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Abstract 

 
MIL-STD-188-220C defines a routing protocol to 

achieve the unicast and multicast capabilities for a 
multihop ad hoc network. In order to achieve these 
capabilities, a topology update and a source directly 
relay modules are defined for the routing protocol. 

In this paper, we implement this routing protocol 
over the 802.11b testbed and evaluate its system 
performance. During the implementation, several 
technical issues are discovered and the corresponding 
solutions are proposed to realize this routing protocol. 
In the topology update module, a topology update 
algorithm is implemented. This algorithm solves the 
assumption issue of this protocol in the standard and 
can compute the topology table with two shortest 
paths correctly. In the source directly module, a 
common path selection algorithm is proposed and 
implemented. This algorithm is used to select the 
common shortest paths from a source node to 
multiple destinations and saves wireless bandwidth to 
deliver packets. Furthermore, the system throughput 
performance is measured to demonstrate that both 
modules and their algorithms can operate correctly. 
Finally, the performance results also show that our 
routing protocol over the testbed is feasible for both 
unicast and multicast applications of multihop as 
well as mobile ad hoc networks. 

Index Terms—Ad hoc network, routing protocol, 
multicast application, spanning tree 
 

1. INTRODUCTION 
 

Currently, routing protocols used in ad hoc 
networks can be divided into three categories: 
proactive, reactive, and hybrid routing protocols. In 
the proactive category [1], each node maintains a 
routing table. The advantage is little delay involved 
in determining a route to achieve the QoS 
requirement but causes the overhead in routing 
information exchanges. In the reactive category [2], a 
flooding method is usually used to search for the 
optimal path from a source node to a destination 
node and this will incur a certain amount of delay.  
However, this reactive approach provides better 

network scalability. In the hybrid category [3], a 
proactive scheme is used locally and a reactive 
scheme is used globally to discover a route. 
Optimally, this protocol achieves the advantages of 
both proactive and reactive categories.  

MIL-STD-188-220C routing protocol [4] is 
designed for the mobile ad hoc network that attempts 
to achieve the unicast and multicast applications in 
military operational environment. This routing 
protocol belongs to the proactive category that each 
node maintains the global network topology and 
exchanges the routing information with its nearest 
(one-hop) neighbors periodically. As a result, this 
protocol allows each node to conduct the packet 
transmission for unicast and multicast applications [5] 
as needed. In order to achieve the routing capability, 
a topology update module is defined. To support the 
unicast and multicast applications, a source directly 
relay module is defined.  

In this paper, we implement both the topology 
update and source directly relay modules over the 
802.11b platform to build a multihop ad hoc testbed 
[6][7]. During the implementation, several issues are 
discovered and the corresponding solutions are 
proposed. In the topology update module, an 
assumption issue is how to be aware of the nearest 
neighboring information for each node. The other 
issue is how to realize the topology update algorithm 
that is used to compute the network topology table. 
In the source directly relay module, the 
implementation issue is how to choose the final 
selected paths from the potential paths for multicast 
applications since the standard does not defined these 
issues clearly.  

In order to deal with the assumption issue, a hello-
like message is combined into the topology update 
message to broadcast its own information for all 
nodes to be aware of its nearest neighbors. In the 
topology update algorithm, an identical redundant 
path condition rule is added in this algorithm to 
compute and update the topology routing information 
correctly. In the source directly module, a common 
path selection algorithm is proposed to select the 
common shortest paths for multicast applications. 
Finally, a testbed is built to measure and evaluate the 
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system throughput performance of this routing 
protocol.  

The rest of this paper is organized as follows. 
Section 2 briefly describes the topology update and 
source directly relay module of MIL-STD-188-220C 
routing protocol and discusses the potential 
implementation issues. Section 3 describes the 
corresponding solutions for those implementation 
issues and lists the pseudo code for both algorithms. 
Section 4 evaluates the system performance of this 
implemented routing protocol through the measuring 
results of testbed and Section 5 concludes the paper.  

 
2. MIL-STD-188-220C ROUTING 

PROTOCOL OVERVIEW 
 

2.1 Topology Update Algorithm 
 

In this section, an example is used to illustrate the 
topology update algorithm. Figure 1 shows a link 
diagram of a sample network. In this network, all 
nodes are communicated within a single wireless 
transmission channel. Each node labeled 1 through 8 
is a radio communication processor.  

Assuming each node knows about its nearest 
neighboring information initially, the topology 
update message is used to exchange the topology 
information in order to build up a complete network 
topology at every node.  

 

Figure 1. Link diagram of a sample network 

Then each node will gain more topology 
information by exchanging its own topology routing 
tree with the nearest neighbors periodically. Finally, 
The resulting topology routing tree information will 
be stored in each node’s topology table.  

In order to compute the topology routing tree in a 
topology table, three topology update rules are 
defined in the standard for the topology update 
algorithm. First, before the topology routing tree is 
saved in a topology table, each node will prune all 
identical redundant links. Second, only the shortest 
paths from the source node to all destination nodes 
are retained. Third, at most two shortest paths can be 
retained for redundant paths to other destinations.  

After several iterations of topology update 
message exchanges between nodes, each node will 
update the topology routing tree with these three 

rules. The final topology routing tree is computed 
and updated to the topology table. Table 1 lists the 
final converged topology table for node 1. The 
column of node predecessor represents the upstream 
node of destinations. The column of hops is used to 
specify the hop distance from source node to 
destination nodes. 

After we investigated the behavior of the routing 
algorithm, two implementing issues are found. One is 
the assumption issue of how to be aware of the 
nearest neighboring information for every node. The 
other issue is how to implement this topology update 
algorithm correctly. 

