
Seed: an Embedded Real-Time Operating System for Network Appliances

Chun-Chiao Wang Da-Wei Chang Ruei-Chuan Chang
Department of Computer and Information Science,

National Chiao Tung University, HsinChu, Taiwan, R.O.C.
is87074@cis.nctu.edu.tw david@os.nctu.edu.tw rc@cc.nctu.edu.tw

Abstract- Traditional embedded operating

systems usually address two issues: limited
hardware resources and real-time support. However,
due to the popularity of Internet and rapid
development of network technologies, Internet
access capability is also becoming a necessarily for
many embedded systems. As a result, modern
embedded operating systems should satisfy the
requirements of running on top of limited hardware
resources, supporting real-time applications, and
providing Internet access capability.

Many commercial real-time operating systems do
satisfy the above requirements. However, they are
usually expensive and not open source. On the other
hand, non-commercial kernels often have limitations
for fulfilling the requirements. This motivates us to
develop an open source, embedded real-time
operating system with Internet access capability. The
kernel is named Seed. It is small, flexible, and
portable. And, the kernel services have deterministic
or even constant timing behavior so that it can
satisfy the real-time needs. Finally, it enables
Internet access by integrating a tiny and open source
TCP/IP protocol stack, lwIP.

Seed is currently run on top of the Samsung
SNDS100 (ARM7TDMI based) evaluation board.
The size of the kernel image is about 75K bytes with
lwIP, or 21K bytes without lwIP. According to the
performance results, Seed is suitable for real-time
embedded network appliances.

Keywords: RTOS, Embedded Systems, Network
Appliances.

1. Introduction

Embedded systems play a significant role in
modern daily life. They can be found everywhere,
such as watches, VCD/DVD players, digital cameras,
mobile phones, missile systems, flight control
systems, and etc. Traditional embedded operating
systems usually address two issues: limited hardware
resources and real-time support. Therefore, an
embedded operating system must be able to run on
top of limited resources as well as provide real-time
support to its applications.

With the popularity of Internet and rapid
development of network technologies, Internet
access capability is becoming a necessarily for many
embedded systems. Such network appliances can not
only communicate with each other, but also enable
many creative applications on them. For example, a
user can control an in-home VCD/DVD recorder to
record his favorite TV programs when he is working
at office.

Therefore, modern embedded operating systems
should satisfy the requirements of running on top of
limited hardware resources, supporting real-time
applications, and providing Internet access capability.
Many commercial real-time operating systems do
satisfy the above requirements. However, they are
usually expensive and not open source. On the other
hand, non-commercial kernels often have limitations
for fulfilling the requirements. This motivates us to
design and implement an open source, real-time
embedded operating system for network appliances.
The operating system, named Seed, contains an OS
kernel designed for time-critical embedded
applications. Besides the basic kernel services, we
also ported a small TCP/IP stack called lwIP [7] to
Seed so as to make it become Internet-enabled.

The kernel has the following design goals. First, it
is designed to be flexible for supporting various
kinds of applications. Second, it provides real-time
support. For example, it provides preemptive
multitasking and deterministic (or constant) timing
services. Third, it is designed for high performance
and tiny size. And fourth, Seed is extremely portable.
It is easy to port Seed to other hardware platforms by
replacing the code under the Hardware Abstraction
Layer (HAL).

Seed is currently implemented on Samsung
SNDS100 evaluation board. The kernel supports
preemptive multitasking, task synchronization/
communication, and management of memory, timers
and interrupts. The size of the kernel image is about
75Kbytes with lwIP, or 21Kbytes without lwIP,
which is small enough for resource-limited systems.
And, according to the performance results, Seed is
suitable for real-time embedded network appliances.

The rest of the paper is organized as follows.
Section 2 describes the previous research related to
real-time embedded kernels. Section 3 presents the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1291

details of the Seed kernel and the lwIP porting. The
experiment results are shown in Section 4. Finally,
Section 5 gives conclusions and future work.

2. Related Work

In this section, we describe some of the related
real-time embedded kernels.

2.1 Linux & RTLinux

Linux is a famous open source operating system.

