
Comparative Review of
Common Reconfigurable Architectures

Woo Hyong Lee, Arindam Saha, Eun Ji Lee, and Sung Bae Park
SoC R&D Research Center

SYSTEM LSI Division, Samsung Electronics Corp.
Kiheung, Korea

E-mail: {woohyong.lee, s.arindam, eunji.lee, sung.park}@samsung.com

Abstract - Some may claim that general-purpose
computers are reconfigurable in the sense that functional
units are reused for different computational tasks at
different times, with multiplexers controlling the routing
between these units. However, in this paper as well as in
the research community at large, the term reconfigurable
computing refers to systems where the hardware can be
customized and changed periodically to execute different
tasks on the same hardware.

In this paper we survey the reconfigurable computing
landscape and make some recommendations. The
landscape can be partitioned into two parts – one that is
spearheaded by University research and the other that is
taking shape in the industry. We describe one example
from each, and provide a comparison of some
reconfigurable architectures. We conclude by making
some recommendations about the architectures, software
tools, and applications of reconfigurable computing.

Keywords: Reconfigurable, Processor, Compiler, SDR.
1 Introduction
 Current computing devices constitute two extremes.
On one hand, we have conventional CPUs that rely heavily
on one or more complex ALUs, which make frequent calls
to large memory resources, but suffer from lack of
performance because the architectures do not follow the
structure of the task. These CPUs provide flexibility at the
cost of performance. On the other end of the spectrum, we
have ASICs that provide optimal performance and power
for specific tasks but are very inflexible because they are
useless for any other task. The quest for both ASIC-like
performance and CPU-like flexibility leads to reconfigur-
able computing.
 Reconfigurable computing, as a concept, dates back
almost 40 years [1]. Some may claim that general-purpose
computers are reconfigurable in the sense that functional
units are reused for different computational tasks at

different times, with multiplexers controlling the routing
between these units. However, in this report as well as in
the research community at large, the term reconfigurable
computing refers to systems where the hardware can be
customized and changed periodically to execute different
tasks on the same hardware. SRAM-programmable Field
Programmable Gate Arrays (FPGAs) are the first real
implementations of the reconfigurable computing concept.
But FPGAs haven’t been able to satisfy the needs for
dynamically reconfigurable flexible processing for a
variety of reasons.
 In this paper as well as in the research community at
large, the term reconfigurable computing refers to systems
where the hardware can be customized and changed
periodically to execute different tasks on the same
hardware.
 The rest of the paper is organized as follows. In
Section 2, we describe one representative project being
carried out in the academia and list a variety of University
projects in reconfigurable computing that are not
discussed in this paper. Section 3 deals with one
representative reconfigurable computing machine that has
been developed in the industry and, then list a group of
commercial efforts not discussed in this paper. In Section
4, we compare a number of reconfigurable examples using
a variety of metrics, and we list the pros and cons of each.
We conclude with some recommendations meant to
provide a platform for further discussion.

2 University Research
 Universities around the globe have been engaged in
reconfigurable computing research for more than a decade.
In this paper, we focus on research being carried out at
some of the US Universities. These projects are primarily
funded by the US Department of Defense. In fact, in
1990’s DARPA had funded several Universities research
groups to the tune of close to $100M under the auspices of
the Adaptive Computing Systems program. As a

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1326

representative example we discuss the PipeRench
architecture from the Carnegie Mellon University.

2.1 Carnegie Mellon PipeRench Project
 The PipeRench project at the Carnegie Mellon
University has created a programmable datapath for
numerically intensive applications.
Architecture

 Figure 1 shows the PipeRench architecture [2]. The
fabricated chip is organized as 16 stripes, each stripe
containing 16 processing elements (PEs). As shown in
Figure 1, the stripes are connected, using their register
files, to create an interleaved ring topology [2].

Figure 1: The PipeRench Architecture.

