
On The Implementation and Experiences of
A MIL-STD-188-220C Ad Hoc Routing Protocol

Chih-Min Yu1*, Wen-Cheng Hsiao2, Hsueh-Chin Cheng3 , Chuan-Yi, Hsieh4

Information and Communication Research Division,
Chung-Shan Institute of Science and Technology,

 Taoyuan, Taiwan 325, Republic of China
Tel: +886 3 4712201ext 3533691,2,3,4

Fax: +886 3 4712591 1,2,3,4

E-mail: hankycm@ms47.hinet.net1, shiao@exodus.cs.ccu.edu.tw2, s0321506@ncnu.edu.tw3

Abstract

MIL-STD-188-220C defines a routing protocol to

achieve the unicast and multicast capabilities for a
multihop ad hoc network. In order to achieve these
capabilities, a topology update and a source directly
relay modules are defined for the routing protocol.

In this paper, we implement this routing protocol
over the 802.11b testbed and evaluate its system
performance. During the implementation, several
technical issues are discovered and the corresponding
solutions are proposed to realize this routing protocol.
In the topology update module, a topology update
algorithm is implemented. This algorithm solves the
assumption issue of this protocol in the standard and
can compute the topology table with two shortest
paths correctly. In the source directly module, a
common path selection algorithm is proposed and
implemented. This algorithm is used to select the
common shortest paths from a source node to
multiple destinations and saves wireless bandwidth to
deliver packets. Furthermore, the system throughput
performance is measured to demonstrate that both
modules and their algorithms can operate correctly.
Finally, the performance results also show that our
routing protocol over the testbed is feasible for both
unicast and multicast applications of multihop as
well as mobile ad hoc networks.

Index Terms—Ad hoc network, routing protocol,
multicast application, spanning tree

1. INTRODUCTION

Currently, routing protocols used in ad hoc
networks can be divided into three categories:
proactive, reactive, and hybrid routing protocols. In
the proactive category [1], each node maintains a
routing table. The advantage is little delay involved
in determining a route to achieve the QoS
requirement but causes the overhead in routing
information exchanges. In the reactive category [2], a
flooding method is usually used to search for the
optimal path from a source node to a destination
node and this will incur a certain amount of delay.
However, this reactive approach provides better

network scalability. In the hybrid category [3], a
proactive scheme is used locally and a reactive
scheme is used globally to discover a route.
Optimally, this protocol achieves the advantages of
both proactive and reactive categories.

MIL-STD-188-220C routing protocol [4] is
designed for the mobile ad hoc network that attempts
to achieve the unicast and multicast applications in
military operational environment. This routing
protocol belongs to the proactive category that each
node maintains the global network topology and
exchanges the routing information with its nearest
(one-hop) neighbors periodically. As a result, this
protocol allows each node to conduct the packet
transmission for unicast and multicast applications [5]
as needed. In order to achieve the routing capability,
a topology update module is defined. To support the
unicast and multicast applications, a source directly
relay module is defined.

In this paper, we implement both the topology
update and source directly relay modules over the
802.11b platform to build a multihop ad hoc testbed
[6][7]. During the implementation, several issues are
discovered and the corresponding solutions are
proposed. In the topology update module, an
assumption issue is how to be aware of the nearest
neighboring information for each node. The other
issue is how to realize the topology update algorithm
that is used to compute the network topology table.
In the source directly relay module, the
implementation issue is how to choose the final
selected paths from the potential paths for multicast
applications since the standard does not defined these
issues clearly.

In order to deal with the assumption issue, a hello-
like message is combined into the topology update
message to broadcast its own information for all
nodes to be aware of its nearest neighbors. In the
topology update algorithm, an identical redundant
path condition rule is added in this algorithm to
compute and update the topology routing information
correctly. In the source directly module, a common
path selection algorithm is proposed to select the
common shortest paths for multicast applications.
Finally, a testbed is built to measure and evaluate the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

827

mailto:s0321506@ncnu.edu.tw3

system throughput performance of this routing
protocol.

