
3-Dimensional Shortest Path Searching and Chasing in the Volumes 
 

Gene Eu Jan1 Tong-Ying Juang1     Su Chien-Min2 Wan-Rone Liou2

1Department of Computer Science 
 National Taipei University, Taipei, Taiwan 

gejan@mail.ntpu.edu.tw   juang@mail.ntpu.edu.tw 
2Department of Electrical Engineering 

National Taiwan Ocean University, Keelung, Taiwan 
cmsu@mail.ntou.edu.tw   wrliou@asic3.ee.ntou.edu.tw

 
Abstract-This paper presents the 3D shortest path 
searching algorithms in the volumes with O(N) of 
time and memory space complexities based on the 
nuclear fission chain reactions scheme, where N is 
the number of voxels in the grid space. Fur- 
thermore, the proposed algorithm is extended 
to the 3D shortest path searching for multiple pairs 
based on the concept of the aircraft domain to avoid 
collision and chasing algorithm in the volumes 
with the time complexity of O(qN) and O(N2/a), 
respectively, where q is the number of aircraft 
and a is the relative speed ratio of chaser to 
target. The concept of these algorithms can be 
applied to GIS (Geographic Information Sys- 
tem), search and interception for aircrafts, 
and cruise missile interception system. 

 
1. Introduction 

 
In the recent years, the shortest path searching 

problem has been widely studied in the literatures. 
The shortest path means to find a path between a 
source (start) position and a destination (end, goal, 
target) position with the minimum distance or time 
(In this article, we prefer the time instead of distance 
since each aircraft might have different speed). There 
are two different approaches among all path- 
searching algorithms: graph (vector)-based and grid 
(raster)-based approaches. The graph-based 
approach consists of two phases. The first phase is 
associated with the construction of a graph 
representing relations between free spaces 
(non-obstacle nodes). Once the graph is obtained, in 
the second phase, the optimal path referred to a 
certain criterion (shortest path, minimum time, etc.) 
has to be found. One of the well-known graph search 
methods is Dijkstra’s algorithm in which the problem 
is obstacles dependent. Another approach, the 
grid-based approach that is obstacles independent, 
can be used to find an optimal path on the cell map 
or volume. In the earlier 1960’s, Lee [1] presented 
the shortest-route algorithm using 2D planar cells, 
that can be applied to VLSI and PCB design, maze 
games, and searching on raster map problem [2][3]. 
The key for the algorithm is widely accepted because 
the concept of the algorithm is simple and ease to 

implement. The computation of the algorithm only 
involves insertion and deletion from a linked list and 
the access for each cell, although the memory buffer 
may be large to store the required raster data. Since 
the technology of the semiconductor rapidly 
increases memory capacity, this problem is no longer 
to be emphasized. But, the result of Lee’s algorithm 
is confined to a rectilinear path, thus its applications 
is limited. To improve the above problem, the higher 
geometry maze routing scheme is introduced in 2D 
planar space [4].  

Recently, we are interested in the 3D shortest path 
problems in the volumes as well. By contrast, 2D 
raster is forming with pixel. The voxel represents the 
element of the volumes. The volume’s data structure 
can be divided into two classes: vector structure and 
volume structure. In vector structure, the shortest 
distance between two points is the Euclidean length 
of the path. In volume structure, the shortest path 
between two voxels has the least sum of distances 
from the source voxel to the destination voxel 
through the consecutive neighboring voxels. Earlier 
works on the shortest path-searching problem were 
centered on 2D image space. Following the 
advancement of learning, these researches spread in 
the volumes. Such as, Li et al. [6] presented a 
software system incorporates motion-planning 
algorithms in Robotics into the latest development of 
network-based virtual reality standards such as 
VRML 2.0. Li et al. [7] describe a planner capable of 
generating humanoid motions in 3D space on 
stair-like terrains by taking the human foot length 
and personal preference into consideration. The 3D 
shortest path algorithm in the volumes was presented 
using the nuclear fission chain reaction method with 
an extra data structure that has 26-directional 
expansion [5]. The algorithm was developed from an 
idea that stemmed from the process involving 
neutrons hitting neighboring atoms with each 
neighboring atom releasing new neutrons. The chain 
reaction spreads into the entire space until every 
atom has been split exactly once. This process is 
terminated when all of the atoms have released their 
neutrons. Our method proposed in this paper for the 
3D shortest path algorithm in the volumes with the 
time and memory space complexities of O(N). The 
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algorithm will be applied to search the 3D shortest 
path and collision avoidance for multiple pairs and 
3D real time chasing system. 