 PipeRench uses a technique called pipeline
reconfiguration to virtualize the hardware. Assuming that
a stripe is a pipeline stage, one can map an n-stage virtual
design on to a m-stage physical pipe, where n > m. This is
achieved by storing the configuration bits of the entire
virtual hardware on chip, and moving these bits to the
physical fabric every cycle. This way, although the chip
has 16 physical stripes, it can support up to 256 virtual
stripes. For virtual hardware larger than real hardware,
physical stripes will eventually be reconfigured with new

virtual stripes. The state of over-written virtual stripes are
saved in R0 into the R0 state store memory.
 The PE block diagram is illustrated in Figure 2 [2].
A PE is 8-bit wide, but adjacent PEs can be connected to
perform operations of wider widths. There are eight
registers per PE, called pass register file. There is one
dedicated register per register file that can be used for
intra-stripe feedback and therefore must be stored and
restored. Output of the ALU can be stored in any one of
the eight registers. If the value is not written to a register,
then the value from the corresponding register in the
previous stripe. This reduces the amount of state because
data that travels through the pipeline need not be saved.
The functional unit consists of eight 3-input LUTs that are
identically configured. 42 configuration bits are required
to specify the functionality of a PE.

Figure 2: Block Diagram of a PE in PipeRench.

DIL Compiler

 A hardware synthesis compiler, called the DIL
compiler, has been developed at Carnegie Mellon that
targets the PipeRench architecture [3]. The source
language for the compiler is DIL that can be used as an
intermediate language in a HLL compiler. But we do not
have any information about such a compiler. So, for now,
we assume that the programmer has to program in DIL to
use PipeRench. DIL is more like a HLL than a HDL. It is
a single assignment language and so any variable can be
assigned to only once. The DIL compiler follows the
following steps: First it reads the PipeRench architecture

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1327

description. In evaluation phase, the compiler inlines all
modules, unrolls all loops, and generates straight-line,
single assignment code. That code is then converted into a
hierarchical dataflow graph. Then the compiler goes
through a number of passes including a variety of
optimizations. The key feature of the DIL compiler is the
place and route step that uses a deterministic, linear-time,
greedy algorithm [3]. Finally, the code generator produces
PipeRench assembly language ready to be executed.

2.2 Other University Projects
 Other notable University projects in the
reconfigurable computing area that are not covered in this
paper are: MorphoSys from the University of California
Irvine [4], BRASS/Garp from the University of California
Berkeley [5], U.C. Berkeley Pleiades [6], Northwestern
Chimaera [7], MIT MATRIX [8], and University of
Washington RaPiD [9].

3 Commercial efforts
 There is a tremendous amount of activity within the
industry as far as reconfigurable computing is concerned.
Almost every major company, including Intel, NEC,
Toshiba, Sun, etc., have active programs in this area. A
number of startups have been funded in the last few years
to push the envelope of reconfigurable computing. As a
representative example, we discuss the NEC DRP
architecture.

3.1 NEC DRP
 NEC is one of the few established companies that
announced a Dynamically Reconfigurable Processor
(DRP) architecture [10].
Architecture

 The NEC DRP is organized as tiles, each tile, as
shown in Figure 3 [11], includes, among other things, 64
byte-oriented Processing Elements (PEs) organized as an
8x8 array, Configurable Horizontal Memory (HM) blocks
that are 8bx8kW with 1 R/W port, Configurable Vertical
Memory (VM) blocks that are 8bx256w with 1 R and 1
R/W ports, A State Transition Controller (STC) which is a
simple sequencer controls tile reconfiguration, and
External ports to which one can attach complex operation
units like multipliers, external memory controllers and
peripheral bus controllers like PCI.
 The DRP-1 prototype silicon announced [10] has 8
tiles for a total of 512 PEs, 160kb and 2Mb of VM and
HM respectively, 8 STCs, 8 32b multipliers, and 1
memory controller and 1 PCI controller.

Figure 3: One NEC DRP Tile.

Figure 4: A Processing Element.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1328

Figure 4, taken from [10], shows a block diagram of a PE.
The ALU can handle 8-bit arithmetic and logic functions.
The Data Management Unit (DMU) handles data
manipulation functions like byte select, shift, mask,
constant generation, etc. as well as bit manipulation
functions. Each PE can store up to 16 instructions in the
local instruction store. The specific ALU/DMU operation
as well as inter-PE connections are dictated by an
instruction. The PE allows the operands to come from
either its own register file or from some other PEs (flow-
through case), but not directly from memory. Each PE has
an instruction pointer (IP), provided by the STC, that
identifies a datapath plane. Instantaneous dynamic
reconfiguration occurs as one sequences through
instructions and IP changes. The collection of PE
instructions behaves like an extreme VLIW machine.