The rest of this paper is organized as follows.
Section 2 briefly describes the topology update and
source directly relay module of MIL-STD-188-220C
routing protocol and discusses the potential
implementation issues. Section 3 describes the
corresponding solutions for those implementation
issues and lists the pseudo code for both algorithms.
Section 4 evaluates the system performance of this
implemented routing protocol through the measuring
results of testbed and Section 5 concludes the paper.

2. MIL-STD-188-220C ROUTING

PROTOCOL OVERVIEW

2.1 Topology Update Algorithm

In this section, an example is used to illustrate the
topology update algorithm. Figure 1 shows a link
diagram of a sample network. In this network, all
nodes are communicated within a single wireless
transmission channel. Each node labeled 1 through 8
is a radio communication processor.

Assuming each node knows about its nearest
neighboring information initially, the topology
update message is used to exchange the topology
information in order to build up a complete network
topology at every node.

Figure 1. Link diagram of a sample network

Then each node will gain more topology
information by exchanging its own topology routing
tree with the nearest neighbors periodically. Finally,
The resulting topology routing tree information will
be stored in each node’s topology table.

In order to compute the topology routing tree in a
topology table, three topology update rules are
defined in the standard for the topology update
algorithm. First, before the topology routing tree is
saved in a topology table, each node will prune all
identical redundant links. Second, only the shortest
paths from the source node to all destination nodes
are retained. Third, at most two shortest paths can be
retained for redundant paths to other destinations.

After several iterations of topology update
message exchanges between nodes, each node will
update the topology routing tree with these three

rules. The final topology routing tree is computed
and updated to the topology table. Table 1 lists the
final converged topology table for node 1. The
column of node predecessor represents the upstream
node of destinations. The column of hops is used to
specify the hop distance from source node to
destination nodes.

After we investigated the behavior of the routing
algorithm, two implementing issues are found. One is
the assumption issue of how to be aware of the
nearest neighboring information for every node. The
other issue is how to implement this topology update
algorithm correctly.

Destination Node

Predecessor
Hops

2 1 1
3 1 1
4 1 1
5 2 2
6 4 2
5 3 2
6 3 2
7 5 3
7 6 3
8 6 3

Table 1. Final topology table of node 1

2.2 Source Directly Relay Algorithm

For packet transmission, each node can send data

to either one or many destinations by the source
directly relay module together with the topology
update module. This module can compute the
shortest transmission paths from one source node to
multiple destination nodes from the final topology
table as Table 1. Then this module assigns the whole
paths in packet header as source routing method to
deliver packets. In packet reception, this module also
checks the received packet header and decides
whether to receive or forward packets.

Here we describes the algorithm in this standard
for computing the common shortest path to all
selected destinations. First, each node needs to select
the whole potential paths from source to all
destinations. Then it compares all potential paths
with common nodes to decide the most one potential
path for each destination. Finally, this node merges
all these paths together and generates the common
shortest path and puts in the packet header to deliver
packets to multiple destinations at one time to save
network bandwidth.

Figure 2 shows the topology routing tree of Table
1. This is a spanning tree structure rooted from
source node to all destinations with up to two
shortest paths. For example, when node 1 sends
packets to destinations 5 and 6, the potential paths
are 1-2-5, 1-3-5, 1-3-6, and 1-4-6. Of these potential

11

22

33

44

55

66

77

8 8

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

828

paths, the most one potential path for destination 5 an
6 are 1-3-5 and 1-3-6 respectively.

After we investigated this example of this
algorithm, an implementation issue is found that the
standard does not define clearly of how to implement
this algorithm.

1

Figure 2. The final topology routing tree of node 1

3. ALGORITHM IMPLEMENTATION

In this section, we deal with the implementation
issues and the corresponding solutions for this
routing protocol. First we deal with the assumption
issue that each node is aware of its nearest
neighboring information initially. Then we describe
our implemented topology update algorithm. Finally,
a common path selection algorithm is developed for
source directly relay module to figure out the
resulting paths from the potential paths for all
designated destinations.

