
System Architecture Synthesis of Embedded System for Multimedia
Applications

Shiann-Rong Kuang, Kuo-Chin Huang, Ju-Kai Teng, and Jin-Lin Liu

Department of Computer Science Engineering
National Sun Yat-sen University

Kaohsiung, Taiwan, ROC

Abstract-This paper presents a tool to quickly
generate the system architecture of embedded
system for complex multimedia applications. Given
the system specifications and constraints of a
particular multimedia system, the tool not only
partitions and maps each computation task of the
multimedia application into a hardware/software
component, but also schedules and pipelines the
execution of these computation tasks. Because of
considering the execution time, area, and
communication time of each computation task
carefully, the proposed tool can quickly construct
the feasible system architecture with minimum area
for multimedia applications while meeting the real-
time requirement.

Keywords: Embedded System, Hardware/software
partitioning, Multimedia Applications.

1. Introduction

Due to the emergence of high-performance
digital consumer electronics, from video games to
set-top boxes, embedded computers are rapidly
growing in the computer market. An important tend
in embedded systems is the use of processors cores
together with application-specific integrated
circuits (ASICs) to meet application’s functional
and performance requirements. This tend is
especially obvious for those embedded multimedia
applications with complex functions and
computations, e.g. MP3, JPEG, MPEG, etc. To
achieve high-performance, low-cost, and flexible
implementations for these applications, most of
them are implemented by heterogeneous
architectures that consist of the embedded software
(SW) processor cores and application-specific
hardware (HW) circuits. The SW processors reduce
the cost and provide the flexibility of the system,
and the HW components perform the computation-
intensive tasks of the application quickly and
enhance the performance of the system.

However, the primary goal of embedded system
is usually meeting the performance need at a
minimum price, rather than achieving higher
performance. Although using many HW
components can speed up the running time of
multimedia applications, it has the disadvantages of
high cost, great depletion of capacity, and big
measure of area. Then the drawbacks make it can’t
apply to embedded system [1]. Therefore, it is
necessary to carefully decide which computation
task executed by SW component and which
computation task implemented by HW component
for the sake of keeping the balance between cost
and efficiency. Besides, it is also necessary to
specify the execution order of these components, so
as to speed up the period of system development.

Unfortunately, the process of HW/SW
partitioning and scheduling is a complex
optimization problem. Consequently, it is important
to develop an optimization tool that can
automatically partition and map the computing
tasks inside the multimedia applications to different
HW/SW components in embedded system, so that
the hardware cost can be minimized without
violating the system constraints. In recent years,
many literatures have proposed HW/SW
partitioning methods to rapidly establish the system
architecture of embedded system [1-6]. However,
most of them [2, 3] performed HW/SW partitioning
based on a fixed system architecture and
communication topology, and thus better system
architectures cannot be explored. Some of the
previous methods [6] didn’t schedule the execution
of computation tasks in pipeline such that they
cannot construct efficient system architecture for
multimedia applications. Other previous methods [4,
5] didn’t take the data transmission time between
HW and SW into consideration, so that the resulted
system architecture didn’t really satisfy the system
timing constraint. Moreover, these previous
methods just fulfilled the system constraints but
didn’t provide flexibility to meet the special

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1386

requirement of users. For example, users may hope
to assign a computation task to an available
intellectually property (IP) to reduce the design
time.

In this paper, we propose a HW/SW partitioning
and pipelined scheduling tool to build a system
architecture, which consists of SW processor cores,
HW components, and a feasible bus system, by the
specification of multimedia applications and
constraints. The proposed tool minimizes the
required area of the system architecture while
satisfying time constraint. The number of SW
processor cores and HW components in our system
architecture is variable and the bus is constructed
by the result of partitioning and scheduling. In
addition, the proposed tool can interact with users
and take the time of data transmission into account
such that the resulted system architecture can
conform to the real situation.

The remainder of this paper is organized as
follows. Section II shows the overview of the
proposed system architecture synthesizer and
interprets how to establish control flow graph (CFG)
by the system specification, and how to implement
the HW/SW estimator. Section III explains our
technique for HW/SW partitioning and pipelined
scheduling. Section IV applies our system
architecture synthesizer to some multimedia
applications and discusses the experimental results.
And finally we give a conclusion.

