
Design and Implementation of an IEEE 802.15.3-based Ultra-Wideband
MAC Controller

Cheng-En Hsieh* Ping-Nan Wu* Ting-Chang Huang* Da-Wei Chang*

crtt@os.nctu.edu.tw outernet@os.nctu.edu.tw tchuang@os.nctu.edu.tw david@os.nctu.edu.tw

Hsung-Pin Chang# Po-Ning Chen& Ruei-Chuan Chang*
hpchang@cs.nchu.edu.tw poning@cc.nctu.edu.tw rc@cc.nctu.edu.tw

*Department of Computer and Information Science, National Chiao Tung University

#Department of Computer Science, National Chung Hsing University
&Department of Communications Engineering, National Chiao Tung University

Abstract- The significant features of Ultra-
Wideband (UWB) such as low power, lower cost,
and high data rates have made it an emerging and
promising communication technology for Wireless
Personal Area Network (WPAN).

IEEE 802.15.3 has defined a TDMA-based
Medium Access Controller (MAC) for WPAN, which
is regarded as the most appropriate candidate for
high speed UWB MAC. Moreover, it has been used
by UWB product vendors as the MAC layer of their
UWB products.

However, the implementation of 802.15.3-based
UWB MAC has not shown in the previous literatures.
In this paper, we describe the design and
implementation of an 802.15.3-based UWB MAC,
which is developed by using the hardware-software
co-design approach. The maximum throughput of the
synthesized hardware code can reach 800Mbps,
which shows that it is suitable as a high speed UWB
MAC.

Keywords: UWB, MAC, WPAN, 802.15.3

1. Introduction

Ultra-Wideband (UWB) is an emerging and
promising wireless communication technology [1-4]
for Personal Area Network (PAN). It has some
significant features that are extremely different from
other communication technologies, including lower-
power operation, mitigated multi-path fading effects,
high data rates and precise location information. As
a result, it not only enables short-range high speed
communication, but also plays an important role in
the realization of pervasive networking [10].

Therefore, IEEE 802.15 WPAN Working Group
has created a Task Group 802.15.3a to standardize
the UWB specification [9]. The Task Group intends
to provide a low complexity, low cost, and low
power consumption UWB PHY and pairs with IEEE

802.15.3 MAC [6] as a UWB specification.
Consequently, IEEE 802.15.3 MAC is regarded as
the most promising candidate for a UWB MAC.
Currently, 802.15.3-based MAC has been used by
UWB product vendors such as Freescale
Semiconductor Inc. [7] as the MAC layer of their
UWB products. Besides, some research centers have
started to study the effectiveness of 802.15.3 for a
UWB MAC. For example, U.C.A.N (Ultra wide-
band Concepts for Ad-hoc Networks) [8] suggests
that the 802.15.3 MAC can generally be adapted to
UWB by changing the CSMA/CA mechanism in the
Contention Access Period (CAP) to the slotted aloha.
The CSMA/CA mechanism is not used since UWB
offers very low power emissions, which makes the
CCA (Clear Channel Assessment) detection used by
CSMA/CA to detect channel access condition
becomes difficult in some UWB physical layer
implementations.

Although the 802.15.3 MAC shows promise to be
used in UWB, the implementation of 802.15.3-based
UWB MAC has not shown in the previous literatures.
In this paper, we describe the design and
implementation of an 802.15.3-based UWB MAC.
The MAC is developed by using the hardware-
software co-design approach. The major protocol-
processing tasks are done by the software, while the
time-critical TDMA and the data movement
mechanism are implemented in the hardware. The
same as that proposed by U.C.A.N., we eliminate the
CSMA/CA mechanism in the 802.15.3 specification.

To verify the functionality of the MAC, we
developed a prototype on top of the Xilinx Virtex-II
FPGA board. The code size of the software is about
208 Kbytes, which makes it suitable to be used in
embedded systems to satisfy the needs for pervasive
computing. Moreover, the maximum throughput of
the synthesized hardware code can reach 800Mbps,
which shows that it is suitable as a high speed UWB
MAC.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

331

The rest of the paper is organized as follows.
Section 2 describes the related work. Section 3
presents the system architecture of the 802.15.3-
based UWB MAC. The prototype implementation
and evaluation are described in Section 4. Finally,
we conclude in Section 5.

