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Abstract 

Real-time Systems are being increasingly used in 

several applications which are time critical. Tasks 

corresponding to these applications have deadlines to 

be met. Fault-tolerance is an important requirement 

of such systems, due to the catastrophic consequences 

of not tolerating faults. In this paper, we propose 

density first with minimum non-overlap scheduling 

algorithm (DNA), which schedule real-time tasks 

dynamically with primary/backup (PB) scheme on 

heterogeneous multiprocessor. In DNA we define a 

heuristic function density to prioritize tasks. Besides, 

we also propose minimum non-overlap (MNO) 

mechanism for backup scheduling. According to our 

simulations, DNA can achieve higher guarantee ratio 

in any environment compared with related methods. 

 

1 Introduction 

Real-time systems are defined as those systems in 

which its correctness depends not only on the logical 

result of computation, but also on the time at which 

the results are produced [1-3]. It can be broadly 

classified into three categories [4]. Among them the 

hard real-time system is strictest, and in this paper we 

will focus on it. 

Due to the critical nature of tasks in a hard 

real-time system, fault-tolerance becomes an 

important issue [1-2]. In multiprocessor systems, 

fault-tolerance can be provided by scheduling 

multiple versions of tasks on different processors 

[5-6]. Among different schemes for fault-tolerant 

scheduling, we choose the primary/backup (PB) 

scheme which is the most popular one. 

Some effective scheduling algorithms used for 

real-time multiprocessor system have been proposed 

[1-2]. Most of them are designed for homogeneous 

system, and we have enhanced them to heterogeneous 

multiprocessor [8]. In these algorithms, tasks with 

earlier deadlines will be given higher scheduling 

priorities. However, a task with smaller schedulable 

interval should be schedule early to decrease the 

reject ratio. Thus, in our density first with minimum 

non-overlap scheduling algorithm (DNA), tasks are 

prioritized with a new heuristic function density. 

Furthermore, we also propose minimum non-overlap 

(MNO) mechanism for backup scheduling, which can 

minimize the reserved time intervals for backups. 

Based on simulation results, DNA can achieve higher 

guarantee ratio in any environment compare with 

other related methods. 

The remainder of this paper is organized as 

follows. Section 2 describes the system model and 

related work. Design issues and principles of DNA 

are introduced in Section 3. In Section 4, some 

experimental results are given. Finally, we give some 

conclusions in Section 5. 

 

2 Fundamental Background 

2.1 System, Task, and Fault Models [1-2] 

The heterogeneous multiprocessor consists of m 

processors P1…Pm connected by a network. Every 

processor may fail due to hardware or software failure. 
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The faults are independent, and only occur in one 

processor at a time. 

Real-rime task scheduling algorithms usually 

assume that tasks are independent, because [8] have 

proven that precedence constraints can be actually 

removed. Thus, we simply assume tasks are aperiodic, 

independent, non-preemptive, and not parallelizable. 

Every task Ti has following attributes: ready time (ri), 

computation time on processor Pj (cij), and deadline 

(di). Each task Ti has primary (Pri) and backup (Bki) 

copies with identical attributes. Since tasks are not 

parallelizable, di – ri should be long enough to 

schedule both primary and backup copies of Ti. 

In dynamic multiprocessor scheduling, all tasks 

arrive at a central scheduler and execute on other 

processors. The scheduler runs in parallel with other 

processors, and periodically schedules newly arriving 

tasks with a small time quantum or as a task arrive. 

Simply, we assume the scheduler is fault free. 

2.2 Related Work 

Because PB scheme schedules two copies of a 

task on different processors, the entire schedulability 

is obviously decreased. Therefore, BB-overloading 

technique, proposed in [1], describes that Bki and Bkj 

scheduled on the same processor can be overlapped if 

Pri and Prj are scheduled on different processors. 

Backup deallocation reclaims resources reserved for 

backups when their corresponding primaries complete 

successfully, which is another technique to increase 

the entire schedulability [1]. 

Distance myopic algorithm (DMA) is a heuristic 

search algorithm that schedules real-time tasks on 

homogeneous multiprocessor with fault-tolerant [2]. 

It treats Pri and Bki of task Ti as separate tasks and 

constructs a task queue according to deadlines and 

variable distance. DMA contains two features doing 

scheduling. The first one is using a feasibility check 

window (with size K) to achieve look-ahead nature. 

The second one is to use an integrated heuristic 

function to select task. It will rearrange the sequence 

of tasks being scheduled, which can lead to select the 

most appropriate task. Moreover, DMA has the 

capability of backtracking. If the current schedule 

cannot be extended any more, it will deallocate the 

last scheduled task and try to schedule another one. 