The rest of the paper is organized as follows. The 
proposed 3D shortest path algorithm in the volumes 
is introduced in section 2. The 3D shortest path 
algorithm and collision avoidance scheme for 
multiple pairs, 3D real time chasing system and their 
corresponding examples are illustrated in section 3. 
Finally, the conclusion of the study is presented in 
section 4. 
 
2. The 3D shortest path algorithm 
 

The technology of GIS has various applications in 
aviation and military, for example, the autopilot 
system [8] is applied to the aircrafts and vessels. In 
this paper, the proposed algorithm can be applied to 
not only PCB and VLSI designs to reduce the length 
of the path but also GIS application. In the 2D image 
space or the volumes, the proposed algorithm has a 
great advantage by simplifying the computations of 
the free space and obstacles to find the shortest path. 
Other implementations are path planning of traffic 
navigation, search and rescue for aircrafts and 
vessels, and interception in the GIS with the 
auxiliary of GPS. 

In the following subsections, the volumes’ data 
structure is first presented, the 3D shortest path 
algorithm in the volumes and its detailed method is 
described. 
 
2.1. The data structure and definitions 
 

Comparing with graph-based approach, grid- 
based approach has some advantages such as the data 
is easy to process and analysis [9]. In this paper, the 
proposed method is based on the grid-based 
approach to find the 3D shortest path. Using the 
grid-based approach, the arbitrary shape of obstacles 
in the volumes can be easily rasterized. The proposed 
searching scheme runs faster if the obstacles are 
fairly complicated in the volumes since the searching 
time for the non-obstacle space is reduced. The 
volumes data structure is constructed from the 
concept of the 2D pixel plane. In an I × J × K 
volumes, any voxel  has four parameters for  

kjiC ,,

 

 
(a) Distance = 1 (b) Distance = 2 (c) Distance = 3  
Figure 1. Illustration of neighboring voxels in the 

volumes. 

voxel storage, , ,  and , 
where

kjiO ,, kjiVis ,, kjiIL ,, kjiAT ,,

10 −≤≤ Ii , 10 −≤≤ Jj  and . 
Each voxel has at most 26 neighbors, and the 
distances of neighboring voxels are 1,

10 −≤≤ Kk

2 and 3 as 
shown in Figure 1(a), (b), and (c), respectively. The 
first parameter O (Obstacle) distinguishes whether a 
voxel is an obstacle, the Boolean value is TRUE, or 
in the free workspace where the value is FALSE. The 
second parameter Vis (Visited) distinguishes whether 
the voxel has visited all its neighbors or not and its 
initial Boolean value is FALSE. The third parameter 
IL distinguishes whether the voxel has been inserted 
into temporary list TL or not and its initial Boolean 
value is FALSE. The fourth parameter AT (Time of 
Arrival) stores the time needed to travel from the 
source voxel to the current voxel and its initial value 
is infinity. 
 
2.2. The 3D shortest path algorithm in the 

volumes 
 

The 3D shortest path algorithm in the volumes 
presented in this paper is a substantial improvement 
of Jan’s previous algorithm by reducing the time 
complexity to O(N) with a combination of the 
nuclear fission chain reaction method with an extra 
data structure [10]. The 3D shortest path algorithm in 
the volumes is introduced as follows. 

 
Algorithm 1: The 3D shortest path algorithm 
Step 1: Initialization 

For each voxel,  in an I × J × K volume, 

the initial =TRUE if voxel  is in the 
obstacle or FALSE if it is in the free workspace.  

=FALSE and =  for all voxels, 

kjiC ,,

kjiO ,, kjiC ,,

kjiVis ,, kjiAT ,, ∞

where 10 −≤≤ Ii , 10 −≤≤ Jj  and . 
The initial value of the index is 0. 

