

The Visuel Performance Analysis and Monitoring Tool for Cluster
Environments*

* This research is supported in part by the National Science Council, Taiwan, under grant no. NSC93-2213-E-126-
010.

Li-Jen Chang1, Hsiang-Yao Cheng1, Hsun-Chang Chang1, Kuan-Ching Li1, Hsiao-Hsi Wang1,
Chao-Tung Yang2, and Liang-Teh Lee3

1Parallel and Distributed Processing Center (PDPC), Dept. of Computer Science and Information

Management, Providence University, Taichung 43301, Taiwan ROC
E-mail: { ljchang, s9011124, hcchang, kuancli }@cs.pu.edu.tw

2High Performance Computing Laboratory, Dept. of Computer Science and Information
Engineering, Tunghai University, Taichung 40744, Taiwan ROC

E-mail: ctyang@mail.thu.edu.tw
3Dept. of Computer Science and Engineering, Tatung University, Taipei 10451, Taiwan ROC

E-mail: ltlee@cse.ttu.edu.tw

Abstract

In this paper, we present Visuel tool for
performance measurement and analysis of MPI
parallel programs in cluster environments. Most of
tools available today for cluster systems show system
performance data (e.g., CPU load, memory usage,
network bandwidth, machine-room temperature,
server average load, among others), being more
suitable for system administrators who maintain such
system. The Visuel tool is designed to show
performance data of all computer nodes involved in
the execution of MPI parallel program, such as CPU
load level and memory usage. Moreover, this tool is
able to display comparative performance data charts
of multiple executions of the application under
development of an MPI application.

Keywords. Monitoring tools, MPI parallel programs,
distributed computing, performance visualization.

1. Introduction

In recent years, the cluster computing technology has
become a cost-effective computing infrastructure
because it aggregates resources of computational
power, communication and storage [7, 9]. It is also
considered to be a very attractive platform for low-
cost supercomputing.

Cluster of workstations are easy to build, cost
effective and highly scalable. Basically, it consists of
several workstations that are interconnected through
a high-speed network (Gigabit Ethernet, SCI or
Myrinet) for information exchange and coordination
among them. They run commodity operating
systems, such as NT/2000, Linux or UNIX. Parallel
applications for distributed systems are developed
using message passing libraries, such as MPI. With
the advances in networking technology, connecting
PCs and workstations is not a problem anymore.
Despite of this fact, there is still much to do in the
software domain.

Parallel programs can behave in a number of
unexpected ways, because of their complex structure,
the parallel system on which they run, the number of
nodes used to execute the application in a cluster
environment, the dataset used by the parallel code,
the regularity of applications and algorithms in space
and time, the variability in programming
environments, the heterogeneity of software and
hardware platforms, among others. In addition,
effective partitioning, allocation and scheduling of
application programs on a network of workstations
are crucial to obtain good performance. Thus, the
performance is very sensitive to the strategy used to
distribute data to the processors [1].

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

878

There are several performance monitoring tools
available, to visualize graphically the performance of
an application’s execution, e.g., VAMPIR [11],
Paradyn [5] and DIMENAS [10]. One way to
improve the performance of a parallel application is
to analyze performance data, e.g., CPU load, memory
usage, I/O load, among others, and see what
happened with the execution of that MPI parallel
application.

In this paper, we designed and implemented
Visuel, a tool to provide graphical performance data
visualization of the execution a MPI parallel
application in a cluster system. This tool is useful
during the development process of an application,
tuning its performance, and to proceed with “what-if”
analysis.

The remainder of this paper is organized as
follows. In section 2 is discussed some related
researches in monitoring tools for distributed systems.
Section 3 introduces the Visuel tool. Later, in section
4, an example of use of Visuel, when performing the
execution of Matrix Multiplication (MM) parallel
program in a cluster computing system, and finally in
section 5, a brief conclusion and future works are
presented.

2. Related work

Nowadays, several performance monitoring tools are
available, in order to visualize graphically the
performance data of an application’s execution, e.g.,
VAMPIR [11], Paradyn [5] and DIMENAS [10].

A number of monitor tools that generate HTML
pages that contains performance graphical images
and data are also available. MRTG (Multi Router
Traffic Grapher) [6], based on Perl and C, it is a tool
to monitor the traffic load on network links, by
providing visual representation in HTML pages. It
consists of Perl script that uses SNMP to read the
traffic counters and a fast C program that logs the
traffic data. RRD (Round Robin Database) [8] is a
tool that stores and displays time-series data (e.g.,
network bandwidth, machine-room temperature, and
average load) in a compact way that will not expand
over time.

The advantage of MRTG over RRD is that it is
easier to use, while RRD has more graphical display

options than MRTG. Though, the main disadvantage
is that MRTG has fixed format data (it can only
shown the data over time), and it depends fully on the
use of SNMP to obtain the data, otherwise, it cannot
work.

