servers running free operating
systems and open-source monitoring tools like
EtherReal[2], Tcpdump[3], NeTraMet[4], ntop[5],
and snort[6]. Deploying packet filter as a kernel agent
can minimize the packet copy across the

kernel/user-space protection boundary when
monitoring [1]. Currently, most of monitoring tools
rely on Berkeley Packet Filter (BPF) facility [2],
which allows them to capture packets from the
network interface.

As the speed of network links continues to
increase, the use of commodity components and BPF
is becoming inefficient. Over the past few years a
considerable number of studies have been made on
packet filter and packet classification. Previous work
on packet filters make an effort to investigate flexible
and extensible filter abstractions but sacrifice
performance[7-9], or focus on low-level, optimized
filtering representations but sacrifice
flexibility[10-12]. They have proposed solutions
[13,14] for some particular situation, but are not
general enough to handle all types of filters.
Furthermore, the aforementioned works [10-14]
require significant effort in re-engineering the existing
body of BPF.

In this study we attempt to provide high
performance network monitoring with minimal
changes to existing infrastructure. To make this
possible, we enhance BPF by adding a packet filter
cache (PFC) before BPF. Although a cache
mechanism called warm cache has been proposed
before, it is mainly used to cache filter instructions to
reduce packet processing time. However, it only
achieves little performance improvement and thus is
rarely used. PFC, on the other hand, is a processing
filter rule cache but not an instruction cache. When
cache hit ratio is high, most packets are processed at
the packet filter cache without going through a packet
filter. Therefore, packet processing time is
significantly reduced. To improve cache hit rate, we
also cache unmatched packet flows to prevent some
packets always falling through all the filters.
Simulation results show that with PFC, the resulting
system can achieve high performance and low system
overheads. At the same time, PFC can retain the
simplicity, portability and compatibility with existing
tools and the appealing maturity and stability of
existing infrastructure.

2. Packet Filter Cache

This section introduces the design principle of

PFC and its architecture and operation. The first
section overviews the design concept of PFC and then
introduce the PFC architecture. Next, the organization
of cache tables and how a cache table is generated is

This research was supported by the National Science Council,
Taipei, Taiwan, R.O.C., Project no. NSC92-2213-E-155-037

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

125

 2

described. Following that, step by step packet
processing through PFC is illustrated to show how
PFC works.

2.1. Architecture

The packet filter cache (PFC) uses two novel
mechanisms, filter rule caching and unmatched flow
caching. Traditional warm cache saves process
instructions to speed up packet processing. However,
it requires large cache size to effectively improve
packet processing speed and has low cache hit rate.
Instead of caching instruction set, PFC cache hashed
filter rules in PFC to speed up filter rule search as
compared to traditional linear search of the warm
cache. Since a hashed filter rule uses only a small
cache size, even using a small size cache, a large
number of filter rules can be cached. Thus, caching
hashed filter rules can increase hit rate significantly.

In order to make hashed filter rule caching
possible, PFC maps filter rules into a number of hash
tables, each with a distinct mask that is used to derive
prefixes from packet header fields for filter rule check.
The hashed filter rule is saved in a cache table whose
mask matches with that of the cache table. The search
for a filter rule in PFC can then be efficiently done by
simple hashing and comparison.

Suppose we have a filter database with N filters,
these filters are mapped to m distinct masks. Since m
tends to be much smaller than N in practice, search
linearly through the mask set is likely to be much
faster than the linear search through the database.
However, using cache tables to replace full packet
filter rules can make the number of cache table very
large, in the worst case up to O(Wd), where W is the
number of possible entries for a field and d is the
number of fields in a filter rule. Therefore, in PFC, a
prefix expansion approach is adopted to reduce the
number of cache tables. This is to be introduced later.

In PFC, unmatched packet flows are also cached.
A packet that un-matches any filter rule will fall
through all filters and cause heavy processing load.
For example, if a network monitor filters out 10% of
packet streams for analysis, the other 90% of packets
will fall through all filters and make the packet filter
experience heavy load. By caching unmatched flows,
PFC can achieve much better cache hit rate and
significantly reduce filter processing load.