Software Tools

Figure 5: The DRP tool flow.

 NEC has paid special attention to creating a good
software development platform for the DRP. As shown in
Figure 5, taken from [10], the key component of this
toolchain is a C compiler. NEC has modified their in-
house ASIC high-level synthesis tool called Cyber to
exploit some of the DRP architectural features. This
compiler accepts C source and generates FSM code and
associated datapath planes. One can optionally input
Verilog RTL code directly as well as mix it with the
compiler generated RTL. The mapper then maps this RTL
for each datapath plane to individual PEs and memories.
Finally, a place and route tool physically locates the PEs
and memories and mutually connects them. The STC
control code and the PE/memory array code are linked to

form the DRP object code. The NEC toolchain has rich
GUI providing both a high-level synthesis view
(combining both a scheduled data flow graph for the array
code and a scheduled state transition diagram for the FSM
code) as well as a place and route view (that can be used
for critical path delay analysis).

3.2 IPFlex
 IPFlex is a Japanese startup in the reconfigurable
computing domain and is very focused on network
processing as a target application. IP Flex announced in
September 2002 that the working sample chips of their
first generation, DAP/DNA-HP (Digital Application
Processor based on Distributed Network Architecture) had
been already fabricated by Fujitsu (Japan) and available
since August 2002.

3.2.1 Architecture

 Figure 6. illustrates a block diagram of the
DAP/DNA architecture [11]. It is comprised of their
proprietary 32-bit RISC CPU core (DAP) and the matrix
of 148 processing elements (DNA). They claim the CPU
core (DAP) can be replaced with other popular CPU core,
such as ARM or MIPS compliant core. Networking
processors are supposed to be primary application. The
interconnections between elements in DNA are
dynamically reconfigured by software and realize pipeline
or parallel structure. Each element itself can be
reconfigurable among 8 types of arithmetic/logic unit.
Those configurations can be changed in 1 clock cycle.
DAP/DNA-HP works on 120MHz and power
consumption is about 5W.

Figure 6: DAP/DNA block diagram.

Bus Interface Unit

Memory
Controller

External Bus
Controller

D-Cache
(8 KB)

GPR #0
(32b x 32)

I-Cache
(8 KB)

Timer
Controller

DC-Cont
EU
IDU

IC-Cont

DAP/DNA-HP

Integer
Unit

Embedded
Debug Unit

Store Buffer
Controller

DAP

Flash
Memory

DDR
 SDRAM #0

buf #0 buf #1 buf #2 buf #3

elem elem elem elem

elem elem elem elem

buf #0 buf #1 buf #2 buf #3

MATRIX
Unit

… … … …

DNA

Load Buffer
Controller

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1329

 There are 148 compute elements (denoted as elem in
Figure 6) in the DNA array. The breakup of the 148
elements is as follows:
• 66 for arithmetic operations
• 44 for control of data delay
• 12 for arithmetic operations with multipliers
• 8 for address calculation for data transfer between

buffers within the matrix
• 8 for address calculation for data transfer from

external memory to buffers
• 6 for data storage among the matrix (SRAM), and
• 4 for data input.

 Figure 7, taken from [12], shows a detailed diagram
of such an element. There are eight different types of
compute elements. In that sense we can classify the IPFlex
DNA as a heterogenous architecture. Each arithmetic
element has two inputs and one output. Most ALUs are
simple arithmetic and logic functions without any
multiplication capability.

Figure 7. Block diagram of a DNA element.