Several well-known tools such as Ganglia Cluster
Toolkit [2], CACTI and NMIS are particular
implementations of RRD tool done by independent
teams around the world. As mentioned before, tools
such as Ganglia and CACTI can only show the data
over time of each one of the computer nodes in a
cluster system, not possible to show in particular time
periods, such as the start and end of execution of an
application in a cluster system.

3. System Overview

Visuel† tool is created and implemented by using
RRD tool [8]. The main reason why we started to
work on this tool is that we need a tool to visualize
the performance data an MPI application during its
execution, as it starts and it finishes. Additionally, we
need a tool that we can process “what-if” analysis,
that is, performance tuning of a parallel application
during its development phase.

Visuel is scalable, i.e., it is able to measure long
running MPI applications on as much computing
nodes as they are involved in the computations. It is
able to generate from minutes to several hours MPI
parallel programs’ executions.

This tool supports heterogeneous and
homogeneous clusters of workstations; basically, this
tool can work on any environment where RRD tool is
able to run and installed.

In the next subsection, we will discuss the
components of this performance tool.

3.1 Components of the System

The Visuel performance tool is composed of two
components. The first one is Visualization Manager
(VM), which provides to the user graphical
visualization of application execution’s data, while
the second component is the User Interface Manager
(UIM), responsible to handle data collection and time
histograms.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

879

Basically, the Visuel tool is designed as a shell
script in Linux and it is relied on RRDtool. The
Visualization Manager processes the visualization in
three steps, as show in figure 1.

1. rrdtool create: set up a new Round Robin
Database (RRD)

2. rrdtool update: store new data values into an
RRD

3. rrdtool graph: create a graph from data
stored in one or several RRD

Figure 1. Visualization creation process in Visuel
tool.

User Interface
Manager

Visualization
Manager

Visuel

CPU 2.0 GHz
Memory 200MB

Table
Visualization

Histogram
Visualization

Figure 2. Visuel tool and its components.

The Visualization Manager (VM)’s main
objective is to monitor how much of resources a MPI
parallel program needs to be executed in a cluster
system, from its start point to its end point, e.g., CPU
load, memory usage, network bandwidth. These data
are used for future performance analysis.

Different from other monitoring tools, such as
Ganglia and Cacti, it provides performance data since
the system is on, not being able to provide specific
measurements in a period of time. Additionally, if a

† It means “visualization”, in French.

given period of time is passed, we can not have in
our chart these data for analysis.

In this sense, the programmer can use data
obtained from successive executions of the MPI
parallel program in the performance tuning of
parallel code process, in order to observe the
difference of performance of tuned MPI parallel
program. The several results are visualized through
our VM, in order to provide with visualizations of
performance charts among these MPI program
executions.

The following are steps to execute the VM:
Step 1: for the purpose of record the performance
data selected at this initial step, the rrd database is
built every time on those computing nodes involved
in our computation.
Step2: before executing our MPI parallel program,
the master node should execute MDF (Monitor
Daemon Parent process), which goal is to fork MDC
(Monitor Daemon Child process) to each of involved
computing node. The MDC in each computing node
involved is going to detect when master node starts
with the distribution of tasks (segments of code of
MPI parallel program), its job is at this moment
recording the performance data, originated from the
execution of MPI parallel program. Before the
beginning of execution, each involved computing
node is in “waiting” state, since the tasks did not
reach to the computing nodes yet. See figure 3 for
details.

Figure 3. Master node MDF parent process is fork to
child processes MDC, to every involved computing
node

Step 3: As the MPI parallel program is started to run
in each of involved computing nodes, MDC in each
computing node is acknowledged. MDC will get
defined system resource usage from each computing

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

880

node, and through network file system protocol, these
performance data are written back to rrd database in
Master Node and log file.

At the moment of overlapping two data charts
of the same MPI parallel program executed, since
their execution time are different, they will appear
side by side in different execution times. The log file
is used to correct this problem, and it helps us in
overlapping the two performance data charts in the
same execution, beginning at the same start point.

As MDF detects the end of execution of MPI
parallel program, this process will broadcast to every
computing node involved a message to stop
monitoring the computing nodes, and the process of
obtaining performance data can be stopped.

See figure 4 for additional explanations of this
step.

Figure 4. File system in rrd database and log file.

Step 4: During the programmer starts the
performance tuning process, by reviewing several
executions of the same MPI parallel program, the
programmer chooses some of several executions of
this MPI parallel program to display a combined data
chart of these selected executions. The scheme in
figure 5 shows details of this selection process.

Figure 5. Selection of specific executions of a MPI
parallel program during its development.

Step 5: The Visuel tool will clean up pending
processes by checking each of computing nodes,
since these only cause marginal errors in
performance data. Otherwise, it is possible to cause
programmers misinterpret obtained results.

4. Example of Use

We have used Visuel tool to study several distributed
applications. In particular in this section, we will
show the performance data with visualization
displays of the execution of a program, Matrix
Multiplication (MM), downloaded at Matrix Market
[4].

