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Abstract-As communication technology advances, 
network capacity grows exponentially in recent years. 
The performance of network monitoring tools is 
getting more critical as they must process much lager 
number of packets in a unit of time than ever before. A 
common core component in any network monitoring 
tools is a packet filter which processes every packet 
header and passes those packets matching some filter 
rules to user spaces for further processing. In this 
paper, a packet filter architecture called Packet Filter 
Cache (PFC) is proposed to improve the performance 
of existing packet filters. The PFC architecture adds a 
filter rule cache before an existing packet filter. 
Instead of caching instruction set as in Warm cache, 
the filter rule cache stores the hash value of a filter 
rule as a hash table entry that can be searched in one 
memory access. By taking advantage of the hash 
lookup speed, PFC can boost filtering performance by 
using only small cache size. Moreover, PFC also 
caches unmatched packet flows to achieve high hit 
rate. Since PFC is only a cache mechanism added 
before a traditional packet filter, it does not need to 
re-engineer existing filter module and hence can be 
applied on most packet filters. Simulation shows PFC 
can improve the processing time about four times at 
cache hit rate of 70%. 
 
Keyword: cache, packet filter, packet classification, 
un-matched flow.  
 
1. Introduction 
 

The ever-increasing complexity in network 
infrastructures is making critical demand for network 
monitoring tools. Network monitoring tools allows 
individual user processes to have great flexibility in 
selecting which packets they will receive. A common 
core component of network monitoring tools is a 
packet filter [1] which is a programmable selection 
criterion for selecting packets from a packet stream. 
For the majority of networks, such functions are 
implemented using commodity components: PC 
workstations or servers running free operating 
systems and open-source monitoring tools like 
EtherReal[2], Tcpdump[3], NeTraMet[4], ntop[5], 
and snort[6]. Deploying packet filter as a kernel agent 
can minimize the packet copy across the 

kernel/user-space protection boundary when 
monitoring [1]. Currently, most of monitoring tools 
rely on Berkeley Packet Filter (BPF) facility [2], 
which allows them to capture packets from the 
network interface. 

As the speed of network links continues to 
increase, the use of commodity components and BPF 
is becoming inefficient. Over the past few years a 
considerable number of studies have been made on 
packet filter and packet classification. Previous work 
on packet filters make an effort to investigate flexible 
and extensible filter abstractions but sacrifice 
performance[7-9], or focus on low-level, optimized 
filtering representations but sacrifice 
flexibility[10-12]. They have proposed solutions 
[13,14] for some particular situation, but are not 
general enough to handle all types of filters. 
Furthermore, the aforementioned works [10-14] 
require significant effort in re-engineering the existing 
body of BPF.  

In this study we attempt to provide high 
performance network monitoring with minimal 
changes to existing infrastructure. To make this 
possible, we enhance BPF by adding a packet filter 
cache (PFC) before BPF. Although a cache 
mechanism called warm cache has been proposed 
before, it is mainly used to cache filter instructions to 
reduce packet processing time. However, it only 
achieves little performance improvement and thus is 
rarely used. PFC, on the other hand, is a processing 
filter rule cache but not an instruction cache. When 
cache hit ratio is high, most packets are processed at 
the packet filter cache without going through a packet 
filter. Therefore, packet processing time is 
significantly reduced. To improve cache hit rate, we 
also cache unmatched packet flows to prevent some 
packets always falling through all the filters. 
Simulation results show that with PFC, the resulting 
system can achieve high performance and low system 
overheads. At the same time, PFC can retain the 
simplicity, portability and compatibility with existing 
tools and the appealing maturity and stability of 
existing infrastructure. 
 
2. Packet Filter Cache 

 
This section introduces the design principle of 

PFC and its architecture and operation. The first 
section overviews the design concept of PFC and then 
introduce the PFC architecture. Next, the organization 
of cache tables and how a cache table is generated is 

This research was supported by the National Science Council, 
Taipei, Taiwan, R.O.C., Project no. NSC92-2213-E-155-037 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

125



 2

described. Following that, step by step packet 
processing through PFC is illustrated to show how 
PFC works. 
 
2.1. Architecture 

The packet filter cache (PFC) uses two novel 
mechanisms, filter rule caching and unmatched flow 
caching. Traditional warm cache saves process 
instructions to speed up packet processing. However, 
it requires large cache size to effectively improve 
packet processing speed and has low cache hit rate. 
Instead of caching instruction set, PFC cache hashed 
filter rules in PFC to speed up filter rule search as 
compared to traditional linear search of the warm 
cache. Since a hashed filter rule uses only a small 
cache size, even using a small size cache, a large 
number of filter rules can be cached. Thus, caching 
hashed filter rules can increase hit rate significantly.    