SUIF

Partition system Spec. and build CFG

Software estimation Hardware estimation

Calculate hardware proper value

Initial HW/SW partitioning

Pipelined scheduling

Update HW/SW partitioning

No

HW/SW
Partitioning
updated ?

Manual
assignment

by User

Yes

System architecture

Multimedia system Spec. System constraints

SUIF

Partition system Spec. and build CFG

Software estimation Hardware estimation

Calculate hardware proper value

Initial HW/SW partitioning

Pipelined scheduling

Update HW/SW partitioning

No

HW/SW
Partitioning
updated ?

Manual
assignment

by User

Yes

System architecture

Multimedia system Spec. System constraints

Fig. 1. Flowchart of our system architecture
synthesizer

2. Overview of the Proposed Synthesizer

Given a system specification and constraints of a
multimedia application, our system architecture
synthesizer uses iterative partitioning and pipelined
scheduling to obtain a system architecture, such that
the timing constraint is satisfied and the total area
of the system architecture is minimized.

The flowchart of the proposed system
architecture synthesizer is shown in Fig. 1. The
SUIF compiler [7], which developed by Stanford
University, is used in our synthesizer to parse and
check the system specification, exploit the
parallelism, and reduce redundant computing tasks
of system functions. The details of every procedure
of the flowchart are explained in the following
sections.

2.1. Control Flow Graph

Our system architecture synthesizer receives a
system specification that is an application program
written by high-level language, such as C, C++ etc.
After the system specification has passed through
SUIF, system architecture synthesizer analyzes the
data dependencies based on the program language
and then transfers the system specifications into the
intermediate representation named control flow
graph (CFG). An example of CFG is shown in Fig.
2. Nodes in CFG denote the functions of system
specification and the numerous computation tasks
that operate the function are included. Edges in
CFG denote the data dependencies between system
functions. Generally, each system function is a
subroutine of the system program. Our synthesizer
finds subroutines and parameters passed between
them to create the corresponding CFG. After
finishing the above process, the synthesizer must
estimate the cost of HW/SW implementation for
every node in CFG, so as to attain the information
of HW/SW implementation for functions in
multimedia system, e.g. execution time, area, etc.
The information will be necessary to HW/SW
partitioning.

C D

E

F

Node: System function
Arc: Control flow

A

B

C D

E

F

Node: System function
Arc: Control flow

A

B

Fig. 2. Control flow graph

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1387

2.2. Software estimator

The purpose of software estimation is to estimate
the execution time of each node in CFG when it is
implemented by SW processor code. Since our
synthesizer adopts ARM processor [9] as the
default processor, ARM Developer Suite (ADS)
v1.2 provided by ARM company is necessary to
software estimation. The main task of ADS is to
compile each subroutine in the node of CFG first,
and then run ARM Symbolic Debugger (armsd)
simulator to simulate the subroutine to obtain the
execution time on ARM processor in terms of clock
cycle number. The armsd simulator can run on
different OS such as Windows, Linux, Solaris, etc.
To accomplish the software estimation
automatically, we establish a script file to quickly
profile each subroutine in the node of CFG and
collect the generated information.

2.3. Hardware estimator

The purpose of hardware estimation is to
estimate the execution time and required area of
every node in CFG when it is implemented by
hardware components. To achieve the goal, the
hardware estimator must schedule the operations in
each node of CFG and bind them to available
function units by using high-level synthesis. The
Synopsis DesignWare library is adopted in our
hardware estimator to estimate the execution time
and area of needed functional units.

x = a + b;

y = c − d;

z = x * y;

y1 = b + d;

+ −

+*

dcba

y1z

x y

x = a + b;

y = c − d;

z = x * y;

y1 = b + d;

+ −

+**

dcba

y1z

x y

Fig. 3. Data flow graph

To efficiently analyze, schedule, and bind the

operations in each node of CFG, the subroutine is
transformed into a data flow graph (DFG) of
computation tasks. A DFG is shown in Fig. 3. In
DFG, nodes denote operations in subroutine and
edges denote the data dependencies. Sequentially,
we could schedule and bind the DFG to estimate the
execution time and required area. In order to take
the resource constraint into consideration and
obtain the estimation result quickly, we use the list-

scheduling algorithm to implement the hardware
estimator. List-scheduling algorithm takes some
ready nodes form the priority list and schedules
them under the resource constraints. It can schedule
the ready nodes when hardware resource is enough.
Priority list will sort the ready nodes by the priority
function. Accordingly, the priority function solves
the problem of share resource between operations.
When these ready operations conflict with the using
resources, the high priority operations will be
scheduled, and low priority operations will be
delayed to the next or later scheduled steps.

