
A Fault-tolerant Dynamic Task Scheduling Algorithm for Real-time Systems on
Heterogeneous Multiprocessor

Ming-Dien Chang, Yi-Hsuan Lee, Wen-Pin Liu, and Cheng Chen

Department of Computer Science and Information Engineering
1001 Ta Hsueh Road, Hsinchu, Taiwan, 30050, Republic of China

Tel: (8863) 5712121 EXT: 54734, Fax: (8863) 5724176
E-mail: {mdchang, yslee, wpliu, cchen}@csie.nctu.edu.tw

Abstract

Real-time Systems are being increasingly used in

several applications which are time critical. Tasks

corresponding to these applications have deadlines to

be met. Fault-tolerance is an important requirement

of such systems, due to the catastrophic consequences

of not tolerating faults. In this paper, we propose

density first with minimum non-overlap scheduling

algorithm (DNA), which schedule real-time tasks

dynamically with primary/backup (PB) scheme on

heterogeneous multiprocessor. In DNA we define a

heuristic function density to prioritize tasks. Besides,

we also propose minimum non-overlap (MNO)

mechanism for backup scheduling. According to our

simulations, DNA can achieve higher guarantee ratio

in any environment compared with related methods.

1 Introduction

Real-time systems are defined as those systems in

which its correctness depends not only on the logical

result of computation, but also on the time at which

the results are produced [1-3]. It can be broadly

classified into three categories [4]. Among them the

hard real-time system is strictest, and in this paper we

will focus on it.

Due to the critical nature of tasks in a hard

real-time system, fault-tolerance becomes an

important issue [1-2]. In multiprocessor systems,

fault-tolerance can be provided by scheduling

multiple versions of tasks on different processors

[5-6]. Among different schemes for fault-tolerant

scheduling, we choose the primary/backup (PB)

scheme which is the most popular one.

Some effective scheduling algorithms used for

real-time multiprocessor system have been proposed

[1-2]. Most of them are designed for homogeneous

system, and we have enhanced them to heterogeneous

multiprocessor [8]. In these algorithms, tasks with

earlier deadlines will be given higher scheduling

priorities. However, a task with smaller schedulable

interval should be schedule early to decrease the

reject ratio. Thus, in our density first with minimum

non-overlap scheduling algorithm (DNA), tasks are

prioritized with a new heuristic function density.

Furthermore, we also propose minimum non-overlap

(MNO) mechanism for backup scheduling, which can

minimize the reserved time intervals for backups.

Based on simulation results, DNA can achieve higher

guarantee ratio in any environment compare with

other related methods.

The remainder of this paper is organized as

follows. Section 2 describes the system model and

related work. Design issues and principles of DNA

are introduced in Section 3. In Section 4, some

experimental results are given. Finally, we give some

conclusions in Section 5.

2 Fundamental Background

2.1 System, Task, and Fault Models [1-2]

The heterogeneous multiprocessor consists of m

processors P1…Pm connected by a network. Every

processor may fail due to hardware or software failure.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1374

mailto:@csie.nctu.edu.tw

The faults are independent, and only occur in one

processor at a time.

Real-rime task scheduling algorithms usually

assume that tasks are independent, because [8] have

proven that precedence constraints can be actually

removed. Thus, we simply assume tasks are aperiodic,

independent, non-preemptive, and not parallelizable.

Every task Ti has following attributes: ready time (ri),

computation time on processor Pj (cij), and deadline

(di). Each task Ti has primary (Pri) and backup (Bki)

copies with identical attributes. Since tasks are not

parallelizable, di – ri should be long enough to

schedule both primary and backup copies of Ti.

In dynamic multiprocessor scheduling, all tasks

arrive at a central scheduler and execute on other

processors. The scheduler runs in parallel with other

processors, and periodically schedules newly arriving

tasks with a small time quantum or as a task arrive.

Simply, we assume the scheduler is fault free.

