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Abstract- Traditional embedded operating 

systems usually address two issues: limited 
hardware resources and real-time support. However, 
due to the popularity of Internet and rapid 
development of network technologies, Internet 
access capability is also becoming a necessarily for 
many embedded systems. As a result, modern 
embedded operating systems should satisfy the 
requirements of running on top of limited hardware 
resources, supporting real-time applications, and 
providing Internet access capability.  

Many commercial real-time operating systems do 
satisfy the above requirements. However, they are 
usually expensive and not open source. On the other 
hand, non-commercial kernels often have limitations 
for fulfilling the requirements. This motivates us to 
develop an open source, embedded real-time 
operating system with Internet access capability. The 
kernel is named Seed. It is small, flexible, and 
portable. And, the kernel services have deterministic 
or even constant timing behavior so that it can 
satisfy the real-time needs. Finally, it enables 
Internet access by integrating a tiny and open source 
TCP/IP protocol stack, lwIP.  

Seed is currently run on top of the Samsung 
SNDS100 (ARM7TDMI based) evaluation board. 
The size of the kernel image is about 75K bytes with 
lwIP, or 21K bytes without lwIP. According to the 
performance results, Seed is suitable for real-time 
embedded network appliances. 

 
Keywords: RTOS, Embedded Systems, Network 
Appliances. 
 
1. Introduction 
 

Embedded systems play a significant role in 
modern daily life. They can be found everywhere, 
such as watches, VCD/DVD players, digital cameras, 
mobile phones, missile systems, flight control 
systems, and etc. Traditional embedded operating 
systems usually address two issues: limited hardware 
resources and real-time support. Therefore, an 
embedded operating system must be able to run on 
top of limited resources as well as provide real-time 
support to its applications. 

With the popularity of Internet and rapid 
development of network technologies, Internet 
access capability is becoming a necessarily for many 
embedded systems. Such network appliances can not 
only communicate with each other, but also enable 
many creative applications on them. For example, a 
user can control an in-home VCD/DVD recorder to 
record his favorite TV programs when he is working 
at office. 

Therefore, modern embedded operating systems 
should satisfy the requirements of running on top of 
limited hardware resources, supporting real-time 
applications, and providing Internet access capability. 
Many commercial real-time operating systems do 
satisfy the above requirements. However, they are 
usually expensive and not open source. On the other 
hand, non-commercial kernels often have limitations 
for fulfilling the requirements. This motivates us to 
design and implement an open source, real-time 
embedded operating system for network appliances. 
The operating system, named Seed, contains an OS 
kernel designed for time-critical embedded 
applications. Besides the basic kernel services, we 
also ported a small TCP/IP stack called lwIP [7] to 
Seed so as to make it become Internet-enabled. 

The kernel has the following design goals. First, it 
is designed to be flexible for supporting various 
kinds of applications. Second, it provides real-time 
support. For example, it provides preemptive 
multitasking and deterministic (or constant) timing 
services. Third, it is designed for high performance 
and tiny size. And fourth, Seed is extremely portable. 
It is easy to port Seed to other hardware platforms by 
replacing the code under the Hardware Abstraction 
Layer (HAL). 

Seed is currently implemented on Samsung 
SNDS100 evaluation board. The kernel supports 
preemptive multitasking, task synchronization/ 
communication, and management of memory, timers 
and interrupts. The size of the kernel image is about 
75Kbytes with lwIP, or 21Kbytes without lwIP, 
which is small enough for resource-limited systems. 
And, according to the performance results, Seed is 
suitable for real-time embedded network appliances. 

The rest of the paper is organized as follows. 
Section 2 describes the previous research related to 
real-time embedded kernels. Section 3 presents the 
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details of the Seed kernel and the lwIP porting. The 
experiment results are shown in Section 4. Finally, 
Section 5 gives conclusions and future work. 
 
2. Related Work 
 

In this section, we describe some of the related 
real-time embedded kernels.  

 
2.1 Linux & RTLinux 

 
Linux is a famous open source operating system. 

Many vendors such as MontaVista [15] and 
Metrowerks [12] have put efforts on making Linux 
an embedded RTOS. The techniques include 
shrinking the kernel and libraries, reducing the timer 
interrupt intervals, inserting preemption points in the 
kernel, and etc. However, Linux kernel is inherently 
designed for general-purpose and non-real-time 
systems [3]. The techniques can not transform Linux 
to a true real-time kernel. 

