
3-Dimensional Shortest Path Searching and Chasing in the Volumes

Gene Eu Jan1 Tong-Ying Juang1 Su Chien-Min2 Wan-Rone Liou2

1Department of Computer Science
 National Taipei University, Taipei, Taiwan

gejan@mail.ntpu.edu.tw juang@mail.ntpu.edu.tw
2Department of Electrical Engineering

National Taiwan Ocean University, Keelung, Taiwan
cmsu@mail.ntou.edu.tw wrliou@asic3.ee.ntou.edu.tw

Abstract-This paper presents the 3D shortest path
searching algorithms in the volumes with O(N) of
time and memory space complexities based on the
nuclear fission chain reactions scheme, where N is
the number of voxels in the grid space. Fur-
thermore, the proposed algorithm is extended
to the 3D shortest path searching for multiple pairs
based on the concept of the aircraft domain to avoid
collision and chasing algorithm in the volumes
with the time complexity of O(qN) and O(N2/a),
respectively, where q is the number of aircraft
and a is the relative speed ratio of chaser to
target. The concept of these algorithms can be
applied to GIS (Geographic Information Sys-
tem), search and interception for aircrafts,
and cruise missile interception system.

1. Introduction

In the recent years, the shortest path searching

problem has been widely studied in the literatures.
The shortest path means to find a path between a
source (start) position and a destination (end, goal,
target) position with the minimum distance or time
(In this article, we prefer the time instead of distance
since each aircraft might have different speed). There
are two different approaches among all path-
searching algorithms: graph (vector)-based and grid
(raster)-based approaches. The graph-based
approach consists of two phases. The first phase is
associated with the construction of a graph
representing relations between free spaces
(non-obstacle nodes). Once the graph is obtained, in
the second phase, the optimal path referred to a
certain criterion (shortest path, minimum time, etc.)
has to be found. One of the well-known graph search
methods is Dijkstra’s algorithm in which the problem
is obstacles dependent. Another approach, the
grid-based approach that is obstacles independent,
can be used to find an optimal path on the cell map
or volume. In the earlier 1960’s, Lee [1] presented
the shortest-route algorithm using 2D planar cells,
that can be applied to VLSI and PCB design, maze
games, and searching on raster map problem [2][3].
The key for the algorithm is widely accepted because
the concept of the algorithm is simple and ease to

implement. The computation of the algorithm only
involves insertion and deletion from a linked list and
the access for each cell, although the memory buffer
may be large to store the required raster data. Since
the technology of the semiconductor rapidly
increases memory capacity, this problem is no longer
to be emphasized. But, the result of Lee’s algorithm
is confined to a rectilinear path, thus its applications
is limited. To improve the above problem, the higher
geometry maze routing scheme is introduced in 2D
planar space [4].

Recently, we are interested in the 3D shortest path
problems in the volumes as well. By contrast, 2D
raster is forming with pixel. The voxel represents the
element of the volumes. The volume’s data structure
can be divided into two classes: vector structure and
volume structure. In vector structure, the shortest
distance between two points is the Euclidean length
of the path. In volume structure, the shortest path
between two voxels has the least sum of distances
from the source voxel to the destination voxel
through the consecutive neighboring voxels. Earlier
works on the shortest path-searching problem were
centered on 2D image space. Following the
advancement of learning, these researches spread in
the volumes. Such as, Li et al. [6] presented a
software system incorporates motion-planning
algorithms in Robotics into the latest development of
network-based virtual reality standards such as
VRML 2.0. Li et al. [7] describe a planner capable of
generating humanoid motions in 3D space on
stair-like terrains by taking the human foot length
and personal preference into consideration. The 3D
shortest path algorithm in the volumes was presented
using the nuclear fission chain reaction method with
an extra data structure that has 26-directional
expansion [5]. The algorithm was developed from an
idea that stemmed from the process involving
neutrons hitting neighboring atoms with each
neighboring atom releasing new neutrons. The chain
reaction spreads into the entire space until every
atom has been split exactly once. This process is
terminated when all of the atoms have released their
neutrons. Our method proposed in this paper for the
3D shortest path algorithm in the volumes with the
time and memory space complexities of O(N). The

 1 / 6

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1392

mailto:gejan@mail.ntpu.edu.tw
mailto:cmsu@mail.ntou.edu.tw

algorithm will be applied to search the 3D shortest
path and collision avoidance for multiple pairs and
3D real time chasing system.