10 −≤≤ Kk

Step 1.1: Input the coordinates of the source voxel S, 
if =FALSE then update = 0 
otherwise return the error message “the source 
voxel that you spotted is in the obstacle”. 

kjiO ,, kjiAT ,,

Step 1.2: Input the coordinates of the destination 
voxel T, if = TRUE then return the error 
message “the destination voxel that you 
spotted is in the obstacle”. 

kjiO ,,

Step 1.3: Insert the source voxel S into the LLindex. 
Step 2: Update the values of ’ 

neighboring voxels . 
kjiAT ,, kjiC ,,

',',' kjiC
 Step 2.1: Remove the indices of the first voxel 

from the front end of the LLkjiC ,, index. 
 Step 2.2: For each voxel, , in the LL

kjiC ,, index, 

update the values of its neighboring 

voxels  and set  to TRUE. 
kjiAT ,,

',',' kjiC kjiVis ,,
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Step 2.2.1: 
   Case 1: 1''' =−+−+− kkjjii , set 
           1,,',',' += kjikji ATNewAT

   Case 2: 2''' =−+−+− kkjjii , set 

          2,,',',' += kjikji ATNewAT  

   Case 3: 3''' =−+−+− kkjjii , set 

          3,,',',' += kjikji ATNewAT  

  Step 2.2.2: If  then ',','',',' kjikji ATNewAT <

           ',','',',' kjikji NewATAT =

  Step 2.2.3: Insert the indices of  into the TL 

if is FALSE and then update to 

TRUE. (  is the insertion flag) 

',',' kjiC

',',' kjiIL ',',' kjiIL

',',' kjiIL
 Step 2.3: If LLindex is not empty, then repeat step 2.1 
 Step 2.4:  
  Step 2.4.1: Remove the indices of from TL. ',',' kjiC

         and insert it into ⎣ ⎦ 4mod,, kjiATLL . 
  Step 2.4.2: If TL is not empty, repeat step 2.4.1 
Step 3: Iterations. 
 Step 3.1: index=(index+1)mod 2
 Step 3.2: If LLindex is not empty, then repeat step 2. 
Step 4: Backtracking 
Step 4.1: If the value of the destination voxel 

is infinity, return the error message “there is 
no path between the source voxel and the 
destination voxel”. Otherwise, backtrack the 
shortest path from the destination voxel. 

kjiAT ,,

Step 4.2: Selecting of the 26 voxel-connected 

neighbors with the smallest value. 
',',' kjiC

kjiAT ,,

Step 4.3: Insert  into path list. ',',' kjiC

Step 4.4: Repeating the selection of  step by 
step until the source voxel is reached. 

',',' kjiC

END {The 3D shortest path algorithm in the 
volumes} 

 
2.3. Performance analysis and illustrative 
example  
 
The algorithm is applied to the volumes in which the 
complicated direction movement is simplified by the 
nuclear fission chain reaction scheme. To reduce the 
repeated computation in the search wave, one extra 
flag is needed to justify the search voxel’s status. 
The algorithm has the same time and space 
complexities of O(N), where N is the number of 
voxels in the volumes. One example is shown to 
demonstrate finding the 3D shortest path in the 
volumes. In this example, the volumes is divided into 
50×50×50 voxels. It is assumed that the red voxel 
(expressed by S) represents the source voxel with (x, 
y, z)=(1, 31, 1) and the green voxel (expressed by T) 
represents the destination voxel which coordinates is  

     
 (a) Front view            (b) Top view 
Figure 2. Illustration of a 50×50×50 volume. 

 
(0, 25, 27), the result of searching the shortest path is 
shown in Figures 2, where the russet, black and blue 
areas represent obstacles, passable areas in the 
volumes, and the bottom of the volumes, respectively,  
and the pink path indicates the obtained shortest path. 
This is convenient for us to inspect how the path 
avoids hitting the obstacles. 
 
3. Applications and analysis 
 

 The 3D shortest path and collision avoidance 
algorithm for multiple pairs and the 3D real time 
chasing algorithm with the time complexity of O(N) 
will be introduced as follows. In addition, the 
examples of these two algorithms are illustrated in 
this section. 