3.2.2 Software Tools
 Development tool chains are created by their own,
which includes a compiler, a assembler, a debugger, and a
simulator. Figure 8 shows its overview flow. At first

algorithm in C language is analyzed on “DNA analyzer”
which includes ISS (Instruction Set Simulator) for DAP.
Then some portions for DNA are manually extracted and
modified as DNA configuration files for input of “DNA
Compiler.” And “DNA Compiler” converts them to
description based on C language. Finally both DAP
portion and DNA portion are compiled into object files
and uploaded into its hardware or the simulator. It can
accept not only C language but also MATLAB input.

Algor ithm in C

DNA Analyzer (ISS)

GCC Compiler

DNA Compiler

C Program

DNA Configure file
(Subset of C)

C Program

Object F iles

DAP DNA

Figure 8: IPFlex software development tool flow.

3.2.3 Applications
 PFlex has positioned its DAP/DNA architecture as
an alternative to conventional network processors. Like
the NEC DRP, IPFlex is also targeting networking
applications like packet processing, network security, etc.

ALU

FF FF

Shifter Shifter

FF FF

Configuration
Memory

Even Column FF

ALU

ALU

FF FF

Shifter Shifter

FF FF

Configuration
Memory

Odd Column FF

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1330

 Granularity Topology Functionality µcontr. Reconfig. Software Tools Applications
Berkeley
Garp

Fine-grain,
2bit wide

2D mesh,
24x32

4-in LUT, carry
chain,
multiplexer

MIPS-II
plus 20
instrs.

64b per PE,
cache,
encoded

C entry, garpcc
configurator,
simulator

DES/MD5/SHA,
image dithering,
median filter

CMU
PipeRench

Medium, 8bit
wide

Interleaved
ring, 16x16

Eight 3-in LUTs,
Pass Reg

None 42 config. bits
per PE

DIL language
and compiler

SAR ATR, FIR,
IDEA encryption

Irvine
MorPhoSys

Coarse, 16bit
wide

2d mesh, full
conn. quadrant,
8x8

16bit ALU,
16x12 mult,
MAC, absdiff

TinyRISC
plus instrs.

16 context
planes

Allows C, tcc
compiler,
mLoad,
simulator,
mView

MPEG video, ATR,
IDEA encryption

PACT
XPP

Coarse, 32bit
wide

Array, 64 per
cluster, up to 4
clusters

Four 32bit
integer ops,
BREG/FREG

MIPS 5Kc Ring mem.,
differential
reconfig.

C, XPP-VC,
NML, mapper,
XSIM, GUI

Wireless base
station, WLAN
OFDM, imaging

Elixent
RAP

Fine, 4bit
wide

Alternating
logic/switch
array, 64x64

Simple ALU,
4bit instr., 4-in
LUT

None Dynamic
instructions

Allows Matlab &
Handel-C, RTL
tools,
AccelFPGA

Consumer
electronics,
imaging, comm.

NEC
DRP

Medium, 8bit
wide

8x8 array per
tile, 8 tiles

ALU + DMU,
VLIW

Own
simple STC

Instr. pointer,
dynamic

C entry,
compiler,
mapper, P&R,
GUI

IPsec, IPv4, Packet
processing

QuickSilver
ACM

Coarse,
variable width

Fractal with 4-
node clusters,
MIN

ALU, Bit
manipulation,
FSM, Scalar

KARC,
MARC

Data & config
info mixed

SilverC,
compiler,
Silverware,
mapper

Wireless comm.,
WLAN, Vocoder

Chameleon
RCP

Coarse, 32bit
wide

(7+2)per tile, 3
tiles per slice, 4
slices

32bit DPU plus
16x24
multipliers

125 MHz
ARC

Two config
planes, config
stack

C, compiler,
eBIOS, fabric
function
optimize

Wireless base
station, cdma2000

MorphICS
WSP

Coarse,
variable width

Hierarchical,
array, slice, bit-
slice

RFU with LUT,
FFU

External
GP CPU

Hierarchicalco
nfigurable
interconnect

C++, compiler,
extensible data
types, VMI

Multi-channel
2.5G/3G base
station

IPFlex
DAP/DNA

Coarse, 32bit
wide

Array, 148 PEs 8 types of ALU Own DAP Not known C, DNA
compiler,
analyzer, DAP
ISS

Network processing

picoChip Coarse, 16bit
wide

Array, 430 AEs control, memory,
MAC, standard

Control AE None in
particular

Assembler, P&R
tool, debugger,
no godd C
compiler

Wireless comm.,
now multimedia

Table 1: Comparison of different reconfigurable architectures.