Therefore, Real-Time Linux (RTLinux) [8][17] 
was developed for real-time applications. In 
RTLinux, a real-time extension co-exists along with 
the original Linux kernel. And, each application is 
divided into the real-time part and the non-real-time 
part. The former runs directly on the real-time 
extension, while the latter runs on the Linux kernel. 
However, the cooperation between the RT and non-
RT parts not only consumes extra computing and 
memory resources but also make the application 
development complicated. 

Seed is a pure real-time embedded kernel. 
Developing real-time applications on Seed is easy 
and straightforward without extra overheads. 

 
2.2 eCos 

 
The eCos kernel [18] is a flexible, configurable, 

and real-time embedded kernel. It has a hardware 
abstraction layer for increasing portability. Similar to 
Seed, eCos divides the interrupt handling procedure 
into two parts: Interrupt Service Routine (ISR) and 
Deferred Service Routine (DSR). However, the DSR 
of eCos has no priority levels. By contrast, Seed has 
eight priority levels and supports constant time DSR 
scheduling. Moreover, eCos only supports 32 
priority levels for constant time task scheduling, 
while Seed kernel supports 512 priority levels.  

 
2.3 μC/OS-II 

 
μC/OS-II [10] is also a preemptive, real-time, 

multi-tasking kernel. However, Seed is more flexible 
and powerful thanμC/OS-II. For example, μC/OS-
II supports only 64 task priorities. Moreover, 
different tasks must be associated with different 
priorities. This prevents the using of Round-Robin 

scheduling. Finally, μ C/OS-II adopts only 
preemptive multitasking without the possibility of 
non-preemptive multitasking.  

By contrast, Seed supports 512 task priorities and 
allows more than one tasks to share the same priority. 
Round-Robin scheduling, preemptive or non-
preemptive multitasking are all allowed in the Seed 
kernel.  

 
2.4 Commercial RTOSes 

 
There are many commercial real-time embedded 

kernels in the market, such as WindowsCE[13], 
Nucleus[1], VxWORKS[22], QNX[16], Lynx[11] 
and etc. However, all of them are proprietary. Some 
of them even do not open their source code. Seed is 
an open source project, so it is royalty and buyout 
free. 

 
3. Design and Implementation 

 
Before describing the components of the Seed 

kernel, we present its features first. Seed kernel has 
the following features:  

Flexibility. Seed kernel divides its code into 
several components for flexibility. Each component 
can be replaced, removed and modified 
independently. In addition, we implement a Seed 
component as flexible as possible. For example, 
when creating a task, the task management 
component allows the user to specify the time-slice, 
whether or not the task can be preempted, and etc. 
Changing these values at run-time is also allowed.  

Deterministic timing. All the Seed kernel services 
have deterministic or even constant timing behavior. 
With this, it is possible to analyze the worst case 
performance of the real-time applications. 

Portability. The hardware-dependent code is 
hidden below the Hardware Abstraction Layer 
(HAL). If we want to port Seed to another hardware 
platform, all we have to do is to modify the code 
below the HAL. Other components do not need to be 
changed at all. 

High performance. Seed chooses single protection 
mode (i.e., kernel mode) for performance 
consideration. Traditional operating systems such as 
Linux adopt a dual-mode scheme (i.e., user mode 
and kernel mode) for kernel protection. Under this 
scheme, additional code is needed for changing 
protection domains. According to the previous study 
[4], single protection mode can save the time of 
domain switching. 

In the following sections, we will describe the 
components of the Seed kernel. In addition, we will 
also present the effort of porting lwIP to Seed. 

 
 

3.1 Task Management 
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Seed kernel supports multi-tasking. Each task is 
associated with a priority, which ranges from 0 to 
511 (0 is the highest priority). Seed always schedules 
the highest priority task to run. If two tasks have the 
same priority, they will be executed in a round-robin 
manner. Besides, Seed supports both preemptive and 
non-preemptive scheduling.  

A unique feature of Seed is that it can achieve 
constant-time scheduling for 512 task priorities. μ
C/OS-II can also achieve constant-time scheduling. 
However, it only supports 64 priorities. It is proved 
that a RTOS should have at least 256 priorities to 
eliminate most of the unpredictability of the run-time 
behavior of systems. 

 

 
Figure 1. Finding the Highest Priority Task 
 
We extend the μ C/OS-II scheduler [10] to 

achieve constant-time scheduling for 512 task 
priorities. As shown in Figure 1, we represent 512 
task priorities with an 8×8×8 cube (i.e., 
Priority_Ready_Table). The cube is made up of an 
8×8 array, where each element is an 8-bit bitmap. 
Each ‘set’ bit indicates the existence of one or more 
ready tasks with the corresponding priority. For 
example, the binary value 00001000 in 
Priority_Ready_Table[0][0] means that there is at 
least one ready task with priority 3.  