In [7], we extend DMA to heterogeneous 

multiprocessor and propose heterogeneous distance 

myopic algorithm (HDMA). Besides, we also design 

fault-tolerant myopic algorithm (FTMA), which is 

modified from HDMA [7]. In FTMA, primaries and 

backups are ordered in separate task queues. In each 

scheduling step, the first primary or backup with 

smaller heuristic value will be moved into the 

feasibility check window. Compared with HDMA, 

FTMA can select more appropriate tasks to schedule 

every step. Thus, from simulation results, FTMA 

exactly outperforms HDMA in any environment. 

 

3 Density First with Minimum Non-overlap 

Scheduling Algorithm (DNA) 

In the first two subsections, we will introduce a 

new heuristic function density and the minimum 

non-overlap (MNO) mechanism respectively. The 

overall scheduling steps of our density first with 

minimum non-overlap scheduling algorithm (DNA) 

will be listed in Section 3.3. 

3.1 Density Heuristic Function 

As mentioned above, almost all previous methods 

use deadline to prioritize tasks. However, in order to 

decrease the reject ratio, a task with smaller 

schedulable interval seems much urgent to be 

schedule first. We define a density heuristic function, 

which gives higher priorities for urgent tasks. 

Definition 3.1 For a task Ti, the latest finish time of 

primary (LFP) is defined as 

         LFP (Ti) = di – min {cij}            (1) 

Definition 3.2 For a task Ti, ESTj (Pri) indicates the 

earliest start time of its primary on processor Pj. 

ESTj (Pri) = max {ri, avail (j)}, where avail (j) is 

the time that Pj is available to execute Pri    (2) 
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Definition 3.3 For a task Ti, the earliest finish time of 

primary (EFP) is defined as 

        EFT (Ti) = min {ESTj (Pri) + cij}      (3) 

We assume that Bki should be started after Pri 

finishes, hence, the earliest start time of backup (ESB) 

is defined as     ESB (Ti) = EFP (Ti)          (4) 

Definition 3.4 For a task Ti, availP (Pri) contains all 

processors that can execute Pri between ri and LFP 

(Ti) without overlapping with scheduled primaries 

and backups. 

Definition 3.5 For a task Ti, availP (Bki) contains all 

processors that can execute Bki between ESB (Ti) and 

di without overlapping with scheduled backups. 

Definition 3.6 For a processor Pj, prslotij and bkslotij 

are lengths of time interval on it which can 

successfully execute Pri and Bki respectively. 

Definition 3.7 For a task Ti, Pr_m (Ti) and Bk_m (Ti) 

indicate the average computation time of Pri and Bki 

on availP (Pri) and availP (Bki) respectively. 

)()(
)(

i
PravailPj

iji PravailPcTPr_m
i

∑
∈

=   (5) 

)()(
)(

i
kBavailPj
iji kBavailPcTBk_m

i

∑
∈

=   (6) 

Definition 3.8 For a task Ti, we define its density 

heuristic function as follows: 
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For example, Figure 1 and Table l contains a 

partial schedule and attributes of task T9 to T11. Table 

2 lists all variables defined above of T9 to T11. 

3.2 Minimum Non-overlap (MNO) Mechanism 

In PB scheme, both primary and backup must be 

scheduled before deadline to tolerant processor failure. 

However, the time intervals reserved for backups are 

redundant if their primaries finish successfully. Thus, 

minimizing processor time occupied by backups is an 

issue for increasing schedulability. 

In other algorithms, backup usually be scheduled 

ALAP or overlapped with other scheduled backups 

(primaries) as much as possible. Because computation 

times of a task on heterogeneous processors are 

different, maximizing the overlapped time intervals 

may still occupy longer non-overlapped intervals. 

Therefore, we propose minimum non-overlap (MNO) 

mechanism for backup scheduling, which minimizes 

non-overlap time intervals to reserve much time for 

unscheduled tasks. For example, from Table 2, we 

select T10 to schedule because it has the maximum 

density. After scheduling Pr10 to P1 in time interval 

Pr6 
Bk5 Bk8 

Pr5 Bk7 Bk6 

Pr4 

Pr7 Pr8 Bk4 

10 15 20 25 30 35 40 45 50 

P1 

P2 

10 15 20 25 30 35 40 45 50 

P3 

P4 

10 15 20 25 30 35 40 45 50 

10 15 20 25 30 35 40 45 50 

 T9 T10 T11 
ri 10 10 10 
di 45 50 37 
ci1 5 15 5 
ci2 11 14 7 
ci3 15 11 5 
ci4 10 10 8 

Figure 1. The partial schedule. 

Table 1. Attributes of T9 to T11. 