Fig. 1: PFC Architecture

The PFC architecture includes four components:
traditional packet filter, cache center, cache dispatcher,
and feedback handler as shown in Fig. 1. The

traditional packet filter in principle can be any
existing packet filters. In the paper, without loss of
generosity, we use BPF as our filter engine. BPF is
one of the most popular packet filter engine and used
in most BSD systems. The Cache Center includes a
hash function and cache tables. When a packet arrives,
the Cache Center will do hash function for the packet
and determine where the packet should go. The Cache
Dispatcher forwards a packet to each of its matched
user space. The Feedback Handler receives filter rule
feedbacks from the packet filter and then writes the
filter rules to the cache tables in the Cache Center and
the Cache Dispatcher. Filter update creates or
removes cache tables from the Cache Center when
filter rules are inserted or deleted. As can be seen
from Fig. 2, PFC does not need to re-engineer the
body of existing BPF. What needs to be modified to
the existing BPF is to create feedback links and to
connect them to the PFC Feedback Handler.
Therefore, PFC can be applied easily to any existing
packet filter architectures. The following sections
offer further detail on PFC.

2.2. Cache Table Generation and Maintenance

In PFC, each cache table is associated with a
mask and each cache entry in a cache table is an entry
of (hash, checksum, flag, dispatch). The hash value is
a hashing of concatenated prefix value derived from
each field of a filter rule. The algorithm for prefix
hashing is illustrated in Fig. 2. The hash is used to
map a filter rule into a cache table. The
multi-dimensional nature of filter rule search
operation is removed by combining several fields into
one search key and treating the problem as
single-field search. We use flag and dispatch field to
achieve the demand of multi dispatch. The flag field is
either DISPATCH or BLOCK type. It indicates if a
matched packet should be forwarded to a user space
or be blocked. If the flag field is DISPATCH, the
packet will be forwarded to user spaces; otherwise, it
will be blocked.

Fig.2: Pseudo Code for Hash Cache Generation

Let’s take Table 1 as an example. According to
the prefix of each field in the filter rules, a mask set
can be generated as shown in Table 2. For instance,
[16, 8, 0, 8] is a 4-dimensional tuple that represents a
mask corresponding to rule R4 in Table 2, each mask
field corresponding to the number of prefix bits of IP
source, IP destination, source port, and destination
port.

Table 1: Example of filter rule table
Rule Src Addr Dst

Addr
Src
Port

Dst
Port

Action

R1 140.138. * 140.* Eq ftp User1
R2 140.138.

144.*
140.* Eq ftp User2

R3 140.138. 140.* Eq User2

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

126

 3

145.* www
R4 140.138. * 140.* Lt 1023 User3
R5 140.138. * 140.* Eq ftp User4

All filters having the same mask are mapped to
a particular cache table as shown in Fig 3, i.e., these
rules require the same number of bits in the IP source,
destination fields and so on for filter rule check. A
filter rule is then represented by hashing the
concatenated prefixes of each field of the filter rule.
For example, R4 in Table 1 is represented by the
hashed value of the concatenation of 140.138, 140, 0,
and 1024.

Table 2: Example of packet filter cache mask table
Rule Mask Action
R1 16,8,0,16 User1
R2 24,8,0,16 User2
R3 24,8,0,16 User2
R4 16,8,0,8 User3
R5 16,8,16,0 User4

Fig. 3: Example of cache center and cache dispatcher

Complex filter rules require large numbers of
hash tables and cause heavy hash table search
overhead. The lookup performance of PFC can be
improved by reducing the number of distinct mask or
number of cache tables via further use of Controlled
Prefix Expansion (CPE)[20]. CPE transforms a set of
prefixes into an equivalent set of prefixes with longer
length and is used to construct multi-bit tries. We
expand filter mask length to reduce the number of
cache tables whenever possible. An example of filter
expansion with one dimension is shown in Table 3,
where the prefix of filter is expanded from 01* to
prefixes 010* and 011*. After expanding prefix, we
get a set of new filter prefix 010* and 011*, which is
equal to the original filter prefix 01* and the mask of
R5 is no longer needed and hence the respective cache
table.

Since hash function is not perfect, prefix of
different filter rules may have the same hash value. To
avoid hash conflict, PFC uses a secondary hash table
named checksum to double check potential hash
collision. By using double hash values as the
signature of a filter rule, the probability of un-caught
hash collision among filter rules can be significantly
diminished. Checksum is a hash value from the
concatenated value of prefix of each field in a filter.
PFC computes checksum by first taking XOR of the
prefix of each field in a filter rule. Then, a CRC hash
is applied on the XORed value to generate its
checksum.