3.3 Other Commercial Work
 Other reconfigurable computing efforts in the
industry that we have not discussed here are PACT [13],
Elixent [14], and QuickSilver [15].

4 Comparative Analysis
 Table 1 is a self-explanatory comparison of a number
of reconfigurable architectures including the two discussed
in this paper, analyzed with seven metrics.

5 Conclusions
 The purpose of this paper has been to present the
state-of-the-art out there vis-à-vis reconfigurable
computing. As one can surmise reading the paper, this
field, though not commercially successful yet, is rather
mature and varied. After analyzing the reconfigurable

computing landscape, we make the some recommenda-
tions.
Architecture: One has to consider the following factors
before making choices for the reconfigurable architecture:

• Power consumption – most existing
reconfigurable systems ignore the important
power dissipation issue. Depending on the target
application, one has to make architectural choices
to reduce power consumption at the outset.

• Reconfiguration overhead – one should avoid the
problems associated with FPGAs. In order to be
truly dynamically reconfigurable, one should pay
special attention to reducing the configuration
overhead. This should be a key area of research.
Techniques like wave configuration and
differential configuration are good starters.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1331

• Topology – The commonly used two-dimensional
mesh interconnection is rather constrained for
most applications. On the other hand, the fully
connected crossbar is prohibitively expensive.
One must find a middle ground. Topologies like a
mesh of trees or MOTs where one can combine
the advantages of meshes and complete binary
trees should be explored. The topology choice
should consider features like large bisection
width, low critical path, good VLSI layout and
most importantly good mapability (we define
mapability as the ease of mapping a wide variety
of computational task graphs onto the
reconfigurable accelerator topology).

• Number of processor elements and data width –
this will be dictated by the die size and power
consumption constraints. But keeping the
advanced process technology and future
competition in mind, the number of processors
may have to be in thousands rather than hundreds.
Also, our analysis indicates that medium
granularity is a prudent choice.

• Functionality – one of the key decisions to be
made in terms of the architecture is what kind of
functionality to provide within a compute element.
Besides basic ALU and bit manipulation
capabilities, we think that multiplication (MAC)
and LUT capabilities are also necessary for most
applications.

• Heterogeneity – we think that instead of having
all compute elements the same, it will be a better
idea to provide a heterogeneous architecture with
the capability of extending via extension
processors.

• Microcontroller – this may not be a big issue.
Nevertheless, one should carefully analyze the
pros and cons of using decentralized
microcontrollers tightly coupled with the
reconfigurable fabric, before deciding whether to
use an ARM microprocessor as a central
controller or not.

• Staging data in and out – this may turn out to be a
bottleneck in most data-bound applications
running on the reconfigurable platform. Keeping
the massively parallel reconfigurable engine busy
with quick data movement will be essential.

• System on a chip (SoC) – we should keep in
mind that the reconfigurable accelerator is part of
a bigger SoC and not a standalone device.
Accordingly, one needs to carefully design the
entire system architecture including SoC

integration bus (like the AXI or SONICS bus),
interface with the microcontroller, caches and
local memories, embedded DRAM, DMA,
memory controller, and other peripherals.

• Differentiation – Since there are a plethora of
reconfigurable architecture companies, the
success will depend on clear differentiation.
Making an architecture domain-specific rather
than general purpose is a good differentiation.
Moreover, reducing cost and power consumption
will be crucial.

Software Tools: Software tools can make or break a
reconfigurable computing machine. In other words, the
success of such a system will largely be dictated by the
quality of the application development environment. This
has always been true, even for conventional computers.
But this assumes far greater importance in the case of
reconfigurable systems. We feel that the software tools
should have the following features:

• First and foremost, one should allow the design
entry in a high-level language like C, C++, Java,
etc. This necessitates a high quality compiler.
Such a compiler faces challenges similar to those
faced by compilers of conventional architectures.
Additionally, one has to go beyond the traditional
compiler optimization techniques, and use state-
of-the-art high-level synthesis know-how to
create a high quality compiler for reconfigurable
accelerators.