 LFP ESB availP (Pri) availP (Bki) Pr_m Bk_m ∑ prslot ∑ bkslot density 
T9 40 26 P1, P2 P1, P2, P3 8 10.33 28 55 0.22 
T10 40 36 P1, P3 P2, P3, P4 13 11.67 29 38 0.37 
T11 32 15 P1, P2, P3, P4 P1, P2, P3, P4 6.25 6.25 36 54 0.14 

Table 2. Density calculation for T9 to T11 in Table 1. 
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(21, 36), Bk10 can be scheduled to P2 in (36, 50), or to 

P3 in (36, 47), or to P4 in (40, 50). Lengths of 

non-overlap time intervals on P2 to P4 are 7, 11, and 3 

respectively. Hence, Bk10 will be scheduled to P4. 

3.3 DNA Algorithm 

After introducing heuristic function density and 

MNO mechanism, Figure 2 contains the scheduling 

steps of our DNA algorithm. Different from three 

methods mentioned in Section 2.2, DNA schedules 

both copies of a task simultaneously. This feature 

makes DNA more efficient, because it avoids the 

reconstructing of task queues, the checking of strong 

feasibility, and backtracking. Notices that either 

primary or backup of a task cannot be successfully 

scheduled, the task should be rejected. 

The complexity of DNA is O (n2), where n is the 

number of tasks in the task queue. Since our central 

scheduler schedules newly arriving tasks periodically 

with a small time quantum or as a task arrive, we 

believe that n shall not be very large. 

 

4 Performance Studies 

4.1 Simulation Environment 

We construct a dynamic simulation environment 

to evaluate DNA. It contains two parts named task 

generator and scheduler, and we describe them in 

detail in the following. 

The task generator generates a set of real-time 

tasks in the non-decreasing order of ready times. 

Table 3 lists parameters used in the task generator, 

which can generate task set with any characteristic. 

The computation times of a task are chosen uniformly 

between (MIN_C, MIN_C + (MAX_C – MIN_C) × h), 

where h is the heterogeneity of computation times of 

a task. The inter-arrival times between tasks is 

exponentially distributed with mean (MIN_C + 

MAX_C) / 2λP [2]. We also simulate bursts of tasks, 

which the mean of inter-arrival times becomes 

MIN_C / 10λP. In order to make sure that both copies 

can be successfully scheduled, the deadline of task Ti 

is chosen uniformly between (ri + max cij + second 

max cij, ri + R × max cij). 

We construct a discrete-event dynamic scheduler, 

which simulates events including task arrivals, task 

starts and completions, start of scheduling, backup 

deallocations, and occurrences of fault. The failure 

may be due to hardware or software. A software fault 

terminates the task that causes the fault immediately, 

and the hardware fault caused by processor failure 

may be permanent or transient. The failed processor 

with permanent fault will never be available, and will 

be available after MAX_Recovery if the fault is 

transient. Related parameters and probabilities for 

failure events are listed in Table 4. 

4.2 Experimental Results 

In this subsection, we evaluate performances of 

DNA, HDMA, and FTMA. The total number of tasks 

is 20,000, and 20 task sets are generated for each set 

of parameters. Because HDMA and FTMA require 

additional variables K and distance, we evaluate them 

with various K and distance combinations and select 

the best result. As for the objective, we use the 

guarantee ratio (GR) defined below that means the 

percentage of tasks whose deadlines are met [9]. 

%100
       

      
×=

systemtheinarrivedtasksofnumbertotal
metaredeadlineswhosetasksofnumberGR  (8) 

With fixed probability of primary fails (FaultP 

=0.2), Figures 3~5 show results of various task arrival 

rate, laxity, and number of processors, respectively. 

Figure 2. The scheduling steps of DNA. 

1. Calculate the density heuristic values for all 
tasks initially 

2. (a) Select Ti with the maximum density 
heuristic value 

 (b) Schedule Pri by EFT 
 (c) if (Pri is scheduled successfully) 
   Schedule Bki by MNO mechanism 
   if (Bki is scheduled successfully) 
     Modify heuristic values of tasks 
   else Deallocate Pri and reject Ti 
  else Reject Ti 
3. Repeat Step 2 until all tasks are scheduled 
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These results clearly indicate that DNA outperforms 

HDMA and FTMA, which means using the density 

heuristic function can select more appropriate tasks to 

schedule at each scheduling step. Meanwhile, the GR 

is higher with lower λ, larger R, and larger P. The 

reason of lower λ and larger R seems trivially. As for 

larger P, using MNO mechanism will schedule 

backups as tight as possible, so more time intervals 

can be reserved for primaries when P is larger. 

In Figures 6~8, the probability of primary fails is 

varied with parameters λ, R, and P. While the fault 

probability increases, more backups are active to be 

executed. So, less time intervals reserved for backups 

can be reutilized, which decreases the entire GR. In 

these results, DNA still has higher GR than that of 

FTMA in any simulation environment. That is to say, 

our DNA is not only an efficient algorithm, but also 

quite effective compared with related methods. 