2. Related Work

2.1 UWB

UWB has been around since the 1980s and is

mainly used by the military in the field of radar
applications. However, with the dramatic progress of
wireless communication technology, UWB is
becoming the most attractive candidate for low cost
consumer communication applications, e.g., the
wireless home entertainment and mobile multimedia
products.

The UWB systems are mostly based on the
Impulse Radio (IR) technology that are typically
implemented in a carrier-less fashion, in contrast to
the Radio Frequency (RF) technology adopted in
conventional narrowband and wideband systems.
Because it utilizes extremely short pulse that results
in a wide spectral waveform occupying several GHz
of bandwidth, the term Ultra-Wideband (UWB) is
used [5]. Due to its impulse radio nature, UWB
offers some distinguished advantages compared to
other communication technologies, including lower
power, low cost, low interference levels to existing
services, mitigated multi-path fading effects, high
data rates, and precise positioning/locating ability.

2.2 IEEE 802.15.3

IEEE 802.15.3 aims to publish a new standard for

high data rate (20 Mbits/sec or higher) wireless PAN.
In addition, it also provides the Quality of Services
(QoS) isochronous protocol, lower power, and low
cost solution to meet the demanding requirements of
portable consumer digital image and multimedia
applications. Since the IEEE 802.15.3’s
characteristics matches the application needs of
UWB, IEEE 802.15.3a thus aims to define a physical
layer standard, based on UWB, to pace with IEEE
802.15.3 MAC for a UWB communication system.
In the following, we briefly present the IEEE
802.15.3 MAC protocol.

IEEE 802.15.3 MAC is a TDMA-based Medium
Access Controller (MAC) for a Wireless PAN. The
IEEE 802.15.3 devices communicate with each other
in small area networks named piconet. A piconet
consists of one or more devices (DEVs) and one of
the DEVs is selected as the piconet coordinator
(PNC). Thus, IEEE 802.15.3 MAC protocol is
centralized coordinated. The PNC provides the basic
network timing synchronization, Quality of Service
(QoS) requirements, power save modes and timing

allocation information to the piconet. Notably, each
piconet is an ad-hoc, peer-to-peer wireless
communication network, as shown in Figure 1.

Figure 1. IEEE 802.15.3 Piconet

Figure 2. IEEE 802.15.3 Superframe

Timing in the IEEE 802.15.3 is based on the
superframe, which is shown in Figure 2. Each
superframe is comprised of three main sections:
beacon, the optional Contention Access Period
(CAP), and the Channel Time Allocation Period
(CTAP). The beacon is sent by the PNC at the
beginning of every superframe. It is used for time-
synchronization, for broadcasting the timing
allocation, and for communicating management
information for the piconets. Following the beacon is
the CAP period. The CAP is used to communicate
commands and non-stream asynchronous data. By
following the CSMA/CA protocol, each DEV can try
to transmit data in CAP. The last period is CTAP,
which is a TDMA-based access period. IEEE
802.15.3 divides the CTAP into a number of channel
time allocation (CTA) slots and MCTAs
(Management CTAs). Note that MCTAs are a kind
of CTAs that are reserved by the PNC for PNC-
device communication. Each node can transmit data
in CTAP if, and only if, the PNC has allocated time
slots for it. If a device has great amount of data or
has streaming requests from applications, it should
send requests to the PNC in the CAP period. The
PNC then checks the bandwidth status and the
number of unused slots to decide whether the request
should be granted or not.

3. System Architecture

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

332

In this section, we present the software and
hardware architectures of our IEEE 802.15.3-based
UWB MAC.