 
3.1. The 3D shortest path-searching for 

multiple pairs in the volumes 
 

The simple way to solve the 3D shortest path- 
searching problem for multiple pairs in the volumes 
is to search the shortest path for each pair separately 
based on the 3D shortest path algorithm in the 
volumes. However, in the same volumes, if multiple 
pairs exist simultaneously, it is possible collide each 
other. In past researches, Colley et al. [11] showed 
that computer simulation of marine traffic flow and 
collision avoidance. Davis et al. [12] presented the 
computer simulation results for multi-ship 
encounters. Coenen et al. [13] offered a combination 
of expert system and knowledge base, to prevent 
collision. The concept of ship domain in 2D plane 
can be extended to the concept of aircraft domain in 
the volumes, such that one can find the shortest paths 
without collision with each other and nearby 
obstacles, for multiple pairs. In general, two aircrafts 
will collide in the volume if two aircrafts are in the 
same space simultaneously. There are two ways to 
prevent collision: firstly, change course of aircraft. 
Secondly, change speed of aircraft. In 2D plane, 
vessels prevent collision according to the 
international regulations for collision-avoidance at 
sea. Every vessel shall at all time keep safe distance 
in sight of one another to avoid collision, where safe 
distance is defined by the concept of ship domain. 
Similarly, the 3D shortest path search with collision 
avoidance algorithm for multiple pairs in the 
volumes is based on the concept of aircraft domain to 
decide safe distance for each other. 
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3.1.1. The 3D shortest path and collision 
avoidance algorithm for multiple pairs.  
In this subsection, we apply the concepts of aircraft 
domain and space-marking method to this algorithm 
that is introduced as follows. 
 
Algorithm 2: The 3D shortest path and collision 

avoidance algorithm for multiple pairs 
Step 1: Obtain the shortest path for each pair. 
    For each pair Mk, the source voxel Sk and 

destination voxel Tk to the 3D shortest path 
algorithm in the volumes are indicated. The 
corresponding shortest path is obtained, where 

total number of pairs, respectively. ≤≤ k1
Step 2: The collision detection. 
 Simulate all of the paths with aircraft domain 

and mark their AD (aircraft domain) value in the 
volumes from time to time. 

Step 3: The collision avoidance scheme. 
 If any two pairs have the same AD value in the 

some voxels, the rule of international regulations 
for collision-avoidance at sea decides which pair 
needs to change course and mark this area as 
impassable zone for this pair. 

 Step 3.1: Recompute the path for this give-way pair. 
(It is noticed that the recomputed path is no 
longer the shortest path, it is an optimal 
path.) 

 Step 3.2: Simulate the new shortest path. 
 If the new shortest path collides with 

another pair, then erase the new shortest 
path and do the routing with dynamic 
aircraft domain. Otherwise return “The 
shortest paths are obtained”. 

END {The 3D shortest path and collision avoidance 
algorithm for multiple pairs} 

 
3.1.2. The example and performance analysis.  
The example of the 3D shortest path and collision 
avoidance algorithm for multiple pairs is illustrated 
in Figure 3. An example of 5-pairs is illustrated in 
Figure 3(a), where the red voxels (expressed by S1, 
S2, S3, S4, and S5) represent the source points and 
the green voxels (expressed by T1, T2, T3, T4, and 
T5) represent the destination points. The top view 
result of the proposed algorithm is shown in Figure 
3(b), where the pink paths represent the desired 
shortest paths for 5-pairs without collision each other 
and nearby obstacles. This algorithm is based on the  
 

    
  (a) Initiation             (b) Top view 
Figure 3. Illustration of the 3D shortest path and 

collision avoidance for multiple pairs 
in the volumes. 

3D shortest path algorithm in the volumes with the 
time complexity of O(N). The shortest path algo- 
rithm should be called q times for q-pairs in 
executing the shortest path and collision avoidance 
algorithm for multiple pairs, its time complexity thus 
is O(qN). 
 