3.1 Implementation of Topology Update

Algorithm

In order to be aware of the nearest neighbors for

each node, a hello-like message is designed as Figure
3. This routing entry is added into the topology table
that is shown in Table 1 and then sent out by the
topology update message. This routing entry
represents the initial topology table format for each
node that contains only the information of node itself.

After exchanges this routing information by
topology update messages with its nearest neighbors,
each node obtains the routing information of the
nearest neighbors.

Node Address Node Predecessor Hops

1 0 0

Figure 3. The initial routing table at each node

In the topology update algorithm, each node
updates its topology table from the received topology
update message by the three topology update rules
described in section 2.1. Whenever each node
receives new topology update message, the topology

table is updated as the topology changes. Since each
node may retain up to two shortest paths to all
destinations, a phenomenon called the identical
redundant path problem is discovered during
implementation.

Here we use an example to illustrate this problem.
In Figure 4, node 1 contains the nearest neighboring
information after receiving the initial topology of its
nearest neighbors. First node 1 exchanges routing
information with node 2 and updates its topology
table in accordance with the three topology update
rules. Then node 1 receives the topology table from
node 3 and updates its topology table. As a result, the
topology table contains two identical redundant paths
1-4-5 with 3 hops after computation. This condition
will make the other useful shortest path cannot be
included and updated in the topology table since each
node can only retain up to two shortest paths.
Therefore, an additional rule needs to be added and
checked for this problem during topology table
updates.

4

The detailed topology update algorithm is
described by the pseudo code listed in Figure 5. This
algorithm considers all three criteria including the
non-identical path condition to check the identical
redundant path problem. With this new criterion, we
can make the final resulting topology table fulfill the
standard requirement and generate the correct
topology table as Table 1 and the topology routing
tree in Figure 2.

3

1

2

4 5

D P H

2 1 1

3 1 1

D P H

3 11
4 3 1
5 4 2

D P H

1 12
3 1 1
4 2 2
5 4 3

Node 2 table

Resulting table
from node 3 at
node 1

D P H

2 11
4 2 1
5 4 2

D P H

1 12
3 1 1
4 2 2
4 3 2
5
5

4
4

3
3

Resulting
table from
node 2 at
node 1

Assume node 1
receive table
from node 2 and
then receive table
from node 3

Node 3 table

3

1

2

4 5
3

1

2

4 5

D P H

2 1 1

3 1 1

D P H

2 1 1

3 1 1

D P H

3 11
4 3 1
5 4 2

D P H

3 11
4 3 1
5 4 2

D P H

1 12
3 1 1
4 2 2
5 4 3

D P H

1 12
3 1 1
4 2 2
5 4 3

Node 2 table

Resulting table
from node 3 at
node 1

D P H

2 11
4 2 1
5 4 2

D P H

2 11
4 2 1
5 4 2

D P H

1 12
3 1 1
4 2 2
4 3 2
5
5

4
4

3
3

D P H

1 12
3 1 1
4 2 2
4 3 2
5
5

4
4

3
3

Resulting
table from
node 2 at
node 1

Assume node 1
receive table
from node 2 and
then receive table
from node 3

Node 3 table

Figure 4. An identical redundant path problem

2 3

5

7

5

7

6 6

8 7 8 7

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

829

Figure 5. Topology update algorithm

3.2 Implementation of A Common Path

Selection Algorithm

In order to determine the final selected paths from

the potential paths for multicast applications, a
common path selection algorithm is developed.

From the topology routing tree structure in Figure
2, we observe an interesting phenomenon that the
identical nodes in the topology routing tree have the
same descendant nodes. In order to generate this
multicast routing table, we search the identical node
in the column of destination from the smallest hop
distance to the highest in Table 1.

When the identical nodes are discovered, we
locate their ancestor nodes and then compare the total
number of immediate descendant nodes of these
ancestors. The immediate descendant nodes of the
ancestor are defined as the downstream nodes that
directly connect with the ancestor node.