Table 3(A): Before Mask expansion with CPE
Rule Mask Action
R1 000* User Space 1
R2 001* User Space 1

R3 100* User Space 2
R4 111* User Space 3

Rule Mask Action
R1 01* User Space 4

Table 3(B): After mask expansion and prefix
expansion

Rule Mask Action
R1 000* User Space 1
R2 001* User Space 1
R3 100* User Space 2
R4 111* User Space 3
R5 010* User Space 4
R6 011* User Space 4

The design of hash lookup and checksum
verification also can achieve Least Recently Used
(LRU) effect. When hash collision happens, the
checksum comparison is false and the Feedback
Handler will replace the existing cache entry with new
one. Although we can extend the cache size by
link-list, PFC adopts “replace when collide” strategy.
This strategy helps reducing overhead for cache rules
searching and updating. With such strategy, a filter
rule is replaced when it collides with a new filter rule
that matches with a new coming packet, and thus the
effect of LRU is achieved. Therefore, a flow with
higher traffic rate will hit a cache entry with higher
probability and be processed in higher speed.

2.3 Packet Processing

When a packet arrives, it will be first processed
in PFC. The header fields of the incoming packet are
extracted using each mask of cache tables and hashed.
The hash value generated for each cache table is then
used to find if an entry with the same hash value
exists in the respective cache table. If a hash value is
mapped to a not null entry in a cache table, the Cache
Center will do checksum verification. When
checksum comparison is true, a filter rule match
occurs, and an action is taken according to the flag of
the entry. On the other hand, if match does not occur,
the packet is forwarded to the BPF engine for
processing.

During the packet processing in BPF, each
matched filter rule is sent to the Feedback Handler. If
the packet does not match any filter rule, the feedback
function randomly chooses a mask in the Cache
Center and generates a new filter rule as feedback. Fig.
4 shows the packet processing flow chart in PFC.

When more than one filter rule has the same
hash and checksum, a packet matching these filter
rules may be forwarded to more than one user space.
We implement multi-forward function in the Cache
Dispatcher. The multi-forward function is supported
by adding a linking list field in the dispatcher table as
shown in Fig. 3. The Cache Dispatcher contains
(Forward, *next) fields, where Forward records the
user space information and *next provides a link to
next field that records another user space. When the
Cache Dispatcher gets a hash key, it calls the packet

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

127

 4

filter forwarding function to dispatch the packet to the
destined user space. And then check the *next field. If
the *next field is not NULL, it does next dispatch, and
so on.

Fig. 4: PFC flowchart

Feedback functions report matched filter rule to
the Feedback Handler. It sends messages with a tuple
of (mask, hash, checksum, user space, flag). User
space field may have two types, one is real user space
for matched filter rule, the other is NULL for
unmatched filter rule generated by feedback function.
The Feedback Handler analyzes the messages and
updates the respective cache entry in the Cache Center.
The processing of the Feedback Handler is shown in
Fig. 5.

Fig. 5: Pseudo Code for Feedback Handler
To illustrate how PFC works, we use Fig. 6 as

an example. Here, we assume there are three cache
tables in the Cache Center. In this example, a packet
matches a packet filter and causes collision at
checksum value in cache table #1. The packet is then
forwarded to BPF for processing. After the Feedback
Handler receives a new feedback with new checksum
and flag from the feedback function, it will update the
cache entry with a new checksum and flag. After that,
the remainder of this flow will be forwarded to user
space directly by PFC.

Packets that unmatched any rule will generate
unmatched hash that is assigned BLOCK in its flag
field. Blocking these packets can prevent some deny
of service attacks and avoid unmatched packets falling
through all filter rules. The blocked function is not
used in a traditional packet filter but need for firewall
and RSVP services. When an un-matched packet goes
through the Cache Center for the first time, it will be
passed to BPF because it miss hits in PFC. While it
falls through BPF, it triggers an unmatched feedback
sent back to the Feedback Handler, which randomly
selects a cache table and creates an entry with block
flag. When PFC receives another packet in the same

flow as previous one, the packet will be blocked in
PFC and not passed to BPF.

Fig. 6: Matched Cache in Cache Center

3. Performance Analysis

This section analyzes the performance of PFC
using computer simulation. We study the performance
of PFC under different traffic load, flow interval
distribution and filter matching ratio. The
performance of PFC focused in our study is on how
large a PFC cache required to perform better, the
relation between cache hit rate and cache size, and the
impact of traffic interval distribution. The chapter is
organized as follows: sub-section 1 describes the
simulation approach in our study. Sub-section 2
explains our empirical study on the performance of
PFC. Sub-section 3 presents the performance of PFC
over different cache sizes, flow interval distribution
and hit rate. Sub-section 4 studies the impact of hash
collision on the performance of PFC. Finally, in
sub-section 5 we translate the impact of cache hit ratio
into processing overhead and study the performance
of PFC in processing load reduction.