The rest of the paper is organized as follows. The
proposed 3D shortest path algorithm in the volumes
is introduced in section 2. The 3D shortest path
algorithm and collision avoidance scheme for
multiple pairs, 3D real time chasing system and their
corresponding examples are illustrated in section 3.
Finally, the conclusion of the study is presented in
section 4.

2. The 3D shortest path algorithm

The technology of GIS has various applications in
aviation and military, for example, the autopilot
system [8] is applied to the aircrafts and vessels. In
this paper, the proposed algorithm can be applied to
not only PCB and VLSI designs to reduce the length
of the path but also GIS application. In the 2D image
space or the volumes, the proposed algorithm has a
great advantage by simplifying the computations of
the free space and obstacles to find the shortest path.
Other implementations are path planning of traffic
navigation, search and rescue for aircrafts and
vessels, and interception in the GIS with the
auxiliary of GPS.

In the following subsections, the volumes’ data
structure is first presented, the 3D shortest path
algorithm in the volumes and its detailed method is
described.

2.1. The data structure and definitions

Comparing with graph-based approach, grid-
based approach has some advantages such as the data
is easy to process and analysis [9]. In this paper, the
proposed method is based on the grid-based
approach to find the 3D shortest path. Using the
grid-based approach, the arbitrary shape of obstacles
in the volumes can be easily rasterized. The proposed
searching scheme runs faster if the obstacles are
fairly complicated in the volumes since the searching
time for the non-obstacle space is reduced. The
volumes data structure is constructed from the
concept of the 2D pixel plane. In an I × J × K
volumes, any voxel has four parameters for

kjiC ,,

(a) Distance = 1 (b) Distance = 2 (c) Distance = 3
Figure 1. Illustration of neighboring voxels in the

volumes.

voxel storage, , , and ,
where

kjiO ,, kjiVis ,, kjiIL ,, kjiAT ,,

10 −≤≤ Ii , 10 −≤≤ Jj and .
Each voxel has at most 26 neighbors, and the
distances of neighboring voxels are 1,

10 −≤≤ Kk

2 and 3 as
shown in Figure 1(a), (b), and (c), respectively. The
first parameter O (Obstacle) distinguishes whether a
voxel is an obstacle, the Boolean value is TRUE, or
in the free workspace where the value is FALSE. The
second parameter Vis (Visited) distinguishes whether
the voxel has visited all its neighbors or not and its
initial Boolean value is FALSE. The third parameter
IL distinguishes whether the voxel has been inserted
into temporary list TL or not and its initial Boolean
value is FALSE. The fourth parameter AT (Time of
Arrival) stores the time needed to travel from the
source voxel to the current voxel and its initial value
is infinity.

2.2. The 3D shortest path algorithm in the

volumes

The 3D shortest path algorithm in the volumes
presented in this paper is a substantial improvement
of Jan’s previous algorithm by reducing the time
complexity to O(N) with a combination of the
nuclear fission chain reaction method with an extra
data structure [10]. The 3D shortest path algorithm in
the volumes is introduced as follows.

Algorithm 1: The 3D shortest path algorithm
Step 1: Initialization

For each voxel, in an I × J × K volume,

the initial =TRUE if voxel is in the
obstacle or FALSE if it is in the free workspace.

=FALSE and = for all voxels,

kjiC ,,

kjiO ,, kjiC ,,

kjiVis ,, kjiAT ,, ∞

where 10 −≤≤ Ii , 10 −≤≤ Jj and .
The initial value of the index is 0.

10 −≤≤ Kk

Step 1.1: Input the coordinates of the source voxel S,
if =FALSE then update = 0
otherwise return the error message “the source
voxel that you spotted is in the obstacle”.

kjiO ,, kjiAT ,,

Step 1.2: Input the coordinates of the destination
voxel T, if = TRUE then return the error
message “the destination voxel that you
spotted is in the obstacle”.

kjiO ,,

Step 1.3: Insert the source voxel S into the LLindex.
Step 2: Update the values of ’

neighboring voxels .
kjiAT ,, kjiC ,,

',',' kjiC
 Step 2.1: Remove the indices of the first voxel

from the front end of the LLkjiC ,, index.
 Step 2.2: For each voxel, , in the LL

kjiC ,, index,

update the values of its neighboring

voxels and set to TRUE.
kjiAT ,,

',',' kjiC kjiVis ,,

 2 / 6

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1393

Step 2.2.1:
 Case 1: 1''' =−+−+− kkjjii , set
 1,,',',' += kjikji ATNewAT

 Case 2: 2''' =−+−+− kkjjii , set

 2,,',',' += kjikji ATNewAT

 Case 3: 3''' =−+−+− kkjjii , set

 3,,',',' += kjikji ATNewAT

 Step 2.2.2: If then ',','',',' kjikji ATNewAT <

 ',','',',' kjikji NewATAT =

 Step 2.2.3: Insert the indices of into the TL

if is FALSE and then update to

TRUE. (is the insertion flag)