If more than two ancestor nodes have the same
largest immediate descendant nodes, one ancestor
node is selected randomly. As a result, only one
ancestor with the largest immediate descendant nodes
will be kept. However, the other identical nodes and
their descendant nodes along the downstream branch
of identical nodes will be pruned.

Then we deal with all other identical nodes using
the same criterion and keep only one identical node.
Finally, the selected paths for all destinations will be
stored in the multicast routing table.

For example, for node 1 in Table 1, there is no
identical node in the column of one hop. Then we

search the column for two hops, there exist two
identical nodes for node 5 and its ancestors are node
2 and node 3. Node 3 owns two immediate
descendant nodes and node 2 owns only one
immediate descendant node. Then the path from node
3 to node 5 is kept and the path from node 5 to node
7 including node 5 is pruned. We process other
identical nodes in accordance with this rule
continuously. The resulting selected paths for node 1
to all other destinations are shown in Figure 6. The
detailed algorithm to generate the multicast routing
table is described in Figure 7.

Topology_update_proc() {
do{

for (node i and j, i≠j){
 if (node i connects with node j){
 for (every j’s routing entry m){
 for (every i’s routing entry n){
 if (identical link)
 No update node i’s routing entry n;
 else
 if (shorter path exists)
 update node i’s routing entry n;
 else
 if (same shortest path length exists){
 if (shortest path num < 2 and

non- identical path)
 insert m into node i’s routing entry;
 }

 }
 if (no condition matches)
 insert m into node i’s routing entry;
}

}
}

}while (routing table of any node i changes);
}

4

 1

Figure 6. The selected paths to all destinations

Figure 7. The common path selection algorithm

2 3

5 6

7 8

Common_path_selection_proc()
{

int ancestor[an_size];
int max_no;
while (search hop <= largest hop distance)
{

for (search all nodes which have the same hops)
{

 if (identical nodes exists)
 {

find all identical nodes' ancestors and
store them in ancestor[an_size]

 }
}
for (j=1;j<=an_size;j++)
{
compute the numbers of 1-hop children for
all the ancestors which in the ancestor array
and choose the ancestor which has the largest
1-hop children and store it as max_no
if (more than two ancestors have same 1-hop nodes)
{

 randomly select one ancestor and store it as max_no
}
}
while (search the whole topology routing table

entries)
{
prune all identical nodes and their descendants
except which ancestor is max_no
}

}
}

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

830

4. TESTBED PERFORMANCE

In this section, both algorithms are implemented
in the Linux operation system kernel 2.4 over the
802.11b platform and the system performance is
evaluated.

4.1 Emulation Scenario

In order to simulate the multihop scenario and
measure the routing protocol performance, a string
topology is used that is shown in Figure 8. We also
edit the IP table in each platform to make nodes only
deal with the topology update messages from its
nearest neighbors for indoor performance
measurement.

1 2 3 4

Figure 8. The multihop ad hoc testbed scenario

4.2 Average Throughput Performance

A network performance and measurement tool

Iperf [8] is used to measure the throughput
performance for the following two network
configurations. This source node delivers UDP
packets to destinations and the destinations measure
the throughput results. These two configurations
include an indoor configuration and a mobility
configuration.

4.2.1 Indoor Configuration

The indoor connection configuration is same as

Figure 8. Node 1 sends out the multicast packets and
node 2, 3, and 4 measure the desired throughput
performance. The performance result is shown in
Figure 9. The resulting throughput performance is
decreasing when the hop distance is increasing. This
performance results reflect that the hop distance has
significant influence to the throughput performance
for this testbed. In addition, we demonstrate that the
source directly relay algorithm can also operate
correctly.