Many vendors such as MontaVista [15] and
Metrowerks [12] have put efforts on making Linux
an embedded RTOS. The techniques include
shrinking the kernel and libraries, reducing the timer
interrupt intervals, inserting preemption points in the
kernel, and etc. However, Linux kernel is inherently
designed for general-purpose and non-real-time
systems [3]. The techniques can not transform Linux
to a true real-time kernel.

Therefore, Real-Time Linux (RTLinux) [8][17]
was developed for real-time applications. In
RTLinux, a real-time extension co-exists along with
the original Linux kernel. And, each application is
divided into the real-time part and the non-real-time
part. The former runs directly on the real-time
extension, while the latter runs on the Linux kernel.
However, the cooperation between the RT and non-
RT parts not only consumes extra computing and
memory resources but also make the application
development complicated.

Seed is a pure real-time embedded kernel.
Developing real-time applications on Seed is easy
and straightforward without extra overheads.

2.2 eCos

The eCos kernel [18] is a flexible, configurable,

and real-time embedded kernel. It has a hardware
abstraction layer for increasing portability. Similar to
Seed, eCos divides the interrupt handling procedure
into two parts: Interrupt Service Routine (ISR) and
Deferred Service Routine (DSR). However, the DSR
of eCos has no priority levels. By contrast, Seed has
eight priority levels and supports constant time DSR
scheduling. Moreover, eCos only supports 32
priority levels for constant time task scheduling,
while Seed kernel supports 512 priority levels.

2.3 μC/OS-II

μC/OS-II [10] is also a preemptive, real-time,

multi-tasking kernel. However, Seed is more flexible
and powerful thanμC/OS-II. For example, μC/OS-
II supports only 64 task priorities. Moreover,
different tasks must be associated with different
priorities. This prevents the using of Round-Robin

scheduling. Finally, μ C/OS-II adopts only
preemptive multitasking without the possibility of
non-preemptive multitasking.

By contrast, Seed supports 512 task priorities and
allows more than one tasks to share the same priority.
Round-Robin scheduling, preemptive or non-
preemptive multitasking are all allowed in the Seed
kernel.

2.4 Commercial RTOSes

There are many commercial real-time embedded

kernels in the market, such as WindowsCE[13],
Nucleus[1], VxWORKS[22], QNX[16], Lynx[11]
and etc. However, all of them are proprietary. Some
of them even do not open their source code. Seed is
an open source project, so it is royalty and buyout
free.

3. Design and Implementation

Before describing the components of the Seed

kernel, we present its features first. Seed kernel has
the following features:

Flexibility. Seed kernel divides its code into
several components for flexibility. Each component
can be replaced, removed and modified
independently. In addition, we implement a Seed
component as flexible as possible. For example,
when creating a task, the task management
component allows the user to specify the time-slice,
whether or not the task can be preempted, and etc.
Changing these values at run-time is also allowed.

Deterministic timing. All the Seed kernel services
have deterministic or even constant timing behavior.
With this, it is possible to analyze the worst case
performance of the real-time applications.

Portability. The hardware-dependent code is
hidden below the Hardware Abstraction Layer
(HAL). If we want to port Seed to another hardware
platform, all we have to do is to modify the code
below the HAL. Other components do not need to be
changed at all.

High performance. Seed chooses single protection
mode (i.e., kernel mode) for performance
consideration. Traditional operating systems such as
Linux adopt a dual-mode scheme (i.e., user mode
and kernel mode) for kernel protection. Under this
scheme, additional code is needed for changing
protection domains. According to the previous study
[4], single protection mode can save the time of
domain switching.

In the following sections, we will describe the
components of the Seed kernel. In addition, we will
also present the effort of porting lwIP to Seed.

3.1 Task Management

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1292

Seed kernel supports multi-tasking. Each task is
associated with a priority, which ranges from 0 to
511 (0 is the highest priority). Seed always schedules
the highest priority task to run. If two tasks have the
same priority, they will be executed in a round-robin
manner. Besides, Seed supports both preemptive and
non-preemptive scheduling.

A unique feature of Seed is that it can achieve
constant-time scheduling for 512 task priorities. μ
C/OS-II can also achieve constant-time scheduling.
However, it only supports 64 priorities. It is proved
that a RTOS should have at least 256 priorities to
eliminate most of the unpredictability of the run-time
behavior of systems.