2.2 Related Work

Because PB scheme schedules two copies of a

task on different processors, the entire schedulability

is obviously decreased. Therefore, BB-overloading

technique, proposed in [1], describes that Bki and Bkj

scheduled on the same processor can be overlapped if

Pri and Prj are scheduled on different processors.

Backup deallocation reclaims resources reserved for

backups when their corresponding primaries complete

successfully, which is another technique to increase

the entire schedulability [1].

Distance myopic algorithm (DMA) is a heuristic

search algorithm that schedules real-time tasks on

homogeneous multiprocessor with fault-tolerant [2].

It treats Pri and Bki of task Ti as separate tasks and

constructs a task queue according to deadlines and

variable distance. DMA contains two features doing

scheduling. The first one is using a feasibility check

window (with size K) to achieve look-ahead nature.

The second one is to use an integrated heuristic

function to select task. It will rearrange the sequence

of tasks being scheduled, which can lead to select the

most appropriate task. Moreover, DMA has the

capability of backtracking. If the current schedule

cannot be extended any more, it will deallocate the

last scheduled task and try to schedule another one.

In [7], we extend DMA to heterogeneous

multiprocessor and propose heterogeneous distance

myopic algorithm (HDMA). Besides, we also design

fault-tolerant myopic algorithm (FTMA), which is

modified from HDMA [7]. In FTMA, primaries and

backups are ordered in separate task queues. In each

scheduling step, the first primary or backup with

smaller heuristic value will be moved into the

feasibility check window. Compared with HDMA,

FTMA can select more appropriate tasks to schedule

every step. Thus, from simulation results, FTMA

exactly outperforms HDMA in any environment.

3 Density First with Minimum Non-overlap

Scheduling Algorithm (DNA)

In the first two subsections, we will introduce a

new heuristic function density and the minimum

non-overlap (MNO) mechanism respectively. The

overall scheduling steps of our density first with

minimum non-overlap scheduling algorithm (DNA)

will be listed in Section 3.3.

3.1 Density Heuristic Function

As mentioned above, almost all previous methods

use deadline to prioritize tasks. However, in order to

decrease the reject ratio, a task with smaller

schedulable interval seems much urgent to be

schedule first. We define a density heuristic function,

which gives higher priorities for urgent tasks.

Definition 3.1 For a task Ti, the latest finish time of

primary (LFP) is defined as

 LFP (Ti) = di – min {cij} (1)

Definition 3.2 For a task Ti, ESTj (Pri) indicates the

earliest start time of its primary on processor Pj.

ESTj (Pri) = max {ri, avail (j)}, where avail (j) is

the time that Pj is available to execute Pri (2)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1375

Definition 3.3 For a task Ti, the earliest finish time of

primary (EFP) is defined as

 EFT (Ti) = min {ESTj (Pri) + cij} (3)

We assume that Bki should be started after Pri

finishes, hence, the earliest start time of backup (ESB)

is defined as ESB (Ti) = EFP (Ti) (4)

Definition 3.4 For a task Ti, availP (Pri) contains all

processors that can execute Pri between ri and LFP

(Ti) without overlapping with scheduled primaries

and backups.

Definition 3.5 For a task Ti, availP (Bki) contains all

processors that can execute Bki between ESB (Ti) and

di without overlapping with scheduled backups.

Definition 3.6 For a processor Pj, prslotij and bkslotij

are lengths of time interval on it which can

successfully execute Pri and Bki respectively.

Definition 3.7 For a task Ti, Pr_m (Ti) and Bk_m (Ti)

indicate the average computation time of Pri and Bki

on availP (Pri) and availP (Bki) respectively.

)()(
)(

i
PravailPj

iji PravailPcTPr_m
i

∑
∈

= (5)

)()(
)(

i
kBavailPj
iji kBavailPcTBk_m

i

∑
∈

= (6)

Definition 3.8 For a task Ti, we define its density

heuristic function as follows:

∑ ∑
∈ ∈

+
+

=

)()(

)(_)(_)(

i iPravailPj kBavailPj
ijij

i
i

Bkslotprslot
TmBkTimPrTdensity (7)

For example, Figure 1 and Table l contains a

partial schedule and attributes of task T9 to T11. Table

2 lists all variables defined above of T9 to T11.