',',' kjiC

',',' kjiIL ',',' kjiIL

',',' kjiIL
 Step 2.3: If LLindex is not empty, then repeat step 2.1
 Step 2.4:
 Step 2.4.1: Remove the indices of from TL. ',',' kjiC

 and insert it into ⎣ ⎦ 4mod,, kjiATLL .
 Step 2.4.2: If TL is not empty, repeat step 2.4.1
Step 3: Iterations.
 Step 3.1: index=(index+1)mod 2
 Step 3.2: If LLindex is not empty, then repeat step 2.
Step 4: Backtracking
Step 4.1: If the value of the destination voxel

is infinity, return the error message “there is
no path between the source voxel and the
destination voxel”. Otherwise, backtrack the
shortest path from the destination voxel.

kjiAT ,,

Step 4.2: Selecting of the 26 voxel-connected

neighbors with the smallest value.
',',' kjiC

kjiAT ,,

Step 4.3: Insert into path list. ',',' kjiC

Step 4.4: Repeating the selection of step by
step until the source voxel is reached.

',',' kjiC

END {The 3D shortest path algorithm in the
volumes}

2.3. Performance analysis and illustrative
example

The algorithm is applied to the volumes in which the
complicated direction movement is simplified by the
nuclear fission chain reaction scheme. To reduce the
repeated computation in the search wave, one extra
flag is needed to justify the search voxel’s status.
The algorithm has the same time and space
complexities of O(N), where N is the number of
voxels in the volumes. One example is shown to
demonstrate finding the 3D shortest path in the
volumes. In this example, the volumes is divided into
50×50×50 voxels. It is assumed that the red voxel
(expressed by S) represents the source voxel with (x,
y, z)=(1, 31, 1) and the green voxel (expressed by T)
represents the destination voxel which coordinates is

 (a) Front view (b) Top view
Figure 2. Illustration of a 50×50×50 volume.

(0, 25, 27), the result of searching the shortest path is
shown in Figures 2, where the russet, black and blue
areas represent obstacles, passable areas in the
volumes, and the bottom of the volumes, respectively,
and the pink path indicates the obtained shortest path.
This is convenient for us to inspect how the path
avoids hitting the obstacles.

3. Applications and analysis

 The 3D shortest path and collision avoidance
algorithm for multiple pairs and the 3D real time
chasing algorithm with the time complexity of O(N)
will be introduced as follows. In addition, the
examples of these two algorithms are illustrated in
this section.

3.1. The 3D shortest path-searching for

multiple pairs in the volumes

The simple way to solve the 3D shortest path-
searching problem for multiple pairs in the volumes
is to search the shortest path for each pair separately
based on the 3D shortest path algorithm in the
volumes. However, in the same volumes, if multiple
pairs exist simultaneously, it is possible collide each
other. In past researches, Colley et al. [11] showed
that computer simulation of marine traffic flow and
collision avoidance. Davis et al. [12] presented the
computer simulation results for multi-ship
encounters. Coenen et al. [13] offered a combination
of expert system and knowledge base, to prevent
collision. The concept of ship domain in 2D plane
can be extended to the concept of aircraft domain in
the volumes, such that one can find the shortest paths
without collision with each other and nearby
obstacles, for multiple pairs. In general, two aircrafts
will collide in the volume if two aircrafts are in the
same space simultaneously. There are two ways to
prevent collision: firstly, change course of aircraft.
Secondly, change speed of aircraft. In 2D plane,
vessels prevent collision according to the
international regulations for collision-avoidance at
sea. Every vessel shall at all time keep safe distance
in sight of one another to avoid collision, where safe
distance is defined by the concept of ship domain.
Similarly, the 3D shortest path search with collision
avoidance algorithm for multiple pairs in the
volumes is based on the concept of aircraft domain to
decide safe distance for each other.

 3 / 6

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1394

3.1.1. The 3D shortest path and collision
avoidance algorithm for multiple pairs.
In this subsection, we apply the concepts of aircraft
domain and space-marking method to this algorithm
that is introduced as follows.