3.2. Chasing system in the volumes 

 
The proposed algorithm is originally developed 

for finding optimal routes with collision detection 
and avoidance in ECDIS (Electronic Chart Display 
Information System) and DEM (Digital Electronic 
Maps). The result of searching for the single-pair 
shortest path and the time domain collision-free 
multiple-pairs path was quite satisfied [14]. In 
general, most of existing path planning algorithms 
use A* algorithm to search a given moving target. It  
can be divided into two classes: offline search such 
as A*, and real-time search such as Real-Time-A* 
(RTA*), Learning Real-Time-A* (LRTA*) and 
Dynamic A* (D*) [15]. Among them, some of the 
moving target search algorithms [16] adopt 
Manhattan distance along the grid as the initial 
heuristic value, which is similar to the 2-geometry 
maze router. The Manhattan distance represents the 
actual distance if there were no obstacles, but it 
becomes less accurate as the number of obstacles 
grows. However, our proposed method used cell map 
with the higher geometry maze router and time 
matching scheme to obtain the optimal (least time) 
path between a searcher and a given moving target 
[17]. A search and rescue for MIN-MAX and 
MIN-AVG methods was implemented, and a real 
time chasing technique was also presented. 

In this study, our proposed method is extended 
from 2D raster plane into the volumes. In the 
meanwhile, the directional changes of dynamic 
multiple moving targets are considered as well. 
Because of the 3D real time chasing algorithm is 
capable of intercepting the moving targets that the 
static one cannot. It means that the chasing will be 
very efficient if the chaser is able to detect the 
current position of the moving target. Thus, it is very 
practical to foresee the beforehand path of the target. 
The 3D real time chasing algorithm is introduced as 
follows. 
 
3.2.1. The 3D real time chasing algorithm.  
It is assumed that the chaser and target have different 
constant speeds, and the chaser should be faster than 
the target to catch up. This algorithm involves 
several steps. First of all, apply the rectilinear 
forecast that determined the moving target path 
between last position and current position. After that, 
next position can be foreseen. Secondly, search the 
optimal chasing path by the 3D shortest path 
algorithm in the volumes. Finally, the actual chasing 
path is determined by the relative speed ratio of 
chaser to target. 
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Algorithm 3: The 3D real time chasing algorithm 
Step 1: initialization 
 Step 1.1: Input the initial position of the target 

, w=0, z=0. T
kjiC )0(),0(),0(

 Step 1.2: Input the initial position of the chaser 
 S

kjiC )0(),0(),0(

 Step 1.3: Input the relative speed ratio of chaser to 
target, a. 

Step 2: Compute the time of arrival between the 
chaser and the remaining voxels.  

 Step 2.1: Compute the time of arrival between the 
chaser and the remaining voxels by the 3D 
shortest path algorithm in the volumes. In the 
meanwhile, obtain the present time of 
arrival  between target and chaser. )(

)(
zS

wTAT
Step 3: Foresee the movement of the target. 
 Step 3.1: Input next moving voxel of the target, 

, where w=w+1. T
wkwjwiC )(),(),(

 Step 3.2: Foresee the movements of the target 
linearly. 

  Step 3.2.1: , 
m=0, where m is the parameter of the 
foreseeing path of the target. 

T
wkwjwi

Foresee
kji CC )1(),1(),1()0(),0(),0( −−−=

  Step 3.2.2:  
   WHILE  )(

)()(),(),(
zS

wT
Foresee

mkmjmi ATAT <
Foresee

mkmjmi
Foresee

mkmjmi CC )(),(),()1(),1(),1( =+++  
T

wkwjwi
T

wkwjwi CC )1(),1(),1()(),(),( −−−−+  

     Set the according to the 

ratio of AT values of  and 

. 

Foresee
mkmjmiAT )1(),1(),1( +++

Foresee
kjiC )0(),0(),0(

Foresee
mkmjmiC )1(),1(),1( +++

     If the of  is TRUE, 
then BREAK. 

kjiO ,,
Foresee

mkmjmiC )1(),1(),1( +++

     Otherwise m=m+1. 
   END WHILE 
Step 4: Obtain the interception voxel and foresee the 

beforehand chasing path for chaser.  
 Step 4.1: Obtain the interception voxel. 
  FOR , m=0 TO the target’s end 

voxel of the foreseeing path. 