Figure 1. Finding the Highest Priority Task

We extend the μ C/OS-II scheduler [10] to

achieve constant-time scheduling for 512 task
priorities. As shown in Figure 1, we represent 512
task priorities with an 8×8×8 cube (i.e.,
Priority_Ready_Table). The cube is made up of an
8×8 array, where each element is an 8-bit bitmap.
Each ‘set’ bit indicates the existence of one or more
ready tasks with the corresponding priority. For
example, the binary value 00001000 in
Priority_Ready_Table[0][0] means that there is at
least one ready task with priority 3.

The array is referenced by two indexes, row index
(ri) and column index (ci). Each of them is an 8-bit
bitmap and each bit corresponds to a priority group.
For example, if the bit 0 of ri and the bit 0 of ci are
both set, there is at least one task (with its priority
between 0 to 7) ready for execution. This is because
Priority_Ready_Table [0][0] corresponds to priority
0 through 7.

Therefore, the highest priority task can be found
in the following way:

1. Find the least significant bit set in ri rlsbs
2. Find the least significant bit set in ci clsbs
3. Find the least significant bit set in

Priority_Ready_Table [rlsbs][clsbs] n
4. P := 64×rlsbs + 8×clsbs + n
5. Detach the first task with priority P in the

task ready queue
The above procedure requires finding the least

significant bit that is set in an 8-bit bitmap. To do

this in a constant time, we use a table-lookup
approach, which is exactly the same as the approach
used in μC/OS-II. As a result, the cost of the task
scheduling is fixed no matter how many tasks are in
the system.

3.2 Interrupt Management

Seed allows a component such as a device driver

to register/un-register an ISR for an IRQ number
(interrupt request number) dynamically. When an
interrupt occurs, the HAL will recognize the IRQ,
save the CPU context, execute the ISR, and finally
restore the context.

We usually disable interrupts during the
execution of an ISR. However, it is not desirable to
disable interrupts for a long time in a real-time
system. Therefore, Seed adopts a 2-stage interrupt
handling scheme, which is also adopted by some
other real-time kernels (e.g., eCos [18]). In this
scheme, interrupt handling is separated into two
stages, ISR stage and DISR (Deferred Interrupt
Service Routine) stage.

In the ISR stage, a normal ISR is executed with
interrupts disabled. During the execution, the ISR
may activate a DISR to complete the service later.
When the ISR is finished, the DISR starts. A DISR is
allowed to be run with interrupts enabled. Just like a
task, each DISR has its own stack and control block,
and hence it can temporarily be blocked for
synchronization or mutual exclusion purpose.
Therefore, interrupts will not be disabled for a long
time.

The eCos kernel also supports DISR. However,
their DISRs do not have priorities, and hence they
are executed in FIFO order. This might cause
problems when a DISR activated by a higher priority
ISR is blocked by another one that is activated by a
lower priority ISR. By contrast, there are eight
priority levels available for Seed DISRs. If a higher
priority DISR (i.e., activated by a higher priority ISR)
becomes ready, the lower priority DISR is
preempted. And, DISRs with the same priority are
executed in the order they are activated. The same as
the task scheduling, DISR scheduling only requires a
small constant time.

3.3 Timer Management

This component provides all the timing facilities

in Seed, including the timer ISR, time-slicing and the
timer service. The timer service is used frequently by
other kernel components (e.g., task management)
and time-sensitive applications.

We classify the timers into two types according to
their usage, the application timers and the task timers.
The former can be created, deleted, enabled, and
disabled dynamically by the applications. These
timers execute user-provided routines when they are

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1293

expired. The routines are specified while creating the
timers. For the latter, each task has a built-in task
timer, which allows a task to suspend for a specified
time. When the timer expires, the task will be
resumed.

3.4 Memory Management

To avoid the fragmentation problem and achieve

constant-time allocation/de-allocation, Seed provides
a partition-based memory management mechanism.
This mechanism is also adopted by other real-time
kernels such as μC/OS-II and Nucleus. It allows the
applications to obtain fix-sized memory blocks from
a partition, which is made up of a contiguous
memory area. All memory blocks in a partition are of
the same size.

Figure 2 shows the partition control block that is
used to manage a partition. It contains a pointer (i.e.,
free_list) that points to the first free block. The free
blocks are linked as a list by using the first four
bytes of the block data space. Block allocation and
de-allocation involves only the head of the list.
Therefore, the time is constant.