3.1 Simulation Approach

We implement a simulation environment for
PFC, including a set of 1000 filter rules and a FCFS
queue for packet processing. Each traffic flow has an
average traffic interval dynamically generated
according to a probability distribution. To simplify
simulation, we divide packet arrival time as fixed time
slots. Packets of a flow arrive at the FCFS queue
following Poisson process except stated otherwise.

To obtain more accurate simulation results, we
make 100 packets go through 1000 BPF filter rules
and assume the hit rate is constant value. We assume
BPF use bit operation and default length of CFG
lookup algorithm. PFC uses XOR hash function and
20 hash tables.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

128

 5

Fig.7: Instruction Simulation PFC Versus BPF
We measure the processing time of BPF with

different PFC hit rates. The result is shown in Fig. 7
which will be later used in our simulation analysis. In
our experiment, the measurements were made using
i386 processors running FreeBSD 4.9-Stable, using a
100Mbit/sec Ethernet. The testing machine has 1816
MHz processor and 128 MB RAM.

3.2. Preliminary Observation

In PFC, a packet is first processed to see if its
respective flow of packets has been processed before.
If yes, it is dispatched right away using the PFC logic;
otherwise, it is forwarded to BPF for further
processing. Thus, the average processing time Ttotal
for a packet in PFC is as following:

Ttotal = Rhit*Thash +(1−Rhit)*(Thash+Tfilter) … (1)

Where Rhit is the average percentage of packets
hit in cache, Thash is the average hash function
execution time in PFC, and Tfilter is the average
packet filter processing time through BPF. The
performance improvement in processing time
reduction can then be expressed as follows:

)(*) -(1*t filterhashhithashhi

filter

TTRTR
T

++
… (2)

Obviously, when Thash is much smaller than
Tfilter, the processing overhead reduction of PFC over
existing PBF becomes:

hitR-1
1 … (3)

The above preliminary observation assumes
infinite cache record size and that Thash is much
smaller than Tfilter. By (3) we see that at hit rate of
75%, PFC architecture outperforms the conventional
BPF architecture by four times improvement in
processing time.

3.3. Impact of System Parameters

 In the simulation experiment, different traffic
patterns such as constant distribution, uniform
distribution, pareto distribution and exponential
distribution are implemented. We first make different
number of flows go through PFC with different buffer
sizes. Each flow has a constant arrival interval of 10.
From Fig. 8, we see the hit rate decreasing drastically
when flow size is doubled at buffer size of 8192 byte.
The impact of flow numbers on hit rate reduces when
buffer size increases. This is obvious because the
larger is the buffer size the more filter rules can be
saved in the buffer and thus the higher the hit rate can
be maintained.

In the rest of simulation we use buffer size of
16384 byte in the simulated PFC since it performs
reasonably well. We study the impact of caching
unmatched flows in PFC by making different
percentage of unmatched flows go through PFC. Fig.

9 shows the hit rate of PFC under traffic flows with
arrival interval uniformly distributed from 5 to 15.
Here, all matched means we cache all unmatched
flows so that there are no unmatched flows there. As
we can see from the Fig. 10, the higher percentage of
flows is unmatched, the lower hit rate becomes if
unmatched flows are not cached. On the other hand,
when the unmatched flows are cached, the hit rate has
the highest value.

Fig. 8: Different Buffer Size and Flow Size

Fig. 9: Different Unmatched Cache Rate with

Uniform Distribution
3.4. Different Similar Rate Simulation

 When a large percentage of flows match a small
set of filter rules, PFC should have very good
performance. To study the impact of filter matching
percentage, we generate some flows that match the
same rules. The traffic arrival interval of these flows
is uniformly distributed from 5 to 15. Here, 0.8
similar means 80% of flows hit 10% of packet filter
rules. The simulation results shown in Fig. 10 indicate
the more flows matching a filter rule, the better is the
hit rate of PFC. The results also show even 20
percentage of flows appears a matching pattern, the
hit rate improves near 20 percent over when the traffic
flows do not show a matching pattern.