In order to make hashed filter rule caching 
possible, PFC maps filter rules into a number of hash 
tables, each with a distinct mask that is used to derive 
prefixes from packet header fields for filter rule check. 
The hashed filter rule is saved in a cache table whose 
mask matches with that of the cache table. The search 
for a filter rule in PFC can then be efficiently done by 
simple hashing and comparison.  

Suppose we have a filter database with N filters, 
these filters are mapped to m distinct masks. Since m 
tends to be much smaller than N in practice, search 
linearly through the mask set is likely to be much 
faster than the linear search through the database. 
However, using cache tables to replace full packet 
filter rules can make the number of cache table very 
large, in the worst case up to O(Wd), where W is the 
number of possible entries for a field and d is the 
number of fields in a filter rule. Therefore, in PFC, a 
prefix expansion approach is adopted to reduce the 
number of cache tables. This is to be introduced later.  

In PFC, unmatched packet flows are also cached. 
A packet that un-matches any filter rule will fall 
through all filters and cause heavy processing load. 
For example, if a network monitor filters out 10% of 
packet streams for analysis, the other 90% of packets 
will fall through all filters and make the packet filter 
experience heavy load. By caching unmatched flows, 
PFC can achieve much better cache hit rate and 
significantly reduce filter processing load. 

 
Fig. 1: PFC Architecture 

The PFC architecture includes four components: 
traditional packet filter, cache center, cache dispatcher, 
and feedback handler as shown in Fig. 1. The 

traditional packet filter in principle can be any 
existing packet filters. In the paper, without loss of 
generosity, we use BPF as our filter engine. BPF is 
one of the most popular packet filter engine and used 
in most BSD systems. The Cache Center includes a 
hash function and cache tables. When a packet arrives, 
the Cache Center will do hash function for the packet 
and determine where the packet should go. The Cache 
Dispatcher forwards a packet to each of its matched 
user space. The Feedback Handler receives filter rule 
feedbacks from the packet filter and then writes the 
filter rules to the cache tables in the Cache Center and 
the Cache Dispatcher. Filter update creates or 
removes cache tables from the Cache Center when 
filter rules are inserted or deleted. As can be seen 
from Fig. 2, PFC does not need to re-engineer the 
body of existing BPF. What needs to be modified to 
the existing BPF is to create feedback links and to 
connect them to the PFC Feedback Handler. 
Therefore, PFC can be applied easily to any existing 
packet filter architectures. The following sections 
offer further detail on PFC. 
 
2.2. Cache Table Generation and Maintenance 

In PFC, each cache table is associated with a 
mask and each cache entry in a cache table is an entry 
of (hash, checksum, flag, dispatch). The hash value is 
a hashing of concatenated prefix value derived from 
each field of a filter rule. The algorithm for prefix 
hashing is illustrated in Fig. 2. The hash is used to 
map a filter rule into a cache table. The 
multi-dimensional nature of filter rule search 
operation is removed by combining several fields into 
one search key and treating the problem as 
single-field search. We use flag and dispatch field to 
achieve the demand of multi dispatch. The flag field is 
either DISPATCH or BLOCK type. It indicates if a 
matched packet should be forwarded to a user space 
or be blocked. If the flag field is DISPATCH, the 
packet will be forwarded to user spaces; otherwise, it 
will be blocked. 

 
Fig.2: Pseudo Code for Hash Cache Generation 

Let’s take Table 1 as an example. According to 
the prefix of each field in the filter rules, a mask set 
can be generated as shown in Table 2. For instance, 
[16, 8, 0, 8] is a 4-dimensional tuple that represents a 
mask corresponding to rule R4 in Table 2, each mask 
field corresponding to the number of prefix bits of IP 
source, IP destination, source port, and destination 
port. 

Table 1: Example of filter rule table 
Rule Src Addr Dst 

Addr 
Src 
Port 

Dst 
Port 

Action

R1 140.138. * 140.*  Eq ftp User1 
R2 140.138. 

144.* 
140.*  Eq ftp User2 

R3 140.138. 140.*  Eq User2 
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145.* www 
R4 140.138. * 140.*  Lt 1023 User3 
R5 140.138. * 140.* Eq ftp  User4 

All filters having the same mask are mapped to 
a particular cache table as shown in Fig 3, i.e., these 
rules require the same number of bits in the IP source, 
destination fields and so on for filter rule check. A 
filter rule is then represented by hashing the 
concatenated prefixes of each field of the filter rule. 
For example, R4 in Table 1 is represented by the 
hashed value of the concatenation of 140.138, 140, 0, 
and 1024. 