The array is referenced by two indexes, row index 
(ri) and column index (ci). Each of them is an 8-bit 
bitmap and each bit corresponds to a priority group. 
For example, if the bit 0 of ri and the bit 0 of ci are 
both set, there is at least one task (with its priority 
between 0 to 7) ready for execution. This is because 
Priority_Ready_Table [0][0] corresponds to priority 
0 through 7. 

Therefore, the highest priority task can be found 
in the following way: 

1. Find the least significant bit set in ri  rlsbs 
2. Find the least significant bit set in ci  clsbs 
3. Find the least significant bit set in 

Priority_Ready_Table [rlsbs][ clsbs]  n 
4. P := 64×rlsbs + 8×clsbs + n 
5. Detach the first task with priority P in the 

task ready queue 
The above procedure requires finding the least 

significant bit that is set in an 8-bit bitmap. To do 

this in a constant time, we use a table-lookup 
approach, which is exactly the same as the approach 
used in μC/OS-II. As a result, the cost of the task 
scheduling is fixed no matter how many tasks are in 
the system. 

 
3.2 Interrupt Management 

 
Seed allows a component such as a device driver 

to register/un-register an ISR for an IRQ number 
(interrupt request number) dynamically. When an 
interrupt occurs, the HAL will recognize the IRQ, 
save the CPU context, execute the ISR, and finally 
restore the context.  

We usually disable interrupts during the 
execution of an ISR. However, it is not desirable to 
disable interrupts for a long time in a real-time 
system. Therefore, Seed adopts a 2-stage interrupt 
handling scheme, which is also adopted by some 
other real-time kernels (e.g., eCos [18]). In this 
scheme, interrupt handling is separated into two 
stages, ISR stage and DISR (Deferred Interrupt 
Service Routine) stage. 

In the ISR stage, a normal ISR is executed with 
interrupts disabled. During the execution, the ISR 
may activate a DISR to complete the service later. 
When the ISR is finished, the DISR starts. A DISR is 
allowed to be run with interrupts enabled. Just like a 
task, each DISR has its own stack and control block, 
and hence it can temporarily be blocked for 
synchronization or mutual exclusion purpose. 
Therefore, interrupts will not be disabled for a long 
time. 

The eCos kernel also supports DISR. However, 
their DISRs do not have priorities, and hence they 
are executed in FIFO order. This might cause 
problems when a DISR activated by a higher priority 
ISR is blocked by another one that is activated by a 
lower priority ISR. By contrast, there are eight 
priority levels available for Seed DISRs. If a higher 
priority DISR (i.e., activated by a higher priority ISR) 
becomes ready, the lower priority DISR is 
preempted. And, DISRs with the same priority are 
executed in the order they are activated. The same as 
the task scheduling, DISR scheduling only requires a 
small constant time. 

 
3.3 Timer Management 

 
This component provides all the timing facilities 

in Seed, including the timer ISR, time-slicing and the 
timer service. The timer service is used frequently by 
other kernel components (e.g., task management) 
and time-sensitive applications.  

We classify the timers into two types according to 
their usage, the application timers and the task timers. 
The former can be created, deleted, enabled, and 
disabled dynamically by the applications. These 
timers execute user-provided routines when they are 
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expired. The routines are specified while creating the 
timers. For the latter, each task has a built-in task 
timer, which allows a task to suspend for a specified 
time. When the timer expires, the task will be 
resumed. 

 
3.4 Memory Management 

 
To avoid the fragmentation problem and achieve 

constant-time allocation/de-allocation, Seed provides 
a partition-based memory management mechanism. 
This mechanism is also adopted by other real-time 
kernels such as μC/OS-II and Nucleus. It allows the 
applications to obtain fix-sized memory blocks from 
a partition, which is made up of a contiguous 
memory area. All memory blocks in a partition are of 
the same size.  

Figure 2 shows the partition control block that is 
used to manage a partition. It contains a pointer (i.e., 
free_list) that points to the first free block. The free 
blocks are linked as a list by using the first four 
bytes of the block data space. Block allocation and 
de-allocation involves only the head of the list. 
Therefore, the time is constant.  

Each block has a four-byte overhead (i.e., block 
header) that contains a pointer to the partition control 
block. This reverse pointer keeps away the 
application from specifying the partition control 
block when it de-allocates a block. It is useful since 
the system may crash if the application returns the 
block to a wrong partition.  

The memory partition implementation in Seed is 
more robust than μ C/OS-II since the former 
provides a reverse pointer to avoid system crash. On 
the other hand, a Seed memory partition incurs less 
space overhead than Nucleus. The latter includes the 
free list pointers into the block headers so that the 
pointers cannot be used to store data. 