When the software and hardware estimations
have finished, the system architecture synthesizer
then iteratively performs HW/SW partitioning and
pipelined scheduling.

3. HW/SW Partitioning and Pipelined
Scheduling

HW/SW partitioning evaluates and maps each
system function to an application-specific HW
component or a SW processor core. The result of
partition is influenced by three factors: execute time
of HW/SW, area of HW/SW, and communication
time between HW and SW components. In terms of
three affected factors, we define and describe the
time factor, area factor, and communication factor
for each node v in CFG as follows.

Time factor T(v) indicates the suitability when
using hardware or software to implement the system
function of node v from viewpoint of time. The
lager T(v) means the execution time of node v
implemented by hardware is shorter than the one
implemented by a processor, and node v is more
proper implemented by hardware. In contrast,
implementing node v by a processor is better if T(v)
is smaller.

Area factor A(v) takes the correlation between
the hardware area of node v and the total hardware
area into consideration when using hardware to
implement system functions. Bigger A(v) means
that increased hardware area is less when node v
implemented by hardware. If hardware area
required to implement node v are bigger than
system area constraint, the A(v) is set to zero.

Communication factor C(v) means the ratio of
data transmission time when implementing node v
by using SW processor core or hardware
component. Accordingly, the data transmission time
of node v implemented by processor is longer than
the one implemented by hardware, C(v) is bigger
and node v is more proper to be implemented by
hardware. Otherwise, hardware implementation
needs more data transmission time than software
implementation, and node v is more proper to be
implemented by software.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1388

Every node v in CFG would have a hardware
proper value HP(v) = T(v)×A(v)×C(v). The bigger
the HP(v) is, the more proper the node v is
implemented by hardware. In order to keep time
balance between hardware and software, the nodes
in CFG are sequentially and decreasingly assigned
to hardware by the hardware proper value, and the
execution time of hardware implementation is
summed up when hardware area constraint (denoted
as Aconst) doesn’t be violated. If the execution time
of hardware implementation (denoted as TH) is
longer than the one of software implementation
(denoted as TS), the nodes in CFD are sequentially
and increasingly assigned to software by their
hardware proper values. The procedure is repeated
until all nodes in CFG are assigned to HW or SW
and the HW/SW partitioning is finished.

Fig. 4 shows the algorithm for obtaining an
initial HW/SW partitioning. Let V be the set of
nodes in CFG whose elements has been sorted in
descending order by node's hardware proper value,
and vi be the ith element of V. M[vj] in Fig. 4
records the partitioning result of node vj. M[vj]
could be HW or SW, and it denotes that vj is
assigned to hardware or software, respectively.
M[vj].area and M[vj].time denote the required area
and execution time when vj has been assigned to
HW or SW. The initial HW/SW partitioning is
probably adjusted by the result of the following
pipelined scheduling.

Algorithm: Initial HW/SW partitioning
Begin

For (every node in CFG)
 Calculate hardware proper value HP;
End For
Sort all nodes in descending order by node's HP;
N = the number of nodes in CFG;
k = N – 1; TH = TS = AH = 0; i = j =0;
While (i < N)
 If (TH ≤ TS and (AH+ M[vj].area) ≤ Aconst)
 M[vj] = HW;
 TH = TH + M[vj].time;
 AH = AH + M[vj].area;
 i = i + 1; j = j + 1;
 End If
 If (TS ≤ TH or (AH+M[vk].area) > Aconst)
 M[vk] = SW;
 TS = TS + M[vj].time;
 i = i + 1; k = k – 1;
 End If
End While
Current_HW_node = j – 1;

End

Fig. 4. Algorithm of initial HW/SW partitioning

After each node in CFG is assigned to hardware
or software, the CFG then is reconstructed by
inserting extra communication nodes and is
scheduled in pipeline to determine the execution
order of every node. When node is assigned to HW,

extra data transmission time between HW and SW
probably is required. Therefore, extra
communication nodes labeled with communication
time are added into CFG to ensure that pipelined
scheduling can really satisfy the timing constraint.
We perform the pipelined scheduling of
reconstructed CFG also based on the list-scheduling
algorithm. The main task of the pipelined
scheduling includes assigning every node v to a
pipeline stage and a time slot in pipelined stage, so
as to the all ancestors of node v could complete its
execution before node v in former or the same
pipeline stage. Besides, if node v is implemented by
software, it is necessary to make sure that the
processor to execute the task shouldn’t execute
other node during the time slot of node v. If node v
is implemented by hardware, it is necessary to make
sure that the other nodes that sharing the hardware
shouldn’t be executed during time slot of node v.
The algorithm to perform pipelined scheduling is
shown in Fig. 5.