3.2 Minimum Non-overlap (MNO) Mechanism

In PB scheme, both primary and backup must be

scheduled before deadline to tolerant processor failure.

However, the time intervals reserved for backups are

redundant if their primaries finish successfully. Thus,

minimizing processor time occupied by backups is an

issue for increasing schedulability.

In other algorithms, backup usually be scheduled

ALAP or overlapped with other scheduled backups

(primaries) as much as possible. Because computation

times of a task on heterogeneous processors are

different, maximizing the overlapped time intervals

may still occupy longer non-overlapped intervals.

Therefore, we propose minimum non-overlap (MNO)

mechanism for backup scheduling, which minimizes

non-overlap time intervals to reserve much time for

unscheduled tasks. For example, from Table 2, we

select T10 to schedule because it has the maximum

density. After scheduling Pr10 to P1 in time interval

Pr6
Bk5 Bk8

Pr5 Bk7 Bk6

Pr4

Pr7 Pr8 Bk4

10 15 20 25 30 35 40 45 50

P1

P2

10 15 20 25 30 35 40 45 50

P3

P4

10 15 20 25 30 35 40 45 50

10 15 20 25 30 35 40 45 50

 T9 T10 T11
ri 10 10 10
di 45 50 37
ci1 5 15 5
ci2 11 14 7
ci3 15 11 5
ci4 10 10 8

Figure 1. The partial schedule.

Table 1. Attributes of T9 to T11.

 LFP ESB availP (Pri) availP (Bki) Pr_m Bk_m ∑ prslot ∑ bkslot density
T9 40 26 P1, P2 P1, P2, P3 8 10.33 28 55 0.22
T10 40 36 P1, P3 P2, P3, P4 13 11.67 29 38 0.37
T11 32 15 P1, P2, P3, P4 P1, P2, P3, P4 6.25 6.25 36 54 0.14

Table 2. Density calculation for T9 to T11 in Table 1.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1376

(21, 36), Bk10 can be scheduled to P2 in (36, 50), or to

P3 in (36, 47), or to P4 in (40, 50). Lengths of

non-overlap time intervals on P2 to P4 are 7, 11, and 3

respectively. Hence, Bk10 will be scheduled to P4.

3.3 DNA Algorithm

After introducing heuristic function density and

MNO mechanism, Figure 2 contains the scheduling

steps of our DNA algorithm. Different from three

methods mentioned in Section 2.2, DNA schedules

both copies of a task simultaneously. This feature

makes DNA more efficient, because it avoids the

reconstructing of task queues, the checking of strong

feasibility, and backtracking. Notices that either

primary or backup of a task cannot be successfully

scheduled, the task should be rejected.

The complexity of DNA is O (n2), where n is the

number of tasks in the task queue. Since our central

scheduler schedules newly arriving tasks periodically

with a small time quantum or as a task arrive, we

believe that n shall not be very large.

4 Performance Studies

4.1 Simulation Environment

We construct a dynamic simulation environment

to evaluate DNA. It contains two parts named task

generator and scheduler, and we describe them in

detail in the following.

The task generator generates a set of real-time

tasks in the non-decreasing order of ready times.

Table 3 lists parameters used in the task generator,

which can generate task set with any characteristic.

The computation times of a task are chosen uniformly

between (MIN_C, MIN_C + (MAX_C – MIN_C) × h),

where h is the heterogeneity of computation times of

a task. The inter-arrival times between tasks is

exponentially distributed with mean (MIN_C +

MAX_C) / 2λP [2]. We also simulate bursts of tasks,

which the mean of inter-arrival times becomes

MIN_C / 10λP. In order to make sure that both copies

can be successfully scheduled, the deadline of task Ti

is chosen uniformly between (ri + max cij + second

max cij, ri + R × max cij).