Table 2: Example of packet filter cache mask table 
Rule Mask Action 
R1 16,8,0,16 User1 
R2 24,8,0,16 User2 
R3 24,8,0,16 User2 
R4 16,8,0,8 User3 
R5 16,8,16,0 User4 

 
Fig. 3: Example of cache center and cache dispatcher 

Complex filter rules require large numbers of 
hash tables and cause heavy hash table search 
overhead. The lookup performance of PFC can be 
improved by reducing the number of distinct mask or 
number of cache tables via further use of Controlled 
Prefix Expansion (CPE)[20]. CPE transforms a set of 
prefixes into an equivalent set of prefixes with longer 
length and is used to construct multi-bit tries. We 
expand filter mask length to reduce the number of 
cache tables whenever possible. An example of filter 
expansion with one dimension is shown in Table 3, 
where the prefix of filter is expanded from 01* to 
prefixes 010* and 011*. After expanding prefix, we 
get a set of new filter prefix 010* and 011*, which is 
equal to the original filter prefix 01* and the mask of 
R5 is no longer needed and hence the respective cache 
table. 

Since hash function is not perfect, prefix of 
different filter rules may have the same hash value. To 
avoid hash conflict, PFC uses a secondary hash table 
named checksum to double check potential hash 
collision. By using double hash values as the 
signature of a filter rule, the probability of un-caught 
hash collision among filter rules can be significantly 
diminished. Checksum is a hash value from the 
concatenated value of prefix of each field in a filter. 
PFC computes checksum by first taking XOR of the 
prefix of each field in a filter rule. Then, a CRC hash 
is applied on the XORed value to generate its 
checksum. 

Table 3(A): Before Mask expansion with CPE 
Rule Mask Action 
R1 000* User Space 1 
R2 001* User Space 1 

R3 100* User Space 2 
R4 111* User Space 3 

 
Rule Mask Action 
R1 01* User Space 4 

Table 3(B): After mask expansion and prefix 
expansion 

Rule Mask Action 
R1 000* User Space 1 
R2 001* User Space 1 
R3 100* User Space 2 
R4 111* User Space 3 
R5 010* User Space 4 
R6 011* User Space 4 

The design of hash lookup and checksum 
verification also can achieve Least Recently Used 
(LRU) effect. When hash collision happens, the 
checksum comparison is false and the Feedback 
Handler will replace the existing cache entry with new 
one. Although we can extend the cache size by 
link-list, PFC adopts “replace when collide” strategy. 
This strategy helps reducing overhead for cache rules 
searching and updating.  With such strategy, a filter 
rule is replaced when it collides with a new filter rule 
that matches with a new coming packet, and thus the 
effect of LRU is achieved. Therefore, a flow with 
higher traffic rate will hit a cache entry with higher 
probability and be processed in higher speed. 
 
2.3 Packet Processing 
 

When a packet arrives, it will be first processed 
in PFC. The header fields of the incoming packet are 
extracted using each mask of cache tables and hashed. 
The hash value generated for each cache table is then 
used to find if an entry with the same hash value 
exists in the respective cache table. If a hash value is 
mapped to a not null entry in a cache table, the Cache 
Center will do checksum verification. When 
checksum comparison is true, a filter rule match 
occurs, and an action is taken according to the flag of 
the entry. On the other hand, if match does not occur, 
the packet is forwarded to the BPF engine for 
processing.  

During the packet processing in BPF, each 
matched filter rule is sent to the Feedback Handler. If 
the packet does not match any filter rule, the feedback 
function randomly chooses a mask in the Cache 
Center and generates a new filter rule as feedback. Fig. 
4 shows the packet processing flow chart in PFC. 

When more than one filter rule has the same 
hash and checksum, a packet matching these filter 
rules may be forwarded to more than one user space. 
We implement multi-forward function in the Cache 
Dispatcher. The multi-forward function is supported 
by adding a linking list field in the dispatcher table as 
shown in Fig. 3. The Cache Dispatcher contains 
(Forward, *next) fields, where Forward records the 
user space information and *next provides a link to 
next field that records another user space. When the 
Cache Dispatcher gets a hash key, it calls the packet 
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filter forwarding function to dispatch the packet to the 
destined user space. And then check the *next field. If 
the *next field is not NULL, it does next dispatch, and 
so on.  