Algorithm: Pipelined scheduling
Begin

ready_list[] <= the first node;
do
 Update ready_list[];

do
 If (node type is SW)
 Find an idle processor;
 If (all processor is busy)

 Pipelined scheduling fail; Exit;
 Else

 Assign node to processor, suitable time
interval

 and pipe stage;
 End If
 Else

 Assign hardware to time interval and pipe stage;
 End If

 Remove node from ready_list[];
 While (ready list isn't null)
While (any node isn’t scheduled)

End

Fig. 5. Algorithm of pipelined scheduling

When the pipelined scheduling is obtained
successfully, we can update the HW/SW
partitioning by reassigning the node
Current_HW_node in V to SW and performing
pipelined scheduling again. If feasible pipelined
scheduling can still be obtained, the hardware area
can be reduced and we can repeat the procedure by
reassigning the node Current_HW_node−1 to SW
and then performing pipelined scheduling until no
feasible pipelined scheduling can be found. Another
method to degrade the system cost is trying to
reduce the number of available processors. On the
other hand, when the pipelined scheduling cannot
be obtained successfully, we can try to reassign the
node specified by Current_HW_node+1 to HW and

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1389

perform pipelined scheduling again. The procedure
can be repeated until a feasible pipelined
scheduling is found or AH is larger than Aconst.

Finally, system architecture synthesizer will
output the HW/SW assignment, pipelined
scheduling, and system architecture. If the result
generated by automation can’t satisfy the
requirement of users, users can assign a system
function to hardware or software and do the
pipelined scheduling manually. The step can be
repeated until the most proper system architecture
is obtained.

4. Experimental Results

We use JPEG2000 encoding system to inspect
the ability of our system architecture synthesizer.
The main tasks of JPEG2000 encoding system
comprise wavelet transformation and EBCOT. We
assume that the encoding system adopted in a
digital camera can continuously capture pictures.
The system specification of JPEG2000 encoding
system is first split and then analyzed by our
synthesizer. The corresponding CFG is shown in
Fig. 6(a). So far as hardware estimation is
concerned, the csa adder and nbw multiplier of
0.35um technology are utilized to estimate in
hardware library. The execution time of wavelet
transformation and EBCOT implemented by
hardware is 0.39 sec and 0.56 sec respectively
through the hardware estimator. A 32-bit RISC
ARM920T processor is adopted for software
estimation. The result of software estimator
indicates that the time of executing wavelet
transformation is 0.52 sec, and the time of
executing EBCOT is 58.6 sec. The hardware proper
values of system functions are shown in Fig. 6(b).
Finally, our synthesizer uses these hardware proper
values to perform partitioning and pipelined
scheduling at each node. The comparison of system
architectures and times between the JPEG2000
systems implemented without and with pipelined
scheduling is shown in Fig. 7.

Except for JPEG2000 encoding system, we
adopt the MP3 (MPEG Audio Layer 3) decoding
system [8] and WaveVideo system [10] to further
test the capability of our synthesizer. Fig. 8 shows
the CFG of MP3 decoding system generated by our
synthesizer. The CFG contains 9 nodes, and the
result of initial HW/SW partitioning is shown in
Table 1. Under the time constraint of 12500 ns for
per frame, we first generate a feasible pipelined
scheduling manually by interacting with the
proposed synthesizer. The resulted pipelined
scheduling uses two processors and can decode a
frame per 11343 ns. Next, another pipelined
scheduling is automatically generated by our
synthesizer. The pipelined scheduling only uses one

processor and can decode a frame per 11893 ns.
Both of the pipelined scheduling results meet the
time constraint of 12500 ns, but the result generated
by our synthesizer automatically has lower cost of
system architecture.