Algorithm 2: The 3D shortest path and collision

avoidance algorithm for multiple pairs
Step 1: Obtain the shortest path for each pair.
 For each pair Mk, the source voxel Sk and

destination voxel Tk to the 3D shortest path
algorithm in the volumes are indicated. The
corresponding shortest path is obtained, where

total number of pairs, respectively. ≤≤ k1
Step 2: The collision detection.
 Simulate all of the paths with aircraft domain

and mark their AD (aircraft domain) value in the
volumes from time to time.

Step 3: The collision avoidance scheme.
 If any two pairs have the same AD value in the

some voxels, the rule of international regulations
for collision-avoidance at sea decides which pair
needs to change course and mark this area as
impassable zone for this pair.

 Step 3.1: Recompute the path for this give-way pair.
(It is noticed that the recomputed path is no
longer the shortest path, it is an optimal
path.)

 Step 3.2: Simulate the new shortest path.
 If the new shortest path collides with

another pair, then erase the new shortest
path and do the routing with dynamic
aircraft domain. Otherwise return “The
shortest paths are obtained”.

END {The 3D shortest path and collision avoidance
algorithm for multiple pairs}

3.1.2. The example and performance analysis.
The example of the 3D shortest path and collision
avoidance algorithm for multiple pairs is illustrated
in Figure 3. An example of 5-pairs is illustrated in
Figure 3(a), where the red voxels (expressed by S1,
S2, S3, S4, and S5) represent the source points and
the green voxels (expressed by T1, T2, T3, T4, and
T5) represent the destination points. The top view
result of the proposed algorithm is shown in Figure
3(b), where the pink paths represent the desired
shortest paths for 5-pairs without collision each other
and nearby obstacles. This algorithm is based on the

 (a) Initiation (b) Top view
Figure 3. Illustration of the 3D shortest path and

collision avoidance for multiple pairs
in the volumes.

3D shortest path algorithm in the volumes with the
time complexity of O(N). The shortest path algo-
rithm should be called q times for q-pairs in
executing the shortest path and collision avoidance
algorithm for multiple pairs, its time complexity thus
is O(qN).

3.2. Chasing system in the volumes

The proposed algorithm is originally developed

for finding optimal routes with collision detection
and avoidance in ECDIS (Electronic Chart Display
Information System) and DEM (Digital Electronic
Maps). The result of searching for the single-pair
shortest path and the time domain collision-free
multiple-pairs path was quite satisfied [14]. In
general, most of existing path planning algorithms
use A* algorithm to search a given moving target. It
can be divided into two classes: offline search such
as A*, and real-time search such as Real-Time-A*
(RTA*), Learning Real-Time-A* (LRTA*) and
Dynamic A* (D*) [15]. Among them, some of the
moving target search algorithms [16] adopt
Manhattan distance along the grid as the initial
heuristic value, which is similar to the 2-geometry
maze router. The Manhattan distance represents the
actual distance if there were no obstacles, but it
becomes less accurate as the number of obstacles
grows. However, our proposed method used cell map
with the higher geometry maze router and time
matching scheme to obtain the optimal (least time)
path between a searcher and a given moving target
[17]. A search and rescue for MIN-MAX and
MIN-AVG methods was implemented, and a real
time chasing technique was also presented.

In this study, our proposed method is extended
from 2D raster plane into the volumes. In the
meanwhile, the directional changes of dynamic
multiple moving targets are considered as well.
Because of the 3D real time chasing algorithm is
capable of intercepting the moving targets that the
static one cannot. It means that the chasing will be
very efficient if the chaser is able to detect the
current position of the moving target. Thus, it is very
practical to foresee the beforehand path of the target.
The 3D real time chasing algorithm is introduced as
follows.

3.2.1. The 3D real time chasing algorithm.
It is assumed that the chaser and target have different
constant speeds, and the chaser should be faster than
the target to catch up. This algorithm involves
several steps. First of all, apply the rectilinear
forecast that determined the moving target path
between last position and current position. After that,
next position can be foreseen. Secondly, search the
optimal chasing path by the 3D shortest path
algorithm in the volumes. Finally, the actual chasing
path is determined by the relative speed ratio of
chaser to target.

 4 / 6

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1395

Algorithm 3: The 3D real time chasing algorithm
Step 1: initialization
 Step 1.1: Input the initial position of the target

, w=0, z=0. T
kjiC)0(),0(),0(

 Step 1.2: Input the initial position of the chaser
 S

kjiC)0(),0(),0(

 Step 1.3: Input the relative speed ratio of chaser to
target, a.