Fig. 10: Different Similar Rate

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

129

 6

Fig. 11: Per-Packet Processing time in unmatched

cache PFC versus BPF

Fig. 12: Per-Packet Processing time in similar flow

PFC versus BPF
3.5. Processing Time Simulation

 The hit rate of PFC can be translated into
processing time overhead. Fig. 11 and 12 shows the
processing per packet in BPF and PFC, where in PFC
the buffer size is 16384 bytes and the packet arrival
interval is uniformly distributed from 5 to 15. As we
can see from Fig. 11, at 5000 flows PFC with
unmatched caching only uses less than 5 percentage
of processing time than that of BPF. As the number of
flow increases, higher frequency of hash collision
occurs in PFC and thus the average per packet
processing also is getting close to that of BPF. Fig. 12
shows the average per packet processing time of BPF
and PFC under different degree of filter matching
patterns. From the results, we see that PFC needs only
half per packet processing time of BPF when 20
percent of traffic flows show a filter matching pattern
at 40000 flows. The higher percent of traffic flows
show a filter matching pattern, the more significant
reduction of packet processing time can be achieved
by PFC. Overall, Fig. 11 and 12 shows that PFC
performs very well in comparison with tradition BPF
without cache.

4. Conclusion and Future Work

In this paper, we propose a new
high-performance packet filter architecture named
Packet Filter Cache for network monitoring tools.
PFC adds a filter rule cache before an existing packet
filter. The filter rule cache stores the hash value of a
filter rule as a hash table entry that can be searched in
O(1) memory access. By taking advantage of the hash

lookup speed, PFC can significantly boost filtering
performance. The design of hash lookup and
checksum verification also can achieve Least
Recently Used effect. Moreover, PFC also caches
unmatched packet flows to achieve high hit rate.
Through analysis and computer simulation we show
that PFC can significantly reduce processing time. It
improves the processing time about four times at
cache hit rate of 70%. Since PFC is an add-on cache
architecture, it is very flexible and is readily applied
on any existing packet filter without re-engineering
existing filter module.

References

[1] J. Mogul, R. Rashid, and M. Accetta, “The Packet Filter:

An Efficient Mechanism for User-level Network Code,”
In Proc. of the Eleventh ACM Symposium on Operating
Systems Principles, pp. 39-51, November 1987.

[2] EtherReal, http://www.etherreal.org/.
[3] Tcpdump/libpcap, http://www.tcpdump.org/.
[4] N. Brownlee. “Traffic Flow Measurement: Experiences

with NeTraMet,” IETF RFC 2123, March 1997.
[5] L. Deri and S. Suin, “Effective Traffic Measurement

Using ntop,” In IEEE Comm. Mag., vol. 38, no. 5, pp.
138-145, May 2000.

[6] M. Roesch, “Snort - Leightweight Intrusion Detection
for Networks,” In Proc. of the 1999 LISA Conference,
Nov. 1999.

[7] J. Reumann, H. Jamjoom, and K. Shin, “Adaptive
Packet Filters,” In Proc. of Global Telecommunications
Conference, pp. 25-29, Nov. 2001.

[8] S. Ioannidis, K. G. Anagnostakis, J. Ioannidis, and A. D.
Keromytis, “xPF: Packet Filtering for Low-cost
Network Monitoring,” In Proc. of the IEEE HPSR 2002,
pp. 121-126, May 2002.

[9] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J.
Ioannidis, M. Greenwald, and J. M. Smith, “Efficient
Packet Monitoring for Network Management,” In Proc.
of IFIP and IEEE NOMS 2002, pp. 423-436, April 2002.

[10] D. R. Engler and M. F. Kaashoek, “DPF: Fast, Flexible
Demultiplexing Using Dynamic Code Generation,” In
Proc. of ACM SIGCOMM Computer Comm. Review, vol.
26, no. 4, pp. 53-59, Aug. 1996.

[11] A. Begel, “Applying General Compiler Optimizations
to a Packet Filter Generator,” Unpublished Draft, in
http://www.cs.berkeley.edu/~abegel/cs265/cs265-projec
t.ps, 1995.

[12] A. Begel, S. McCanne and S. L. Graham, “BPF+:
Exploiting Global Data-flow Optimization in a
Generalized Packet Filter Architecture,” In Proc. of
ACM SIGCOMM Computer Comm. Review, vol. 29, no.
4, pp. 123-134, Aug. 1999.

[13] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B.
Moss, “Efficient Packet Demultiplexing for Multiple
Endpoints and Large Messages,” In Proc. of the 1994
Winter USENIX Conference, pp. 153-165, Jan. 1994

[14] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson,
and P. Sarkar, “Pathfinder: A Pattern-based Packet
Classifier,” In Proc. of USENIX OSDI ‘94, pp. 115-123,
Nov. 1994.

[15] V, Srinivasan and G. Varghsee, “Fast address lookups
using controlled prefix expansion,” In ACM Tran. on
Computer System, pp. 1-40, 1999.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

130