Each block has a four-byte overhead (i.e., block
header) that contains a pointer to the partition control
block. This reverse pointer keeps away the
application from specifying the partition control
block when it de-allocates a block. It is useful since
the system may crash if the application returns the
block to a wrong partition.

The memory partition implementation in Seed is
more robust than μ C/OS-II since the former
provides a reverse pointer to avoid system crash. On
the other hand, a Seed memory partition incurs less
space overhead than Nucleus. The latter includes the
free list pointers into the block headers so that the
pointers cannot be used to store data.

Figure 2. Partition Control Block and Free List

3.5 Message Queue

Message queue is used for inter-task

communication. When a task sends a message, the
message will be copied into the message queue.
Then the receiving task will be able to copy the

message out of the queue. To avoid large data
copying, we suggest that applications just send
pointers to the receivers. The pointer can be
initialized to point to some application’s data
structure that will actually be referenced by the
receivers.

In addition to unicast communication, it is
allowed to broadcast a message to all the waiting
tasks in a message queue.

3.6 Semaphore

Seed provides counting semaphores. The value of

each semaphore ranges from 0 to 232 -1. If a task
fails to obtain the semaphore (i.e., the counter of
semaphore is zero), the task may suspend on the
waiting list until the semaphore is available.

Seed supports priority-inheritance protocol [21]
for semaphores in order to solve the problem of
priority inversion. Note that μC/OS-II kernel does
not implement a general priority-inheritance protocol
since it can not allow two tasks to share the same
priority. Hence, it requires the users to reserve some
priority levels for priority-inheritance usage. This
decreases the available priorities. Seed kernel does
not have such limitation, so that it can implement the
general priority-inheritance protocol.

3.7 Kernel Implementation Status

Seed is currently implemented on Samsung

SNDS100 evaluation board, which is based on the
S3C4510B/KS32C50100 microcontroller [19].
S3C4510B is a 32-bit ARM7TDMI-based [9][20]
microcontroller that integrates an Ethernet MAC.
And, the maximum processor frequency is 50MHz.
Besides the microcontroller, the board also consists
of boot EEPROM, DRAM module, SDRAM, serial
ports, and Ethernet interface.

Seed works correctly on the SNDS100 board. The
Seed HAL is responsible for managing the board. In
addition to the HAL, other kernel components such
as task management, interrupt management (ISR and
DISR), memory management, timer, message queue,
and semaphore are also implemented and tested. And,
we have implemented two drivers (i.e., Ethernet and
UART) for the board. The source code is available at
http://rt.openfoundry.org/Foundry/Project/index.html
?Queue=157.

3.8 LWIP Integration

 In order to provide Internet access capability, we

ported a small TCP/IP stack called lwIP (i.e.,
lightweight IP) [5][7] to the Seed kernel. The design
goal of lwIP is to reduce the memory usage and the
code size, making it suitable for embedded systems.
lwIP provides an interface called OS emulation layer
for connecting it with the underlying OS kernel. To

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1294

port lwIP to Seed kernel, we only have to implement
this interface. This interface requires the
functionalities such as multi-tasking, memory
management, timer, semaphore and message queue.
These functionalities are fully supported by Seed.
Table 1 shows the function mapping between the OS
emulation layer and the Seed kernel. Each function
in the OS emulation layer is mainly implemented by
a single Seed kernel function.

Currently, the following network applications can
be run on lwIP/Seed: TCP Echo server, UDP Echo
server, HTTP daemon, and telnet daemon.

Table 1. Function mapping between lwIP OS

Emulation Layer and Seed kernel
OS Emulation Layer

Functions
Seed Kernel Functions

sys_thread_new Create_Task
sys_mbox_new Create_Message_Queue
sys_mbox_free Delete_Message_Queue
sys_mbox_post Send_Message_To_Queue
sys_arch_mbox_fetch Receive_Message_From_

Queue
sys_sem_new Create_Semaphore
sys_sem_free Delete_Semaphore
sys_arch_sem_wait Obtain_Semaphore
sys_sem_signal Release_Semaphore

4. Performance Evaluation

4.1 Code Size

The code was compiled for ARM7TDMI using

ARM Developer Suite 1.2 [2]. The size of the
compiled code is shown in Table 2. The Code size
column shows the size of the compiled object code,
and the Data size column shows the size of data used
by the object code. The total code size is about 16K
bytes and the total data size is about 35K bytes.
After linking, the kernel image size is about 21K
bytes. Hence, Seed kernel is very small and is
suitable for embedded systems.