Step 2: Compute the time of arrival between the
chaser and the remaining voxels.

 Step 2.1: Compute the time of arrival between the
chaser and the remaining voxels by the 3D
shortest path algorithm in the volumes. In the
meanwhile, obtain the present time of
arrival between target and chaser.)(

)(
zS

wTAT
Step 3: Foresee the movement of the target.
 Step 3.1: Input next moving voxel of the target,

, where w=w+1. T
wkwjwiC)(),(),(

 Step 3.2: Foresee the movements of the target
linearly.

 Step 3.2.1: ,
m=0, where m is the parameter of the
foreseeing path of the target.

T
wkwjwi

Foresee
kji CC)1(),1(),1()0(),0(),0(−−−=

 Step 3.2.2:
 WHILE)(

)()(),(),(
zS

wT
Foresee

mkmjmi ATAT <
Foresee

mkmjmi
Foresee

mkmjmi CC)(),(),()1(),1(),1(=+++
T

wkwjwi
T

wkwjwi CC)1(),1(),1()(),(),(−−−−+

 Set the according to the

ratio of AT values of and

.

Foresee
mkmjmiAT)1(),1(),1(+++

Foresee
kjiC)0(),0(),0(

Foresee
mkmjmiC)1(),1(),1(+++

 If the of is TRUE,
then BREAK.

kjiO ,,
Foresee

mkmjmiC)1(),1(),1(+++

 Otherwise m=m+1.
 END WHILE
Step 4: Obtain the interception voxel and foresee the

beforehand chasing path for chaser.
 Step 4.1: Obtain the interception voxel.
 FOR , m=0 TO the target’s end

voxel of the foreseeing path.

Foresee
mkmjmiC)(),(),(

 IF)/()(),(),()(),(),(aATAT Foresee
mkmjmi

S
mkmjmi =

 THEN is the foreseeing
interception voxel of the target.

Foresee
mkmjmiC)(),(),(

 Step 4.2: Foresee the beforehand chasing path for
chaser.

 Starting from the foreseeing interception voxel
of the target, step by step, searching the one of
26 neighboring voxels with minimum time of
arrival till the starting voxel of chaser is reached.
Reversing the beforehand chasing path for

chaser, , ,…,

, .

Beforehand
kjiC)0(),0(),0(

Beforehand
kjiC)1(),1(),1(

Beforehand
gkgjgiC)(),(),(

Beforehand
hkhjhiC)(),(),(

Step 5: Compute the chasing path for chaser.
 g=0, where g is the parameter of the beforehand
chasing path of chaser.

 WHILE T
wkwjwi

Beforehand
gkgjgi ATAT)(),(),()(),(),(<

 Beforehand
gkgjgi

S
zkzjzi CC)(),(),()1(),1(),1(=+++

 g=g+1, z=z+1
 END WHILE
Step 6: Decide whether the target is caught or not.
 If the position of target is not the position of chaser
then input next position of target, repeat steps 3 to 6,
otherwise, the target is caught.

END {The 3D real time chasing algorithm}

3.2.2. Performance analysis and illustrative
example.

In this proposed chasing algorithm, the TSet-up is
defined as the set up time initially for the volume’s
data structure, TShortest is the running time of the 3D
shortest path algorithm in the volumes, TForesee is the
required time to foresee the movements of the target
linearly, and TTimes is the number of times of chasing.
Since TTimes depends on the relative speed ratio a and
the different terrains, we only analyze the time
complexity of chasing for just once.

(1) ()Chasing Times Set up Shortest ForeseeT T T T T−= × + +

))()()(()/(NONONOaNO ++×≤

)/(2 aNO=

Thus, this algorithm has the time complexity of
O(N2/a).
The illustrative example for the 3D real time chasing
is shown in Figures 4(a) through 4(f). In the volume
of 50×50×50 voxels, a chaser (expressed by S)
intends to chase a moving target (expressed by T)
with the assumed relative speed ratio of 1.5. The red
and green voxels represent the chaser and the target,
respectively, and their initial positions are shown in
Figure 4(a). If the target initially moves toward north,
the chaser will find an optimal path to catch the
target according to its foreseeing movements as
shown in Figure 4(b). The target changes direction to
northwest once it senses that the chaser is moving
toward itself as shown in Figure 4(c). The target
changes direction to north again as the chaser is
getting closer. The chaser changes the direction
dynamically to north at once where the target may
head accordingly as shown in Figure 4(d).
Eventually, the target is caught by the chaser with
the 3D real time chasing algorithm as shown in
Figures 4(e) (front view) and 4(f) (top view).