3.1 System Overview

The same as IEEE 802.15.3, the channel time

management of our system is based on superframe,
which is shown in Figure 3. It differs from the IEEE
802.15.3 specification in two aspects. First, we
removed the Contention Access Period (CAP). As
mentioned above, the low emission energy of UWB
has made CSMA/CA become ineffective. Secondly,
we add an ACTA period for transmitting channel
time requests (i.e., CTRq). This reduces the
possibility of packet collisions for the CTRq. Other
kinds of PNC-device data can be transmitted in open
MCTA. Note that the medium access control
mechanism used in ACTA and open MCTA is the
slotted aloha, while the other periods are based on
TDMA.

Figure. 3 Superframe of Our UWB System

The implementation of the system consists of

both the software and the hardware parts. The former
is responsible for implementing most of the IEEE
802.15.3 protocol, while the latter implements the
TDMA functionality and the data movement
mechanism.

3.2 Software Architecture

As mentioned before, the UWB MAC is mainly

implemented in software, which contains four major
data structures and four threads as shown in Figure 4.

The device structure records the device identifier,
the MAC address, and the other information specific
to this device. The piconet structure records the
piconet identifier, BSID, MAC address of the PNC,
and the channel used by this piconet. The
superframe structure is used to store the information
about the current superframe, such as superframe
duration and current superframe identifier. The CTA
structure contains all the information of each CTA,
including the starting time and duration of the CTA,
the source and the destination nodes, etc. These data
structures are used by the following four threads to
implement the UWB MAC protocol.
Initialization thread. This thread is used to initialize
the hardware part of the system. After the
initialization, it will create the remaining three
threads. And then, it will handle the GUI task that

accepts user commands and reports the current
system status to the user through the GUI.
RX thread. This thread is responsible for moving
data from the hardware buffer into a system-wide
software buffer (i.e., rx_main_buffer) to prevent the
overflow of the former.
CTA handling thread. This thread handles the frame
transceiving. Each CTA has a corresponding queue
for frame transmission. Before the starting of each
CTA, this thread will check to see whether or not the
device is the source node of the CTA (according to
the CTA structure). If it is, the thread will send the
data residing in the corresponding queue to the
hardware buffer. For data receiving, this thread will
get frame data from the rx_main_buffer. If the
receiving frame is a command, the thread will handle
it directly. Otherwise (i.e., a data frame), the thread
will hand the data to the fragmentation thread for
frame reassembly. In addition, this thread is also
responsible for generating beacons according to the
piconet, superframe, and CTA structures if the
device is a PNC.
Fragmentation thread. For outgoing data, this thread
will divide it into frames (with maximum size of
2048 bytes), and then insert the frames into the
queue that corresponds to the CTA. Besides, this
thread is also responsible for reassembling incoming
frames and handing the resulting data to the user.

Figure 4. The Software Data Structures and

Threads

3.3 Hardware Architecture

Figure 5 shows the hardware architecture of our

UWB system. It consists of three components: Host
Interface, Control Unit, and FIFO. The Host
Interface component is the interface between the
hardware and software (i.e., host) parts. Specifically,
the software part communicates with the hardware
by sending and receiving data packets through the
Host interface. In addition to the data packets, other
traffics such as register access are also passed
through this interface.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

333

Figure 5. Hardware Architecture of the UWB

System

Control Unit is the major component of the
hardware part. It has two functions, TDMA (Time
Division Multiple Access) and DMA (Direct
Memory Access). For the TDMA function, it
controls when to enable Tx/Rx according to the CTA
information that is given by the UWB software. For
the DMA function, it moves data between the Host
Interface component (or the FIFO component) and
the SRAM. When the host software wants to send a
packet, the packet will be written to the SRAM first.
Once the corresponding CTA begins, the Control
Unit will turn on Tx and make the in-SRAM packet
data be sent out through the FIFO component. On
the other hand, when the FIFO receives a packet, it
stores the packet into the SRAM first. And then, the
software part will eventually get the packet data
through the Host Interface component.

The FIFO component is used for packet
transmission and reception. It performs CRC jobs
such as appending CRC words and doing CRC
checks. In addition, it is responsible for sending
immediate ACKs for the received packets.