• A good mapping software that maps the task to
the reconfigurable fabric is essential. This
mapper can be integrated with the compiler.

• In addition to HLL design entry, one has to make
extra effort to reach the many signal processing
researchers to make the reconfigurable
accelerator an effective target. To accomplish
that, one has to allow design entry in languages
like Matlab and Simulink from MathWorks.

• An authentic, fast, cycle-accurate simulator of the
reconfigurable accelerator will be crucial for
applications development. SystemC may be the
language of choice to build such a simulator.

• Similarly, a visualizing debugger is essential for
any flexible accelerator.

• Recognizing the fact that eventually we are
dealing with a complex SoC that combines a
reconfigurable accelerator with a microprocessor
core leads us to the path of effective co-
simulation and co-design. Integrating with

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1332

existing tools like AXYS MaxSim, Cadence VCC,
CoWare N2C, Mentor Graphics Seamless, and
other similar commercial products will be
necessary.

Applications: The reconfigurable computing concept is
domain-specific, not for general-purpose applications.
Therefore, right at the outset, one should know the target
application(s). There is a wide range of current and future
applications that can benefit from the acceleration
provided by reconfigurable computing. These applications
share the requirement for lots of numeric computations as
well as the presence of inherent massive parallelism. In
our estimation, the following applications are some that
seem promising:

• Software Radios for Mobile Terminals, wireless
infrastructure, as well as in future automobiles.

• Multi-format multimedia processing
• Image post processing and enhancement in DTV

and STBs
• Mobile applications for 2.5G/3G wireless in

smartphones and PDAs
• Human Computer Interface including image

processing, speech recognition, and gesture
recognition.

References
[1] G. Estrin, et al “Parallel processing in a
restructarable computer system,” IEEE Transactions on
Computers, pp. 747-755, 1963.

[2] H. Schmit, et al, “PipeRench: A virtualized
programmable datapath in 0.18m technology,” IEEE
Custom Integrated Circuits Conference, 2002.

[3] M. Budiu and S. C. Goldstein, “Fast compilation for
pipelined reconfigurable fabrics,” ACM SIGDA 7th
International Symposium on FPGAs, February 1999.

[4] H. Singh, et al, “MorPhoSys: An integrated
reconfigurable system for data-parallel computation-
intensive applications,” submitted to IEEE Transactions
on Computers, 2000.

[5] J. Hauser, “Augmenting a microprocessor with
reconfigurable hardware,” Ph.D. Dissertation, University
of California, Berkeley, December 2000.

[6] H. Zhang, et al, “A 1V heterogenous reconfigurable
processor IC for baseband wireless applications,” ISSCC,
pp. 68-69, February 2000.

[7] S. Hauck, et al, “The Chimaera reconfigurable
functional unit,” FCCM, pp. 87-96, April 1997.

[8] E. Mirsky and A. DeHon, “MATRIX: A
reconfigurable computing architecture with configurable
instruction distribution and deployable resources,”
FCCM, 1996.

[9] C. Ebeling, et al, “RaPiD: Reconfigurable Pipelined
Datapath,” 6th Annual Workshop on Field-
Programmable Logic and Applications, 1996.

[10] M. Motomura, “A dynamically reconfigurable
processor architecture,” Microprocessor Forum, October
2002.
[11] Nikkei Electronics Online article,
http://ne.nikkeibp.co.jp/DSP/2002/09/1000014482.html,
September 2002.

[12] Nikkei Electronics, “Idea of software generated
virtual circuits,” (in Japanese) pp. 59-63, November 18,
2002.

[13] P. Glaskowsky, “PACT debuts extreme processor,”
Microprocessor Report, October 2000.

[14] Elixent Corporation, “Changing the electronic
landscape – the reconfigurable algorithm processor,”
Technical White Paper.

[15] P. Master, “A look into QuickSilver’s ACM
architecture,” EETimes Supplement called The Art of
Change: Technologies for Designing our Future, pp. 124-
125, September 2002.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1333