For the WaveVideo example, the CFG generated
by our synthesizer contains 23 nodes (function
blocks). In order to meet the time constraint (30
frames/sec), there are 11 function blocks
implemented by hardware and 12 function blocks
executed by one processor running at 200 MHz.
The proposed synthesizer determines the system
architectures of these examples only in few seconds.
In the further, we will develop an exhaustive
approach to generate the optimal system
architecture and make a comparison between the
exhaustive approach and the current heuristic
approach.

5. Conclusion

This paper has proposed a system architecture
synthesizer to rapidly decide the system
architectures of embedded system for multimedia
applications. The proposed synthesizer minimized
the required area of the system architecture while
satisfying time constraint. Moreover, our
synthesizer can also interact with users and take the
time of data transmission into account such that the
resulted system architecture can conform to the real
situation. As a result, our synthesizer can
significantly reduce time and manpower for
deciding the system architecture of embedded
system for multimedia applications.

Acknowledgment

This work was supported in part by the National
Science Council, R.O.C., under Grant NSC-92-
2220-E-110-008.

References

[1] F. Balarin et al., Hardware-Software Co-Design of

Embedded Systems: A Polis Approach. Norwell, MA:
Kluwer, 1997.

[2] Asawaree Kalavade and P. A. Subrahmanyam,
“Hardware/Software Partitioning for Multifunction
Systems,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 17, No. 9,
Sep. 1998.

[3] Karam S. Chatha and Ranga Vemuri, “Hardware-
Software Partitioning and Pipelined Scheduling of
Transformative Application”, IEEE Trans. on VLSI
Systems, Vol. 10, No. 3, pp. 193-208, June 2002.

[4] F. Balarin, L. Lavagno, P. Murthy, and A.
Sangiovanni-Vincentelli, “Scheduling for embedded
real-time systems,” IEEE Design Test Comput., Jan.-
Mar. 1998.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1390

[5] S. Bakshi and D. D. Gajski, “Partitioning and
Pipelining for Performance - Constrained
Hardware/Software Systems,” IEEE Trans. on VLSI
Systems, Vol. 7, No. 4, pp. 419-432, Dec. 1999.

[6] Byoung-Woon Kim and Chong-Min Kyung,
“Exploiting Intellectual Properties With Imprecise
Design Costs for System-on-Chip Synthesis,” IEEE
Trans. on VLSI Systems, Vol. 10, No. 3, pp.240-252,
2002.

[7] Overview of the SUIF compiler, http://suif.stanford.edu

[8] ISO/IEC 11172-3. Information Technology - Coding
of Moving Pictures and Associated Audio for
Digitial Storage Media at up to about 1.5Mbit/s -
Part 3: Audio, 1993.

[9] http://www.arm.com
[10] G. Fankhauser, M. Dasen, N. Weiler, B. Plattner,

and B. Stiller, “WaveVideo - An Integrated
Approach to Adaptive Wireless Video,” ACM Monet,
Special Issue on Adaptive Mobile Networking and
Computing, Vol. 4, No. 4, pp. 255-271, 1999.

Wavelat
transform

EBCOT

Wavelat
transform

EBCOT

Wavelat
transform

EBCOT

input

output
(a)

JPEG2000 CFG

Wavelat
transform

EBCOT

Wavelat
transform

EBCOT

Wavelat
transform

EBCOT

input

output
(a)

JPEG2000 CFG

Fig. 6. (a) JPEG2000 CFG (b) Hardware proper
value and component type by partitioning

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Fig. 8. CFG of MP3 decoding system

(a) total time = 177.36 (sec)

(b) total time = 2.24 (sec)

Fig. 7. (a) before, and (b) after partitioning and

pipelined scheduling by our synthesizer

Table 1. Initial HW/SW partitioning of MP3
decoding system

Index Function name of node Type of
component

1 Read_head() SW

2 III_get_side_info() SW

3 III_get_scale_factors() SW

4 InvQ() SW

5 Reorder() SW

6 III_antialias() SW

7 III_hybrid() HW

8 III_modify_SubBandSynthesis() HW

9 Mp3_end_process() SW

Hardware

Software

Type

1.67EBCOT

0Wavelet transform

Hardware proper value

Hardware

Software

Type

1.67EBCOT

0Wavelet transform

Hardware proper value

 (b)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1391