3.3.1 Packet Store Partitioning

As we mentioned above, a superframe in our

system can be divided into beacon duration, ACTA,
MCTA, and CTA. In the beacon duration, PNC is
responsible for broadcasting the beacon packet to all
the devices in the piconet. In ACTA, channel time
requests packets (i.e., CTRq) can be sent.
Association requests and other command packets are
sent during the MCTA periods. And, CTA periods
are responsible for transmitting data packets. Since
different kinds of packets should be sent in different
periods, we divide the Tx packet store (in SRAM)
into several partitions. Figure 6 shows the
partitioning. This allows the hardware to get rid of
parsing the packet type before sending a packet, and
hence reduce the hardware complexity. For example,
when a superframe begins, the hardware of a PNC
device can just sends the packet starting from
address 00000. It does not need to scan the whole Tx
packet store to find out where the beacon is.

Different from the Tx packet store, the Rx packet
store is not partitioned since the hardware does not
need to parse the received packet at all. The parsing
is left to the software part. Therefore, we do not
partition the Rx packet store.

Figure 6. Packet Store Partitions

3.3.2 System Registers

The system registers allow the software part to

issue commands to the hardware or get status
information from the hardware. These registers can
be divided into the following four categories.

DEVID Control/Status Registers

DEVID_WRITE: This is used by the software part to
write the device identifier into the hardware.

DEVID_READ: This is used to get the current
device identifier.

CTA Control/Status Registers

CURRENT_CTA_TYPE_READ: This allows the
software part to learn the current period in a
superframe. Possible return values can be
Tx_Beacon, Tx_CTRq, Tx_Command,
Tx_Association, Tx_Data, Rx_Any, and NULL. For
example, Tx_Beacon will be returned if the
hardware is transmitting a beacon. If the hardware is
not transmitting or receiving any packets, NULL will
be returned.

CTA_START_WRITE, CTA_END_TIME_WRITE,
CTA_TYPE_WRITE: These are used by the
software to set the information of a particular CTA.
The information includes the starting time, the end
time, and the type of the CTA. The CTA type can be
ACTA, MCTA, CTA Tx, or CTA Rx.

CTA_REGISTER_STATE: This is used to get all
the CTA information that is currently set in the
hardware.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

334

Packet Store Status Registers

RX_ANY_SIZE_READ,
TX_BEACON_SIZE_READ,
TX_CTRQ_SIZE_READ,
TX_ASSOCIATION_SIZE_READ,
TX_COMMAND_SIZE_READ,
TX_DATA_SIZE_READ: These are used to get the
available space of a particular partition. With this
information, the software part can tell whether or not
it should send more packets to the hardware Tx
packet store. It can also tell whether or not it should
receive packets faster from the Rx packet store.

Superframe Control Register

SUPERFRAME_DURATION: This is used to notify
the hardware the length of a superframe. With this
information, the hardware can send beacons
periodically.

3.3.3 Host Interface

As we mentioned above, the Host Interface

component is the interface between the hardware and
software (i.e., host) parts. The data transmitting
between the software part and the Host interface is
divided into capsules, each of which contains a
maximum number of 15 data words (i.e., each word
is 16 bit wide). The software part should attach a
header before each capsule. Figure 7 shows the
format of the header. The type field indicates the
type of the data (e.g., beacon, data). If the capsule is
used for setting a system register, the parameter field
will contain the new value of the register. Otherwise,
it will be empty. And, the size field indicates the
number of data words in this capsule.

After getting a whole capsule, the Host Interface
issues a request (together with the header) to the
Control Unit, which will raise the transmit_ok signal
when it has setup the SRAM to receive the data.
Once the transmit_ok signal is raised, the Host
Interface will write the data words to the SRAM.
Figure 8 shows the connection between the Host
Interface and the Control Unit.

 Figure 7. The Capsule Header

Figure 8. Connection between Host Interface and

Control Unit

For data receiving, the software part has to ask

the Control Unit the number of data bytes in the
SRAM before issuing a read operation. This can
prevent blocking on the data receiving.