 
Figure 2. Partition Control Block and Free List 

 
3.5 Message Queue 

 
Message queue is used for inter-task 

communication. When a task sends a message, the 
message will be copied into the message queue. 
Then the receiving task will be able to copy the 

message out of the queue. To avoid large data 
copying, we suggest that applications just send 
pointers to the receivers. The pointer can be 
initialized to point to some application’s data 
structure that will actually be referenced by the 
receivers.  

In addition to unicast communication, it is 
allowed to broadcast a message to all the waiting 
tasks in a message queue. 
 
3.6 Semaphore 

 
Seed provides counting semaphores. The value of 

each semaphore ranges from 0 to 232 -1. If a task 
fails to obtain the semaphore (i.e., the counter of 
semaphore is zero), the task may suspend on the 
waiting list until the semaphore is available.  

Seed supports priority-inheritance protocol [21] 
for semaphores in order to solve the problem of 
priority inversion. Note that μC/OS-II kernel does 
not implement a general priority-inheritance protocol 
since it can not allow two tasks to share the same 
priority. Hence, it requires the users to reserve some 
priority levels for priority-inheritance usage. This 
decreases the available priorities. Seed kernel does 
not have such limitation, so that it can implement the 
general priority-inheritance protocol. 

 
3.7 Kernel Implementation Status 

 
Seed is currently implemented on Samsung 

SNDS100 evaluation board, which is based on the 
S3C4510B/KS32C50100 microcontroller [19]. 
S3C4510B is a 32-bit ARM7TDMI-based [9][20] 
microcontroller that integrates an Ethernet MAC. 
And, the maximum processor frequency is 50MHz. 
Besides the microcontroller, the board also consists 
of boot EEPROM, DRAM module, SDRAM, serial 
ports, and Ethernet interface.  

Seed works correctly on the SNDS100 board. The 
Seed HAL is responsible for managing the board. In 
addition to the HAL, other kernel components such 
as task management, interrupt management (ISR and 
DISR), memory management, timer, message queue, 
and semaphore are also implemented and tested. And, 
we have implemented two drivers (i.e., Ethernet and 
UART) for the board. The source code is available at 
http://rt.openfoundry.org/Foundry/Project/index.html
?Queue=157. 

 
3.8 LWIP Integration 

 
 In order to provide Internet access capability, we 

ported a small TCP/IP stack called lwIP (i.e., 
lightweight IP) [5][7] to the Seed kernel. The design 
goal of lwIP is to reduce the memory usage and the 
code size, making it suitable for embedded systems. 
lwIP provides an interface called OS emulation layer 
for connecting it with the underlying OS kernel. To 
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port lwIP to Seed kernel, we only have to implement 
this interface. This interface requires the 
functionalities such as multi-tasking, memory 
management, timer, semaphore and message queue. 
These functionalities are fully supported by Seed. 
Table 1 shows the function mapping between the OS 
emulation layer and the Seed kernel. Each function 
in the OS emulation layer is mainly implemented by 
a single Seed kernel function. 

Currently, the following network applications can 
be run on lwIP/Seed: TCP Echo server, UDP Echo 
server, HTTP daemon, and telnet daemon. 

 
Table 1. Function mapping between lwIP OS 

Emulation Layer and Seed kernel 
OS Emulation Layer 

Functions 
Seed Kernel Functions 

sys_thread_new Create_Task 
sys_mbox_new Create_Message_Queue 
sys_mbox_free Delete_Message_Queue 
sys_mbox_post Send_Message_To_Queue
sys_arch_mbox_fetch Receive_Message_From_

Queue 
sys_sem_new Create_Semaphore 
sys_sem_free Delete_Semaphore 
sys_arch_sem_wait Obtain_Semaphore 
sys_sem_signal Release_Semaphore 
 

4. Performance Evaluation 
 
4.1 Code Size 

 
The code was compiled for ARM7TDMI using 

ARM Developer Suite 1.2 [2]. The size of the 
compiled code is shown in Table 2. The Code size 
column shows the size of the compiled object code, 
and the Data size column shows the size of data used 
by the object code. The total code size is about 16K 
bytes and the total data size is about 35K bytes. 
After linking, the kernel image size is about 21K 
bytes. Hence, Seed kernel is very small and is 
suitable for embedded systems. 