We construct a discrete-event dynamic scheduler,

which simulates events including task arrivals, task

starts and completions, start of scheduling, backup

deallocations, and occurrences of fault. The failure

may be due to hardware or software. A software fault

terminates the task that causes the fault immediately,

and the hardware fault caused by processor failure

may be permanent or transient. The failed processor

with permanent fault will never be available, and will

be available after MAX_Recovery if the fault is

transient. Related parameters and probabilities for

failure events are listed in Table 4.

4.2 Experimental Results

In this subsection, we evaluate performances of

DNA, HDMA, and FTMA. The total number of tasks

is 20,000, and 20 task sets are generated for each set

of parameters. Because HDMA and FTMA require

additional variables K and distance, we evaluate them

with various K and distance combinations and select

the best result. As for the objective, we use the

guarantee ratio (GR) defined below that means the

percentage of tasks whose deadlines are met [9].

%100

×=

systemtheinarrivedtasksofnumbertotal
metaredeadlineswhosetasksofnumberGR (8)

With fixed probability of primary fails (FaultP

=0.2), Figures 3~5 show results of various task arrival

rate, laxity, and number of processors, respectively.

Figure 2. The scheduling steps of DNA.

1. Calculate the density heuristic values for all
tasks initially

2. (a) Select Ti with the maximum density
heuristic value

 (b) Schedule Pri by EFT
 (c) if (Pri is scheduled successfully)
 Schedule Bki by MNO mechanism
 if (Bki is scheduled successfully)
 Modify heuristic values of tasks
 else Deallocate Pri and reject Ti
 else Reject Ti
3. Repeat Step 2 until all tasks are scheduled

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1377

These results clearly indicate that DNA outperforms

HDMA and FTMA, which means using the density

heuristic function can select more appropriate tasks to

schedule at each scheduling step. Meanwhile, the GR

is higher with lower λ, larger R, and larger P. The

reason of lower λ and larger R seems trivially. As for

larger P, using MNO mechanism will schedule

backups as tight as possible, so more time intervals

can be reserved for primaries when P is larger.

In Figures 6~8, the probability of primary fails is

varied with parameters λ, R, and P. While the fault

probability increases, more backups are active to be

executed. So, less time intervals reserved for backups

can be reutilized, which decreases the entire GR. In

these results, DNA still has higher GR than that of

FTMA in any simulation environment. That is to say,

our DNA is not only an efficient algorithm, but also

quite effective compared with related methods.

5 Concluding Remarks

In this paper, we propose a fault-tolerant dynamic

task scheduling algorithm DNA for real-time systems

on heterogeneous multiprocessor. In DNA we design

density heuristic function and MNO mechanism,

which are used for task prioritizing and backup

scheduling. According to our simulation results, DNA

achieves higher guarantee ratio than other related

methods in any simulation environment. Besides, it is

quite efficient, which is appropriate to be used in

real-time systems.

Reference

[1] S. Ghosh, R. Melhem, and D. Mosse, “Fault-

tolerance Through Scheduling of Aperiodic Tasks

in Hard Real-time Multiprocessor Systems”,

IEEE Trans. on Parallel and Distributed Systems,

Vol. 8, No. 3, pp. 272-284, March 1997.

[2] G. Manimaran and C. S. M. Murthy, “A Fault-

tolerant Dynamic Scheduling Algorithm for Mul-

tiprocessor Real-time Systems and Its Analysis”,

IEEE Trans. on Parallel and Distributed Systems,

Vol. 9, No. 11, pp. 1137-1152, Nov. 1998.

[3] K. Ramamritham and J. A. Stankovic,

“Scheduling Algorithms and Operating Systems

Support for Real-time Systems”, Proc. of IEEE,

Vol. 82, No. 1, pp. 55-67, Jan. 1994.

[4] K. G. Shin and P. Ramanathan, “Real-time

Computing: A New Discipline of Computer

Science and Engineering”, Proc. of IEEE, Vol. 82,

No. 1, pp. 6-24, Jan. 1994.

[5] A. L. Liestman and R. H. Campbell, “A

Fault-tolerant Scheduling Problem”, IEEE Trans.

on Software Engineering, Vol. 12, No. 11, pp.