 
Fig. 4: PFC flowchart 

Feedback functions report matched filter rule to 
the Feedback Handler. It sends messages with a tuple 
of (mask, hash, checksum, user space, flag). User 
space field may have two types, one is real user space 
for matched filter rule, the other is NULL for 
unmatched filter rule generated by feedback function. 
The Feedback Handler analyzes the messages and 
updates the respective cache entry in the Cache Center. 
The processing of the Feedback Handler is shown in 
Fig. 5.  

 
Fig. 5: Pseudo Code for Feedback Handler 
To illustrate how PFC works, we use Fig. 6 as 

an example. Here, we assume there are three cache 
tables in the Cache Center. In this example, a packet 
matches a packet filter and causes collision at 
checksum value in cache table #1. The packet is then 
forwarded to BPF for processing. After the Feedback 
Handler receives a new feedback with new checksum 
and flag from the feedback function, it will update the 
cache entry with a new checksum and flag. After that, 
the remainder of this flow will be forwarded to user 
space directly by PFC.  

Packets that unmatched any rule will generate 
unmatched hash that is assigned BLOCK in its flag 
field. Blocking these packets can prevent some deny 
of service attacks and avoid unmatched packets falling 
through all filter rules. The blocked function is not 
used in a traditional packet filter but need for firewall 
and RSVP services. When an un-matched packet goes 
through the Cache Center for the first time, it will be 
passed to BPF because it miss hits in PFC. While it 
falls through BPF, it triggers an unmatched feedback 
sent back to the Feedback Handler, which randomly 
selects a cache table and creates an entry with block 
flag. When PFC receives another packet in the same 

flow as previous one, the packet will be blocked in 
PFC and not passed to BPF. 

 
Fig. 6: Matched Cache in Cache Center 

3. Performance Analysis 
 

This section analyzes the performance of PFC 
using computer simulation. We study the performance 
of PFC under different traffic load, flow interval 
distribution and filter matching ratio. The 
performance of PFC focused in our study is on how 
large a PFC cache required to perform better, the 
relation between cache hit rate and cache size, and the 
impact of traffic interval distribution. The chapter is 
organized as follows: sub-section 1 describes the 
simulation approach in our study. Sub-section 2 
explains our empirical study on the performance of 
PFC. Sub-section 3 presents the performance of PFC 
over different cache sizes, flow interval distribution 
and hit rate. Sub-section 4 studies the impact of hash 
collision on the performance of PFC. Finally, in 
sub-section 5 we translate the impact of cache hit ratio 
into processing overhead and study the performance 
of PFC in processing load reduction. 
 
3.1 Simulation Approach 
 

We implement a simulation environment for 
PFC, including a set of 1000 filter rules and a FCFS 
queue for packet processing. Each traffic flow has an 
average traffic interval dynamically generated 
according to a probability distribution. To simplify 
simulation, we divide packet arrival time as fixed time 
slots. Packets of a flow arrive at the FCFS queue 
following Poisson process except stated otherwise.  

To obtain more accurate simulation results, we 
make 100 packets go through 1000 BPF filter rules 
and assume the hit rate is constant value. We assume 
BPF use bit operation and default length of CFG 
lookup algorithm. PFC uses XOR hash function and 
20 hash tables. 
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Fig.7: Instruction Simulation PFC Versus BPF  
We measure the processing time of BPF with 

different PFC hit rates. The result is shown in Fig. 7 
which will be later used in our simulation analysis. In 
our experiment, the measurements were made using 
i386 processors running FreeBSD 4.9-Stable, using a 
100Mbit/sec Ethernet. The testing machine has 1816 
MHz processor and 128 MB RAM. 
 
3.2. Preliminary Observation 
 

In PFC, a packet is first processed to see if its 
respective flow of packets has been processed before. 
If yes, it is dispatched right away using the PFC logic; 
otherwise, it is forwarded to BPF for further 
processing. Thus, the average processing time Ttotal 
for a packet in PFC is as following:  

Ttotal = Rhit*Thash +(1−Rhit)*(Thash+Tfilter) … (1) 

Where Rhit is the average percentage of packets 
hit in cache, Thash is the average hash function 
execution time in PFC, and Tfilter is the average 
packet filter processing time through BPF. The 
performance improvement in processing time 
reduction can then be expressed as follows: 

)(*) -(1*t filterhashhithashhi

filter

TTRTR
T

++
… (2) 

Obviously, when Thash is much smaller than 
Tfilter, the processing overhead reduction of PFC over 
existing PBF becomes:  

hitR-1
1 … (3) 

The above preliminary observation assumes 
infinite cache record size and that Thash is much 
smaller than Tfilter. By (3) we see that at hit rate of 
75%, PFC architecture outperforms the conventional 
BPF architecture by four times improvement in 
processing time. 
 