3.3.4 Control Unit

Figure 9. Block Diagram of the Control Unit

Figure 9 shows the block diagram of the Control

Unit component. As we mentioned before, the main
functions of this component are TDMA and DMA.

TDMA Implementation. When the software
part writes the CTA information to the system
registers, the information will be stored into the
Control Register block. Each time a superframe
starts, the Control Register block will send the start
and end time of the first CTA to the Timer Center
block. And, a timer clock (that will increase by 1
each us) is reset. When the clock reaches to the CTA
start time, the OnTime signal is turned on. Once the
end time is reached, the signal is turned off. This
enables the other logic circuit to perform actions
according to the starting and the ending of a CTA.
For example, the FIFO component will turn on its Tx
or Rx according to the OnTime signal. Note that
when the end time is reached, the Expire signal will
become active. This notifies the Control Register

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

335

block to send the information about the next CTA to
the Timer Center.

DMA Implementation. Both the Host Interface
and the FIFO components issue DMA requests to the
Control Unit if they have data that needs to be sent
to the SRAM-based packet store. The DMA requests
are received by the DMA Request Arbiter, which
prioritizes the requests. The highest priority requests
will be granted and passed to the DMA block, which
sets up the SRAM and activates the chip-select
signal of the corresponding component so as to allow
the component to read/write the SRAM.

3.3.5 FIFO

 Figure 10. Block Diagram of the FIFO
Component

Figure 10 shows the block diagram of the FIFO

Component. The major functionality of it is to
perform CRC32 jobs and to acknowledge the
received packets. When transmitting a packet, the
FIFO component will append the CRC32
information to the end of the packet. When receiving
a packet, it will verify if the CRC32 result is correct.
If it is, the packet will be written to the SRAM
(through DMA). Otherwise, the packet will be
dropped.

Once a packet is received, the FIFO component
will parse the packet header to see if it is needed to
acknowledge the packet immediately. If it is, the
FIFO component will generate the ACK packet. The
ACK packet will be sent out within the time of Short
Inter-Frame Space (SIFS) after the receiving of the
original packet.

In addition to the above functionality, the FIFO
component also helps the synchronization between
the PNC and devices. Specifically, the FIFO
component checks if a received packet is a beacon. If
it is, the BeaconStart signal will be turned on in
order to make the Control Unit component to reset
the timer clock.

4. Implementation and Prototype
Evaluation

4.1 Implementation

This section presents the implementation

environment and performance evaluation of the
IEEE 802.15.3-based UWB MAC. As described in
Section 3, the MAC system is divided into software
and hardware parts. The former is implemented in C
and running on a host computer. The latter is
implemented in a Xilinx Virtex-II FPGA on the
BenADDA board, which is plugged by the Nallatech
BenOne [11] development motherboard. The
BenOne board can be connected by a host computer
via the PCI or USB interface. Following shows the
specification of BenOne and BenADDA boards
respectively.

Motherboard – (BenOne card)

 Supports one DIME-II slot for an DIME-II
Module

 Spartan 2 FPGA for 3.3/5V PCI or USB
interface

 Host interfacing via 3.3V/5V PCI 32-bit/33-
MHz or USB v1.0 interface

Daughter Board - (BenADDA module)

 Xilinx Virtex-II user FPGA: XC2V2000-
4FG456 (2 million gates)

 2 ADC channels: AD664 ADC
 2 DAC channels: AD9772 DAC
 One bank of ZBT-SSRAM (133Mhz,

256K*16 bits)

4.2 Prototype Evaluation

The code size of the software part is 208 Kbytes.

The FPGA utilization of the hardware
implementation is shown in Table 1. Table 2
presents the execution speed of the synthesized
hardware. Since the hardware data bus is 16-bit wide,
the maximal throughput achieved by the hardware is
50.055 x 16 (bits) = 800 Mbps.