 
Table 2. Code Size of Seed Kernel 

Function Code size 
(bytes) 

Data size 
(bytes) 

HAL 2356 27388
Task Management 3164 2500
Interrupt Management 1036 257
Timer Management 1404 1256
Memory Partition 664 0
Message Queue 2004 0
Semaphore 776 0
Other Kernel Services 956 3441
Libraries 4248 308
Total 16608 35150
 

4.2 Kernel Performance  
 

Table 3. Performance of Seed Primary Functions  
Function Time(us) Cycles

Task_Scheduler 16.079 843
Task_Context_Switch 18.081 948
Create_Task 47.207 2475
Resume_Task 8.545 448
Suspend_Task 14.763 774
Create_Message_Queue 10.147 532
Send_Message_To_Queue 16.479 864
Receive_Message_From_Queue 16.193 849
Create_Semaphore 4.101 215
Obtain_Semaphore 4.120 216
Release_Semaphore 7.706 404
Create_Memory_Partition 18.959 994
Allocate_Memory_Block 4.005 210
Free_Memory_Block 4.520 237
Create_Timer 21.954 1151

 
Table 3 shows the execution time of the primary 

functions in Seed. These results can be treated as a 
reference while creating applications on Seed.  

Table 4 gives the performance of interrupt 
handling. Interrupt handling can be divided into 
three parts. The first part is interrupt latency, which 
is defined as the time that a system takes to start 
running the interrupt handling code. The second part 
is the time to save the CPU context of the current 
task and branch to the ISR. The third part is interrupt 
recovery. It is the time to determinate if a higher 
priority task is ready and the time to restore the CPU 
context. The total latency is about 90us. 
 

Table 4. Performance of Interrupt Handling 
Function Time (us) Cycles 

Interrupt Latency 34.695 1819 
Save CPU Context 20.409 1070 
Interrupt Recovery 35.667 1870 

 
4.3 Network System Performance 

 
In this section, we measure the performance of 

lwIP on the Seed kernel. First, the throughput is 
measured. We connect an 800 MHz Pentium III 
notebook (IBM Thinkpad X22) running Linux 
2.4.18 to the SNDS100 board (which runs Seed 
kernel and lwIP) with a 10Mbits/sec Ethernet link. 
Besides, we use the TTCP tool to measure the TCP 
throughput. We configure TTCP to send 8M bytes of 
data from one device to the other. The result is 
shown in Table 5. From the table we can see that, Rx 
is slower since lwIP involves multiple tasks for 
receiving packets. This leads to more context 
switches and degrades the performance. 

 
Table 5. Throughput of lwIP Running on Seed 

 Throughput  
lwIP Rx 115.93 KB/Sec 
lwIP Tx 190.54 KB/Sec 
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Besides the throughput, we also measure the 
round-trip time. The measurement was taken by 
using the ping program. We send 1000 64-byte 
packets to the SNDS100 board and the average 
round-trip time is 0.991 ms.  

The above results are comparable with that 
reported by the previous study [6]. However, we do 
not perform precise comparison since the platforms 
are different. 

At last, we measure the performance of a simple 
web server that runs on lwIP/Seed. The performance 
is measured by using the WebStone [14] benchmark 
version 2.5. We configure the profile as that a client 
continuously requests a single file in ten minutes. 
Table 6 shows the result, which is acceptable for 
small embedded devices. 

 
Table 6. Web Server Performance 

Connection Rate 39.05 Conn./sec 
Throughput  147.20 Kbytes/sec 
Ave. Resp. Time 25.59 ms
 

5. Conclusions and Future Work 
 
In this paper, we describe the internal of Seed, a 

real-time embedded kernel that has Internet access 
capability. It supports network appliances that have 
real-time and embedded requirements. The kernel 
services have deterministic timing behavior, so it is 
suitable for real-time applications. Moreover, a small 
TCP/IP stack named lwIP has been ported to Seed to 
enable the Internet access capability. Finally, the 
kernel is flexible and has a hardware abstraction 
layer to ease the porting effort. 

Seed is currently implemented on Samsung 
SNDS100 evaluation board. It provides preemptive 
multitasking, task synchronization/communication, 
and management of memory, timers and interrupts. 
The size of the kernel image is about 75 Kbytes with 
lwIP, or 21 Kbytes without lwIP. And the interrupt 
handling latency is about 90 us for a 50 MHz 
processor. Besides, the network throughput of 
lwIP/Seed can reach to 190.54 Kbytes/sec. These 
results show that Seed is suitable for non-high speed 
embedded network appliances that require real-time 
support.  

In the future, we plan to add some real-time 
scheduling algorithms such as RM and EDF to Seed. 
Besides, we will build up embedded file systems and 
graphic systems on Seed. With these systems, Seed 
will be suitable for embedded devices that are 
equipped with storage or display. 
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