Table 2. Code Size of Seed Kernel

Function Code size
(bytes)

Data size
(bytes)

HAL 2356 27388
Task Management 3164 2500
Interrupt Management 1036 257
Timer Management 1404 1256
Memory Partition 664 0
Message Queue 2004 0
Semaphore 776 0
Other Kernel Services 956 3441
Libraries 4248 308
Total 16608 35150

4.2 Kernel Performance

Table 3. Performance of Seed Primary Functions
Function Time(us) Cycles

Task_Scheduler 16.079 843
Task_Context_Switch 18.081 948
Create_Task 47.207 2475
Resume_Task 8.545 448
Suspend_Task 14.763 774
Create_Message_Queue 10.147 532
Send_Message_To_Queue 16.479 864
Receive_Message_From_Queue 16.193 849
Create_Semaphore 4.101 215
Obtain_Semaphore 4.120 216
Release_Semaphore 7.706 404
Create_Memory_Partition 18.959 994
Allocate_Memory_Block 4.005 210
Free_Memory_Block 4.520 237
Create_Timer 21.954 1151

Table 3 shows the execution time of the primary

functions in Seed. These results can be treated as a
reference while creating applications on Seed.

Table 4 gives the performance of interrupt
handling. Interrupt handling can be divided into
three parts. The first part is interrupt latency, which
is defined as the time that a system takes to start
running the interrupt handling code. The second part
is the time to save the CPU context of the current
task and branch to the ISR. The third part is interrupt
recovery. It is the time to determinate if a higher
priority task is ready and the time to restore the CPU
context. The total latency is about 90us.

Table 4. Performance of Interrupt Handling
Function Time (us) Cycles

Interrupt Latency 34.695 1819
Save CPU Context 20.409 1070
Interrupt Recovery 35.667 1870

4.3 Network System Performance

In this section, we measure the performance of

lwIP on the Seed kernel. First, the throughput is
measured. We connect an 800 MHz Pentium III
notebook (IBM Thinkpad X22) running Linux
2.4.18 to the SNDS100 board (which runs Seed
kernel and lwIP) with a 10Mbits/sec Ethernet link.
Besides, we use the TTCP tool to measure the TCP
throughput. We configure TTCP to send 8M bytes of
data from one device to the other. The result is
shown in Table 5. From the table we can see that, Rx
is slower since lwIP involves multiple tasks for
receiving packets. This leads to more context
switches and degrades the performance.

Table 5. Throughput of lwIP Running on Seed

 Throughput
lwIP Rx 115.93 KB/Sec
lwIP Tx 190.54 KB/Sec

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1295

Besides the throughput, we also measure the
round-trip time. The measurement was taken by
using the ping program. We send 1000 64-byte
packets to the SNDS100 board and the average
round-trip time is 0.991 ms.

The above results are comparable with that
reported by the previous study [6]. However, we do
not perform precise comparison since the platforms
are different.

At last, we measure the performance of a simple
web server that runs on lwIP/Seed. The performance
is measured by using the WebStone [14] benchmark
version 2.5. We configure the profile as that a client
continuously requests a single file in ten minutes.
Table 6 shows the result, which is acceptable for
small embedded devices.

Table 6. Web Server Performance

Connection Rate 39.05 Conn./sec
Throughput 147.20 Kbytes/sec
Ave. Resp. Time 25.59 ms

5. Conclusions and Future Work

In this paper, we describe the internal of Seed, a

real-time embedded kernel that has Internet access
capability. It supports network appliances that have
real-time and embedded requirements. The kernel
services have deterministic timing behavior, so it is
suitable for real-time applications. Moreover, a small
TCP/IP stack named lwIP has been ported to Seed to
enable the Internet access capability. Finally, the
kernel is flexible and has a hardware abstraction
layer to ease the porting effort.