 5 / 6

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1396

 (a) Initiation (b) Target moves toward

north.

(c)Target changes direc- (d) Target changes direc-

tion to northwest. tion to north.

(e) Target is caught by (f) Target is caught by

 chaser. (Front view) chaser. (Top view)
Figure 4. Illustration of chasing system

in a 50×50×50 volume.

4. Conclusion

In this paper, Jan’s shortest path algorithm on 2D
planar cells is extended to the volumes. The main
achievements of these algorithms are to implement
the 3D shortest path searching for multiple pairs
based on the concept of the aircraft domain to avoid
collision and real time chasing in the volumes.

We believe that this work will inspire further
studies on the shortest path searching and chasing in
quadric surface. Furthermore, our proposed
algorithm is implemented based on the assumption
that the aircraft’s speed is constant, but it is
impractical and the speed-varying system should be
addressed in the future.

References

[1] C.Y. Lee, “An algorithm for path connections and its

applications,” IRE Trans. on Electron. Computer, vol.
EC-10, pp. 346-365, Sep. 1961.

[2] F. Rubin, “The Lee path connection algorithm,” IEEE
Trans. on Computer, vol. C-23, pp. 907-914, 1974.

[3] J.H. Hoel, “Some variations of Lee’s algorithm,” IEEE
Trans. on Computer, vol. C-25, no. 1, pp. 19-24, Jan.
1976.

[4] Gene Eu Jan, and Ki-Yin Chang, “An Improved Lee’s
Algorithm on Electronic Maps,” 2002 International
Computer Symposium, National Dong Hwa Univ.,
Hualien, Taiwan, pp. 776~786, Dec. 2002.

[5] T.Y. Li, L.K. Gan, and C.F. Su, “Generating
customizable guided tours for networked virtual

environments,” In Proceedings of 1997 National
Computer Symposium, Taiwan, 1997.

[6] T.Y. Li, and P.Z. Huang, “Motion planning for a
humanoid walking in a 3D space,” In Proceedings of
2001 National Computer Symposium, Taiwan, 2001.

[7] G.E. Jan, K.Y. Chang, and J.S. Wu, “The planning of a
3D shortest path in a volume,” Trans. on AASRC, vol.
35, no. 2, pp.197-202, 2003.

[8] J.H. Beattie, “The future of electronic chart in merchant
ships,” The Journal of Navigation, vol. 48, no. 3, pp.
335-348, 1995.

[9] J. Dawson, “Digital charting, now and in the future,”
The Journal of Navigation, vol. 52, no. 2, pp. 251-255,
1997.

[10] Gene Eu Jan, Ming-Bo Lin and Yung-Yuan Chen,
“Computerized Shortest Path Searching for Vessels,”
Journal of Marine Science and Technology, Vol. 5, No.
1, pp. 95-99, June 1997.

[11] B.A. Colley, R.G. Curtis, and C.T. Stockel, “A marine
traffic flow and collision avoidance computer
simulation,” The Journal of Navigation, vol. 37, no. 2,
pp.232-250, 1984.

[12] P.V. Davis, M.J. Dove, and C.T. Stockel, “A
computer simulation of multi-ship encounters,” The
Journal of Navigation, vol. 35, no. 2, pp. 347-352,
1982.

[13] F.P. Coenen, G.P. Smeaton, and A.G. Bole,
“Knowledge-based collision avoidance,” The Journal
of Navigation, vol. 42, no. 1, pp.107-116, 1989.

[14] K.Y. Chang, G.E. Jan, and Ian Parberry, “A method
for searching optimal routes with collision avoidance
on raster charts,” The Journal of Navigation, vol. 56,
no. 3, pp.371-384, 2003.

[15] A. Stentz, “The focused D* algorithm for real-time
replanning,” Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence,
vol. 2, no. 2, pp.1652-1659, 1995.

[16] R.F. Dell, J.N. Eagle, G. Martins, and A. Santos,
“Using multiple searchers in constrained-path, moving-
target search problems,” Naval Research Logistics, vol.
43, no. 4, pp. 463-480, June 1996.

[17] K.Y. Chang, G.E. Jan, and Ian Parberry,
“Optimal search and interception system for
multi-target on raster electronic charts,” submitted to
Journal of Navigation.

 6 / 6

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1397