3.3. Impact of System Parameters 
 
 In the simulation experiment, different traffic 
patterns such as constant distribution, uniform 
distribution, pareto distribution and exponential 
distribution are implemented. We first make different 
number of flows go through PFC with different buffer 
sizes. Each flow has a constant arrival interval of 10. 
From Fig. 8, we see the hit rate decreasing drastically 
when flow size is doubled at buffer size of 8192 byte. 
The impact of flow numbers on hit rate reduces when 
buffer size increases. This is obvious because the 
larger is the buffer size the more filter rules can be 
saved in the buffer and thus the higher the hit rate can 
be maintained. 

In the rest of simulation we use buffer size of 
16384 byte in the simulated PFC since it performs 
reasonably well. We study the impact of caching 
unmatched flows in PFC by making different 
percentage of unmatched flows go through PFC. Fig. 

9 shows the hit rate of PFC under traffic flows with 
arrival interval uniformly distributed from 5 to 15. 
Here, all matched means we cache all unmatched 
flows so that there are no unmatched flows there. As 
we can see from the Fig. 10, the higher percentage of 
flows is unmatched, the lower hit rate becomes if 
unmatched flows are not cached. On the other hand, 
when the unmatched flows are cached, the hit rate has 
the highest value. 

 
Fig. 8: Different Buffer Size and Flow Size 

  

 
Fig. 9: Different Unmatched Cache Rate with 

Uniform Distribution 
3.4. Different Similar Rate Simulation 
 
 When a large percentage of flows match a small 
set of filter rules, PFC should have very good 
performance. To study the impact of filter matching 
percentage, we generate some flows that match the 
same rules. The traffic arrival interval of these flows 
is uniformly distributed from 5 to 15. Here, 0.8 
similar means 80% of flows hit 10% of packet filter 
rules. The simulation results shown in Fig. 10 indicate 
the more flows matching a filter rule, the better is the 
hit rate of PFC. The results also show even 20 
percentage of flows appears a matching pattern, the 
hit rate improves near 20 percent over when the traffic 
flows do not show a matching pattern.  

 
Fig. 10: Different Similar Rate 
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Fig. 11: Per-Packet Processing time in unmatched 

cache PFC versus BPF 

 
Fig. 12: Per-Packet Processing time in similar flow 

PFC versus BPF 
3.5. Processing Time Simulation 
 
 The hit rate of PFC can be translated into 
processing time overhead. Fig. 11 and 12 shows the 
processing per packet in BPF and PFC, where in PFC 
the buffer size is 16384 bytes and the packet arrival 
interval is uniformly distributed from 5 to 15. As we 
can see from Fig. 11, at 5000 flows PFC with 
unmatched caching only uses less than 5 percentage 
of processing time than that of BPF. As the number of 
flow increases, higher frequency of hash collision 
occurs in PFC and thus the average per packet 
processing also is getting close to that of BPF. Fig. 12 
shows the average per packet processing time of BPF 
and PFC under different degree of filter matching 
patterns. From the results, we see that PFC needs only 
half per packet processing time of BPF when 20 
percent of traffic flows show a filter matching pattern 
at 40000 flows. The higher percent of traffic flows 
show a filter matching pattern, the more significant 
reduction of packet processing time can be achieved 
by PFC. Overall, Fig. 11 and 12 shows that PFC 
performs very well in comparison with tradition BPF 
without cache. 
 
4. Conclusion and Future Work 
 

In this paper, we propose a new 
high-performance packet filter architecture named 
Packet Filter Cache for network monitoring tools. 
PFC adds a filter rule cache before an existing packet 
filter. The filter rule cache stores the hash value of a 
filter rule as a hash table entry that can be searched in 
O(1) memory access. By taking advantage of the hash 

lookup speed, PFC can significantly boost filtering 
performance. The design of hash lookup and 
checksum verification also can achieve Least 
Recently Used effect. Moreover, PFC also caches 
unmatched packet flows to achieve high hit rate. 
Through analysis and computer simulation we show 
that PFC can significantly reduce processing time. It 
improves the processing time about four times at 
cache hit rate of 70%. Since PFC is an add-on cache 
architecture, it is very flexible and is readily applied 
on any existing packet filter without re-engineering 
existing filter module.  
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