1089-1095, Nov. 1988.

[6] Y. Oh and S. Son, “Multiprocessor Support for

Real-time Fault-tolerant Scheduling”, Proc. of

parameter explain range
MIN_C min. computation time 10
MAX_C max. computation time 80

λ task arrival rate (0.3, 0.9)
R laxity (2, 7)
P number of processors (3, 10)

BurstP probability of a burst λ / 100

MIN_Burst
min. number of tasks for a
burst

10

MAX_Burst
max. number of tasks for a
burst

30

Table 3. Parameters for task generator.

parameter explain range

FaultP
probability that a primary
fails

(0, 0.5)

Soft_FP
probability that a primary
fails due to software fault

0.2

Hard_FP
probability that a primary
fails due to hardware fault

0.8

PermHard_FP
probability that a hard-
ware fault is permanent

10-6

MAX_Recovery
max. recovery time after a
transient hardware fault

50

Table 4. Parameters for fault probability.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1378

IEEE Workshop Architectural Aspects of

Real-time Systems, pp. 76-80, Dec. 1991.

[7] Y. H. Lee and C. Chen, “Effective Fault-tolerant

Scheduling Algorithm for Real-time Tasks on

Heterogeneous Systems”, Proc. of National

Computer Symposium, Dec. 2003.

[8] J. W. S. Liu, W. K. Shih, K. J. Lin, R. Bettati, and

J. Y. Chung, “Imprecise Computations”, Proc. of

IEEE, Vol. 82, No. 1, pp. 83-94, Jan. 1994.

[9] K. Ramamritham, J. A. Stankovic, and P. -F.

Shiah, “Efficient Scheduling Algorithms for

Real-time Multiprocessor Systems”, IEEE Trans.

on Parallel and Distributed Systems, Vol. 1, No.

2, pp. 184-194, Apr. 1990.

60%

65%

70%

75%

80%

85%

90%

95%

100%

0.30.350.40.450.50.550.60.650.70.750.80.850.9
Task arrival rate (λ)

G
ua

ra
nt

ee
 ra

tio

DNA
FTMA
HDNA

70%

75%

80%

85%

90%

2 3 4 5 6 7 8 9 10
Laxity (R)

G
u

ar
an

te
e

ra
tio

DNA
FTMA
HDMA

55%

60%

65%

70%

75%

80%

85%

90%

95%

3 4 5 6 7 8 9 10
Number of Processors (P)

G
ua

ra
nt

ee
 ra

tio

DNA
FTMA
HDMA

Figure 3. Effect of task load (R = 3, P = 8). Figure 4. Effect of laxity (λ = 0.7, P = 8).

70%

75%

80%

85%

90%

95%

100%

0 0.1 0.2 0.3 0.4 0.5
Primary Fault Probability (FaultP)

G
ua

ra
nt

ee
 ra

tio

DNA (λ= 0.4) FTMA (λ= 0.4)
DNA (λ= 0.6) FTMA (λ= 0.6)
DNA (λ= 0.8) FTMA (λ= 0.8)

Figure 5. Effect of number of processor (λ = 0.7, R = 8). Figure 6. Effect of FaultP with various λ (R = 3, P = 8).

75%

80%

85%

90%

0 0.1 0.2 0.3 0.4 0.5
Primary Fault Probability (FaultP)

G
ua

ra
nt

ee
 ra

tio

DNA (R = 2) FTMA (R = 2)
DNA (R = 6) FTMA (R = 6)
DNA (R = 10) FTMA (R = 10)

70%

75%

80%

85%

90%

95%

0 0.1 0.2 0.3 0.4 0.5
Primary Fault Probability (FaultP)

G
ua

ra
nt

ee
 ra

tio

DNA (P = 5) FTMA (P= 5)
DNA (P = 8) FTMA (P = 8)
DNA (P = 10) FTMA (P = 10)

Figure 7. Effect of FaultP with various R (λ = 0.7, P = 8). Figure 8. Effect of FaultP with various P (λ = 0.7, R = 3).

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1379