Seed is currently implemented on Samsung
SNDS100 evaluation board. It provides preemptive
multitasking, task synchronization/communication,
and management of memory, timers and interrupts.
The size of the kernel image is about 75 Kbytes with
lwIP, or 21 Kbytes without lwIP. And the interrupt
handling latency is about 90 us for a 50 MHz
processor. Besides, the network throughput of
lwIP/Seed can reach to 190.54 Kbytes/sec. These
results show that Seed is suitable for non-high speed
embedded network appliances that require real-time
support.

In the future, we plan to add some real-time
scheduling algorithms such as RM and EDF to Seed.
Besides, we will build up embedded file systems and
graphic systems on Seed. With these systems, Seed
will be suitable for embedded devices that are
equipped with storage or display.

6. References

[1] Accelerated technology Inc., “Nucleus RTOS -

Nucleus Plus”, available at
http://www.acceleratedtechnology.com/embedded/plu
s.php, May 2004.

[2] ARM Co. Ltd., ARM Developer Suite, available at
http://www.arm.com/products /DevTools/ADS.html,
May 2004.

[3] D. P. Bovet and M. Cesati, “Understanding the Linux
Kernel (2nd Edition),” O'Reilly, Dec. 2002.

[4] L. Deller and G. Heiser, “Linking Programs in a Single
Address Space,” In Proceedings of 3rd Symposium
on Operating Systems Design and Implementation,
USENIX, pp. 283-294, Feb. 1999.

[5] A. Dunkels, “Design and Implementation of the LWIP
TCP/IP Stack,” Technical Report, Feb. 2001.

[6] A. Dunkels, “Full TCP/IP for 8-Bit Architectures,” In
Proceedings of the first international conference on
mobile applications, systems and services, pp. 85-98,
May 2003.

[7] A. Dunkels, “lwIP – a lightweight TCP/IP stack,”
available at http://www.sics.se/~adam/lwip/, May
2004.

[8] Finite State Machine Labs Inc., RTLinux RTOS,
available at http://www.rtlinux.org/, May 2004.

[9] S. B. Furber, ARM System-on-Chip Architecture (2nd
Edition), Addison-Wesley, Aug. 2000.

[10] J. J. Labrosse, MicroC/OS II: The Real Time Kernel,
CMP Books, June 2002.

[11] Lynuxworks Inc., LynxOS homepage, available at
http://www.lynuxworks.com/rtos/lynxos.php3, May
2004.

[12] Metrowerks Inc., “Linux Solutions”, available at
http://www.metrowerks.com/MW/Develop/Embedde
d/Linux/default.htm, May 2004.

[13] Microsoft Inc., Windows CE homepage, available at
http://www.microsoft.com/ embedded/, May 2004.

[14] Mindcraft Inc., “Webstone: The Benchmark for Web
Servers”, available at http://www.mindcraft.com/
benchmarks/webstone/, May 2004.

[15] MontaVista Software Inc., “MontaVista Linux”,
available at http://www.mvista.com/, May 2004.

[16] QNX Software System Inc., “QNX Neutrino RTOS”,
available at http://www.qnx.com/download/
download/8483/QNX_Neutrino_RTOS_Brochure.pdf,
May 2004.

[17] Real Time Linux Foundation Inc., Real Time Linux
Foundation homepage, available at
http://www.realtimelinux foundation.org/, May 2004.

[18] Redhat Inc., “eCos RTOS Reference Manual,”
available at http://ecos. sourceware.org/docs-
latest/ref/ecos-ref.html, Apr. 2004.

[19] Samsung Electronics Co. Ltd., “User’s Manual Rev.
1.0 for S3C4510B,” available at
http://www.samsung.com/Products/Semiconductor/00
20SystemLSI/Networks/PersonalNTASSP/Communic
ationProcessor/S3C4510B/ums3c4510b_rev1.pdf, Oct.
2001.

[20] D. Seal, “ARM Architecture Reference Manual (2nd
Edition),“ Addison-Wesley, Dec. 2001.

[21] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority
inheritance protocols: An approach to real-time
synchronization,” In IEEE Transactions on
Computers, Vol. 39, No. 9, pp. 1175-1185, Sep. 1990.

[22] Windriver Inc, VxWorks homepage, available at
http://www.windriver.com/products/device_technolog
ies/os/vxworks5/, May 2004.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1296