 

5 Concluding Remarks 

In this paper, we propose a fault-tolerant dynamic 

task scheduling algorithm DNA for real-time systems 

on heterogeneous multiprocessor. In DNA we design 

density heuristic function and MNO mechanism, 

which are used for task prioritizing and backup 

scheduling. According to our simulation results, DNA 

achieves higher guarantee ratio than other related 

methods in any simulation environment. Besides, it is 

quite efficient, which is appropriate to be used in 

real-time systems. 

 

Reference 

[1] S. Ghosh, R. Melhem, and D. Mosse, “Fault- 

tolerance Through Scheduling of Aperiodic Tasks 

in Hard Real-time Multiprocessor Systems”, 

IEEE Trans. on Parallel and Distributed Systems, 

Vol. 8, No. 3, pp. 272-284, March 1997. 

[2] G. Manimaran and C. S. M. Murthy, “A Fault- 

tolerant Dynamic Scheduling Algorithm for Mul- 

tiprocessor Real-time Systems and Its Analysis”, 

IEEE Trans. on Parallel and Distributed Systems, 

Vol. 9, No. 11, pp. 1137-1152, Nov. 1998. 

[3] K. Ramamritham and J. A. Stankovic, 

“Scheduling Algorithms and Operating Systems 

Support for Real-time Systems”, Proc. of IEEE, 

Vol. 82, No. 1, pp. 55-67, Jan. 1994. 

[4] K. G. Shin and P. Ramanathan, “Real-time 

Computing: A New Discipline of Computer 

Science and Engineering”, Proc. of IEEE, Vol. 82, 

No. 1, pp. 6-24, Jan. 1994. 

[5] A. L. Liestman and R. H. Campbell, “A 

Fault-tolerant Scheduling Problem”, IEEE Trans. 

on Software Engineering, Vol. 12, No. 11, pp. 

1089-1095, Nov. 1988. 

[6] Y. Oh and S. Son, “Multiprocessor Support for 

Real-time Fault-tolerant Scheduling”, Proc. of 

parameter explain range 
MIN_C min. computation time 10 
MAX_C max. computation time 80 

λ task arrival rate (0.3, 0.9) 
R laxity (2, 7) 
P number of processors (3, 10) 

BurstP probability of a burst λ / 100 

MIN_Burst 
min. number of tasks for a 
burst 

10 

MAX_Burst 
max. number of tasks for a 
burst 

30 

Table 3. Parameters for task generator. 

parameter explain range 

FaultP 
probability that a primary 
fails 

(0, 0.5) 

Soft_FP 
probability that a primary 
fails due to software fault 

0.2 

Hard_FP 
probability that a primary 
fails due to hardware fault 

0.8 

PermHard_FP 
probability that a hard- 
ware fault is permanent 

10-6 

MAX_Recovery 
max. recovery time after a 
transient hardware fault 

50 

Table 4. Parameters for fault probability. 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1378



 

 

IEEE Workshop Architectural Aspects of 

Real-time Systems, pp. 76-80, Dec. 1991. 

[7] Y. H. Lee and C. Chen, “Effective Fault-tolerant 

Scheduling Algorithm for Real-time Tasks on 

Heterogeneous Systems”, Proc. of National 

Computer Symposium, Dec. 2003. 

[8] J. W. S. Liu, W. K. Shih, K. J. Lin, R. Bettati, and 

J. Y. Chung, “Imprecise Computations”, Proc. of 

IEEE, Vol. 82, No. 1, pp. 83-94, Jan. 1994. 

[9] K. Ramamritham, J. A. Stankovic, and P. -F. 

Shiah, “Efficient Scheduling Algorithms for 

Real-time Multiprocessor Systems”, IEEE Trans. 

on Parallel and Distributed Systems, Vol. 1, No. 

2, pp. 184-194, Apr. 1990. 

 

60%

65%

70%

75%

80%

85%

90%

95%

100%

0.30.350.40.450.50.550.60.650.70.750.80.850.9
Task arrival rate (λ)

G
ua

ra
nt

ee
 ra

tio

DNA
FTMA
HDNA

70%

75%

80%

85%

90%

2 3 4 5 6 7 8 9 10
Laxity (R)

G
u

ar
an

te
e 

ra
tio

DNA
FTMA
HDMA

55%

60%

65%

70%

75%

80%

85%

90%

95%

3 4 5 6 7 8 9 10
Number of Processors (P)

G
ua

ra
nt

ee
 ra

tio

DNA
FTMA
HDMA

Figure 3. Effect of task load (R = 3, P = 8). Figure 4. Effect of laxity (λ = 0.7, P = 8). 
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Figure 7. Effect of FaultP with various R (λ = 0.7, P = 8). Figure 8. Effect of FaultP with various P (λ = 0.7, R = 3). 
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