Table 1. FPGA utilization on the 2v2000fg676-6

Device
Number of Slices 3108/10752 28%
Number of Slice Flip Flops 3034/21504 14%
Number of 4 input LUTs 5202/21504 24%
Number of bonded IOBs 97/456 65%
Number of TBUFs 48/5376 0%
Number of GCLKs 2/16 12%

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

336

Table 2. Hardware Performance Result

Minimum period 19.978ns
Maximum Frequency 50.055MHz
Minimum input arrival time before
clock

5.632ns

Maximum output required time after
clock

9.008ns

Maximum combinational path delay 6.560ns

To demonstrate the effectiveness of our system,
we use a desktop PC connected by a BenOne
development board acting as the PNC. A notebook,
which is also connected by a BenOne development
board, acts as a DEV. Furthermore, the two
development boards are connected by wires to
emulate the wireless media. Figure 11 shows our
prototype environment.

Figure 11. The Prototype Implementation

Environment

5. Conclusions

UWB is an emerging and promising wireless
communication technology for Personal Area
Network (PAN). It not only enables short-range high
speed communication, but also plays an important
role in the realization of pervasive networking.

IEEE 802.15.3 has defined a MAC for wireless
PAN, which is regarded as the most appropriate
candidate for high speed UWB MAC. However, the
implementation of 802.15.3-based UWB MAC has
not shown in the previous literatures.

In this paper, we describe the design and
implementation of an IEEE 802.15.3-based UWB
MAC, which is developed by using the hardware-
software co-design approach. The major protocol-
processing tasks are done by the software, while the
TDMA functionality and the data movement
mechanism are implemented in the hardware.

To verify the functionality of the MAC, we
developed a prototype on top of the Xilinx Virtex-II
FPGA board. According to the evaluation results, the
code size of the software is about 208 Kbytes, which
makes it suitable to be used in embedded systems to
satisfy the needs for pervasive computing. Moreover,
the maximum throughput of the synthesized
hardware code can reach 800Mbps, which shows
that it is suitable as a high speed UWB MAC.

6. References

[1] Robert J. Fontana, et. al., “Recent Advances in

Ultra Wideband Communication Systems,”
Proceedings of IEEE Conference on Ultra
Wideband Systems and Technologies, May 2002.

[2] David G. Leeper, “A Long-Term View of Short-
Range Wireless,” IEEE Computer Magazine,
Vol. 34, No. 6, pp 39- 44, June 2001.

[3] David G. Leeper, “Ultrawideband – The Next
Step in Short-Range Wireless,” IEEE MTT-S
International Conference on Microwave
Symposium Digest, Vol. 1, pp. 357-360, 2003.

[4] Woe Z. Win, Robert A. Scholtz, “Impulse Radio:
How It Works,” IEEE Communications Letters,
Vol. 2, No. 1, pp. 36-38, February 1998.

[5] Jeff Foerster, Evan Green, Srinivasa Somayazulu,
David Leeper, “Ultra-Wideband Technology for
Short- or Medium-Range Wireless
Communications,” Intel Technology Journals,
May 2001.

[6] IEEE P802.15.3™ Standard for Information
technology – Telecommunications and
information exchange between systems – local
and metropolitan are networks – Specific
requirements - Part 15.3: Wireless Medium
Access Control (MAC) and Physical Layer
(PHY) Specifications for High Rate Wireless
Personal Area Networks (WPANs), September,
2003.

[7] Freescale Semiconductor Inc., available at
http://www.freescale.com, August 2004.

[8] The U.C.A.N (Ultra-wideband Concepts for Ad-
hoc Networks) Project, available at
http://www.prorec-projekte.de/ucan/, April 2004.

[9] IEEE 802.15 Working Group for WPAN:
http://grouper.ieee.org/groups/802/15.

[10] Domenico Porcino and Walter Hirt, “Ultra-
Wideband Radio Technology: Potential and
Challenges Ahead,” IEEE Communication
Magazine, pp. 66-74, July 2003.

[11] Nallatect Ltd., “Benone Single-slot DIMEII
Motherboard PCI Card”, available at
http://www.nallatech.com/solutions/products/em
bedded_systems/dime2/rc_systems/benone/,
August 2004.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

337