1 1.5 2 2.5 3
Hop distance (hops)

2

3

4

5

6

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bi
ts

/s
ec

)

Indoor throughput performance
Line of sight

Figure 9. Throughput of indoor configuration

4.2.2 Mobility Configuration

In this mobility configuration, only two nodes are

put into vehicles to measure the throughput
performance in outdoor environment. Each node is
mounted with a 5 dBi omni-directional vehicle
antenna to achieve 300 meter communication
distance with an average 6 Mbits/sec transmission
rate in an outdoor static environment.

Two mobility cases are used and measured for
throughput performance. One is the group movement
pattern in which two nodes go around a building
together with a 40 km/hr speed. The other one is the
relative movement pattern that two nodes head to
each other with 40 km/hr speed in the line of sight
environment. Figure 10 shows the throughput
performance results for these two movement cases.

With the result of group movement case, there is a
deep fade in throughput performance. From our
observation, this performance is seriously influenced
by the shadow effect when two nodes cannot see
each other directly by building blocking. Otherwise,
the average throughput performance of group
movement pattern is almost same as the static case
when two nodes can see each other directly.

With the result of relative movement case, the
average throughput is about 4.5 Mbits/sec in this
high relative speed environment. This throughput
performance is smaller than the group movement
case in the line of sight condition. This result reflects
that the mobility issue has significant influence on
this throughput performance.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

831

0 2 4 6 8
Measurement time (seconds)

10

2

3

4

5

6

7
A

ve
ra

ge
 th

ro
ug

hp
ut

 (M
bi

ts
/s

ec
)

Mobility perfomance
Group movement (node speed 40 km/hr)
Relative movement (relative speed 80 km/hr)

Figure 10. Throughput of mobility configuration

5. CONCLUSIONS

In this paper, we build a multihop ad hoc testbed
by implementing the MIL-STD-188-220C routing
protocol over the 802.11b platform. During the
implementation, some technical issues were found
and we developed our solutions for implementing
this routing protocol.

In the topology update module, a hello-like
routing entry is designed to deal with the assumption
issue. In addition, the topology update algorithm is
implemented in accordance with the three topology
update rules. Besides, the identical redundant path
problem is solved in this algorithm and the topology
table is updated correctly. In the source directly relay
module, a common path selection algorithm is
developed and implemented to select the common
shortest paths for multicast applications.

Finally, the performance results also show that our
MIL-STD-188-220C routing protocol over the
802.11b testbed is feasible for both unicast and
multicast applications of multihop as well as mobile
ad hoc networks.

REFERENCES

[1] T. Clausen et al., Optimized Link State Routing

Protocol, IETF MANET Working Group Internet
Draft, draft-ietf-manet-olsr-06.txt, Sep. 2001.

[2] D. B. Johnson, D. A. Maltz, and Y. C. Hu, “The

Dynamic Source Routing Protocol for Mobile
Ad Hoc Networks, IETF MANET working group,
draft-ietf-manet-dsr-07.txt, Feb. 2002.

[3] M. R. Pearlman and Z. J. Haas, “Determining the
Optimal Configuration for the Zone Routing
Protocol,” IEEE Journal on Selected Areas in
Communications, vol. 17, no. 8, Aug. 1999.

[4] DoD Interface Standard-Digital Message Device
Subsystems (MIL-STD-188-220C), May. 2002.

[5] B. Wang and C. J. Hou, “A Survey on Multicast
Routing and its QoS Extension: Problem,
Algorithm, and Protocol”, IEEE Network
Magazine, Jan./Feb. 2000, pp. 22-36.

[6] E.M. Royer and C.E. Perkins, “An
Implementation Study of the AODV routing
protocol”, IEEE Wireless Communication and
Networking Conference, 2000, pp. 1003-1008.

[7] D. A. Maltz , J. Broch, and D. B. Johnson,
“Lessons from a full-scale multihop wirelsss ad
hoc network testbed”, IEEE Personal
Communications, Feb. 2001, pp. 8-15.

[8] http://dast.nlanr.net/projects/iperf. “Network

performance and measurement tools Iperf”,
Version 1.7.0, March 2003.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

832

http://dast.nlanr.net/projects/iperf