The experimental environment where the
experiment was executed is:

—16 PC nodes, with Fedora Core1 and Kernel

2.4.22-1.2115.nptl installed
— each node’s configuration is: CPU AMD

Athlon 2400+, 1GB DDR memory, 60GB HD,
interconnected via Fast Ethernet.

Our experiment is to execute matrix multiplication
(MM) using 8 nodes of the cluster system mentioned.
From the charts show in figure 6, we can observe that
the first 8 charts represent the CPU load in each one
of computer nodes.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

881

Figure 6. CPU usage in computing nodes of cluster,
where compute-0-X means X-th node of the cluster
system.

Figure 7. Memory Used in computing nodes of
cluster, where compute-0-X means X-th node of the
cluster system.

Our cluster is a 16-node system, so we proceeded
with our experiment using 8 of 16 nodes. It means
that the other 8 nodes were idle during the execution
of this experiment.

There are two charts in the figure 8, where the left
one is the CPU load and the right is the memory

usage. This is the chart that may show for the other 8
computing nodes that were not involved the
execution of our application.

Figure 8. Example of chart that shows those
computing nodes of the cluster system that were not
involved the execution of the experiment.

Additionally, We made modifications in a matrix
multiplication (MM) parallel program, turn it to two
different versions. We would like to compare these
two versions, to know which of them had a better
performance tuning.

Figure 9. Comparison of the original matrix
multiplication program and its modified version.

By analyzing the charts provided, we can
understand the execution of a MPI application from
the point it starts to when it finishes. We can have
from these charts each computing node’s information,
e.g., CPU usage, memory load. In this way, HPC
application designers will have information to
process “what-if” analysis and improve application’s
performance.

With these charts in our hands, we can clearly
have the total amount of resources needed in each
one of successive executions of an application under
development, challenging in each step a higher
performance of this application.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

882

By comparing the results obtained in each run
during “what-if” analysis (these information are
stored in the database), it is possible to know in
which one of all runs we had higher performance.
Also, it is possible that after several runs during
“what-if” analysis; almost nothing has changed when
comparing the charts. This means that the changes in
the application made by application developer not
sensitive to the application itself.

5. Conclusion

In this paper, a tool for performance monitoring
and measurement is introduced. With it, analysis of
bottlenecks and load balancing can be done,
improving the performance of MPI parallel
applications.

Visuel supports high-level parallel languages,
allowing programmers studying the performance of
their programs using the native abstractions of the
language. In addition, Visuel provide a detailed,
time-varying data displaying as easy-to-understand
charts about a MPI program’s performance. As
result, to work with MPI large applications in Visuel
can be as easy as to handle someone’s small
prototype application.

There are remaining many directions for our
future work. The first one is to extend this
monitoring tool for use in grid computing, so that we
can improve performance of applications in this
environment. A second research is to design a tool to
locate communication bottlenecks, since we know
that, for communication intensive applications,
matching the collective communication patterns can
reduce communication overheads and hence improve
performance.

The number of computing nodes is increasing in
most existing cluster systems, the complexity
involved in managing the resources in these systems
is high, making necessary to reduce database’s data
redundancy. Moreover, with the use of php in the
interface layer, it is possible to easily visualize the
performance data in computing nodes of cluster
systems.

The goal is to assist software programmer with
performance evaluations of his application, before
and after code modifications, understanding the use

of resources in each one of computing nodes
involved in the computation, scheduling better the
computation distribution of his computer program,
and finally, improve the performance of this
application.

References

[1] A. L. Cheung and A. P. Reeves. High

performance computing on a cluster of
workstations, IEEE 1992.

[2] Ganglia Cluster Toolkit. http://sourceforge.net

[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum.
A high-performance, portable implementation
of the MPI message passing interface standard,
in http://www.mcs.anl.gov/mpi/mpicharticle/
paper.html, Argonne National Laboratory,
1996.

[4] Matrix Market webpage.
http://math.nist.gov/MatrixMarket/

[5] B.P. Miller et al. The Paradyn parallel
performance measurement tools, IEEE
Computer, Special issue on performance
evaluation tools for parallel and distributed
computer systems, 28, 11, pp.37-46, 1995.

[6] MRTG Webpage, in http://www.mrtg.org

[7] D.K. Panda and L.M. Ni. Special Issue on
Workstation Clusters and Network-based
Computing: Guest Editors’ Introduction.
Journal of Parallel and Distributed Computing,
40(1), January 1997.

[8] RRDtool Webpage, in http://www.rrdtool.org

[9] J. Sang, C.M. Kim, T.J. Kollar and Isaac Lopez.
High-performance cluster computing over
Gigabit/Fast Ethernet, Informatica, 23, pages
19-27, 1999.

[10] DIMEMAS Tool Webpage
http://www.cepba.upc.es/dimemas/

[11] Pallas Products Webpage (VAMPIR tool)
http://www.pallas.de/e/products/vampir

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

883