Foresee
mkmjmiC )(),(),(

  IF  )/( )(),(),()(),(),( aATAT Foresee
mkmjmi

S
mkmjmi =

  THEN  is the foreseeing 
interception voxel of the target. 

Foresee
mkmjmiC )(),(),(

 Step 4.2: Foresee the beforehand chasing path for 
chaser. 

 Starting from the foreseeing interception voxel 
of the target, step by step, searching the one of 
26 neighboring voxels with minimum time of 
arrival till the starting voxel of chaser is reached. 
Reversing the beforehand chasing path for 

chaser, , ,…, 

, . 

Beforehand
kjiC )0(),0(),0(

Beforehand
kjiC )1(),1(),1(

Beforehand
gkgjgiC )(),(),(

Beforehand
hkhjhiC )(),(),(

Step 5: Compute the chasing path for chaser. 
 g=0, where g is the parameter of the beforehand 
chasing path of chaser. 

 WHILE  T
wkwjwi

Beforehand
gkgjgi ATAT )(),(),()(),(),( <

    Beforehand
gkgjgi

S
zkzjzi CC )(),(),()1(),1(),1( =+++

   g=g+1, z=z+1 
 END WHILE 
Step 6: Decide whether the target is caught or not. 
 If the position of target is not the position of chaser 
then input next position of target, repeat steps 3 to 6, 
otherwise, the target is caught. 

END {The 3D real time chasing algorithm} 
 
3.2.2. Performance analysis and illustrative 
example.  

In this proposed chasing algorithm, the TSet-up is 
defined as the set up time initially for the volume’s 
data structure, TShortest is the running time of the 3D 
shortest path algorithm in the volumes, TForesee is the 
required time to foresee the movements of the target 
linearly, and TTimes is the number of times of chasing. 
Since TTimes depends on the relative speed ratio a and 
the different terrains, we only analyze the time 
complexity of chasing for just once. 

 

(1) ( )Chasing Times Set up Shortest ForeseeT T T T T−= × + +  

        ))()()(()/( NONONOaNO ++×≤  

         )/( 2 aNO=
 
Thus, this algorithm has the time complexity of 
O(N2/a). 
The illustrative example for the 3D real time chasing 
is shown in Figures 4(a) through 4(f). In the volume 
of 50×50×50 voxels, a chaser (expressed by S) 
intends to chase a moving target (expressed by T) 
with the assumed relative speed ratio of 1.5. The red 
and green voxels represent the chaser and the target, 
respectively, and their initial positions are shown in 
Figure 4(a). If the target initially moves toward north, 
the chaser will find an optimal path to catch the 
target according to its foreseeing movements as 
shown in Figure 4(b). The target changes direction to 
northwest once it senses that the chaser is moving 
toward itself as shown in Figure 4(c). The target 
changes direction to north again as the chaser is 
getting closer. The chaser changes the direction 
dynamically to north at once where the target may 
head accordingly as shown in Figure 4(d). 
Eventually, the target is caught by the chaser with 
the 3D real time chasing algorithm as shown in 
Figures 4(e) (front view) and 4(f) (top view).  
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    (a) Initiation        (b) Target moves toward 

north. 

    
(c)Target changes direc-   (d) Target changes direc- 

tion to northwest.         tion to north. 

    
(e) Target is caught by     (f) Target is caught by 

 chaser. (Front view)      chaser. (Top view) 
Figure 4. Illustration of chasing system 

in a 50×50×50 volume. 
  
4. Conclusion 
 

In this paper, Jan’s shortest path algorithm on 2D 
planar cells is extended to the volumes. The main 
achievements of these algorithms are to implement 
the 3D shortest path searching for multiple pairs 
based on the concept of the aircraft domain to avoid 
collision and real time chasing in the volumes.   

We believe that this work will inspire further 
studies on the shortest path searching and chasing in 
quadric surface. Furthermore, our proposed 
algorithm is implemented based on the assumption 
that the aircraft’s speed is constant, but it is 
impractical and the speed-varying system should be 
addressed in the future.  
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