 
Destination  Node 

Predecessor 
Hops 

2 1 1 
3 1 1 
4 1 1 
5 2 2 
6 4 2 
5 3 2 
6 3 2 
7 5 3 
7 6 3 
8 6 3 

 
Table 1. Final topology table of node 1 

 
2.2 Source Directly Relay Algorithm  

 
For packet transmission, each node can send data 

to either one or many destinations by the source 
directly relay module together with the topology 
update module. This module can compute the 
shortest transmission paths from one source node to 
multiple destination nodes from the final topology 
table as Table 1. Then this module assigns the whole 
paths in packet header as source routing method to 
deliver packets. In packet reception, this module also 
checks the received packet header and decides 
whether to receive or forward packets.  

Here we describes the algorithm in this standard 
for computing the common shortest path to all 
selected destinations. First, each node needs to select 
the whole potential paths from source to all 
destinations. Then it compares all potential paths 
with common nodes to decide the most one potential 
path for each destination. Finally, this node merges 
all these paths together and generates the common 
shortest path and puts in the packet header to deliver 
packets to multiple destinations at one time to save 
network bandwidth. 

Figure 2 shows the topology routing tree of Table 
1. This is a spanning tree structure rooted from 
source node to all destinations with up to two 
shortest paths. For example, when node 1 sends 
packets to destinations 5 and 6, the potential paths 
are 1-2-5, 1-3-5, 1-3-6, and 1-4-6. Of these potential 
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paths, the most one potential path for destination 5 an 
6 are 1-3-5 and 1-3-6 respectively.  

After we investigated this example of this 
algorithm, an implementation issue is found that the 
standard does not define clearly of how to implement 
this algorithm.  

 

 

1

 
 
 

Figure 2. The final topology routing tree of node 1 
 
3. ALGORITHM IMPLEMENTATION 
 

In this section, we deal with the implementation 
issues and the corresponding solutions for this 
routing protocol. First we deal with the assumption 
issue that each node is aware of its nearest 
neighboring information initially. Then we describe 
our implemented topology update algorithm. Finally, 
a common path selection algorithm is developed for 
source directly relay module to figure out the 
resulting paths from the potential paths for all 
designated destinations. 
 
3.1 Implementation of Topology Update 

Algorithm 
 
In order to be aware of the nearest neighbors for 

each node, a hello-like message is designed as Figure 
3. This routing entry is added into the topology table 
that is shown in Table 1 and then sent out by the 
topology update message. This routing entry 
represents the initial topology table format for each 
node that contains only the information of node itself. 

After exchanges this routing information by 
topology update messages with its nearest neighbors, 
each node obtains the routing information of the 
nearest neighbors. 

 
Node Address Node Predecessor Hops 

1 0 0 
 

Figure 3. The initial routing table at each node 
 

In the topology update algorithm, each node 
updates its topology table from the received topology 
update message by the three topology update rules 
described in section 2.1. Whenever each node 
receives new topology update message, the topology 

table is updated as the topology changes. Since each 
node may retain up to two shortest paths to all 
destinations, a phenomenon called the identical 
redundant path problem is discovered during 
implementation.  

Here we use an example to illustrate this problem. 
In Figure 4, node 1 contains the nearest neighboring 
information after receiving the initial topology of its 
nearest neighbors. First node 1 exchanges routing 
information with node 2 and updates its topology 
table in accordance with the three topology update 
rules. Then node 1 receives the topology table from 
node 3 and updates its topology table. As a result, the 
topology table contains two identical redundant paths 
1-4-5 with 3 hops after computation. This condition 
will make the other useful shortest path cannot be 
included and updated in the topology table since each 
node can only retain up to two shortest paths. 
Therefore, an additional rule needs to be added and 
checked for this problem during topology table 
updates.  

  
   

4   

The detailed topology update algorithm is 
described by the pseudo code listed in Figure 5. This 
algorithm considers all three criteria including the 
non-identical path condition to check the identical 
redundant path problem. With this new criterion, we 
can make the final resulting topology table fulfill the 
standard requirement and generate the correct 
topology table as Table 1 and the topology routing 
tree in Figure 2. 
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Figure 4. An identical redundant path problem  
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Figure 5. Topology update algorithm 
 
3.2 Implementation of A Common Path 

Selection Algorithm 
 
In order to determine the final selected paths from 

the potential paths for multicast applications, a 
common path selection algorithm is developed.  

From the topology routing tree structure in Figure 
2, we observe an interesting phenomenon that the 
identical nodes in the topology routing tree have the 
same descendant nodes. In order to generate this 
multicast routing table, we search the identical node 
in the column of destination from the smallest hop 
distance to the highest in Table 1.  

When the identical nodes are discovered, we 
locate their ancestor nodes and then compare the total 
number of immediate descendant nodes of these 
ancestors. The immediate descendant nodes of the 
ancestor are defined as the downstream nodes that 
directly connect with the ancestor node.  

If more than two ancestor nodes have the same 
largest immediate descendant nodes, one ancestor 
node is selected randomly. As a result, only one 
ancestor with the largest immediate descendant nodes 
will be kept. However, the other identical nodes and 
their descendant nodes along the downstream branch 
of identical nodes will be pruned.  

Then we deal with all other identical nodes using 
the same criterion and keep only one identical node. 
Finally, the selected paths for all destinations will be 
stored in the multicast routing table.  

For example, for node 1 in Table 1, there is no 
identical node in the column of one hop. Then we 

search the column for two hops, there exist two 
identical nodes for node 5 and its ancestors are node 
2 and node 3. Node 3 owns two immediate 
descendant nodes and node 2 owns only one 
immediate descendant node. Then the path from node 
3 to node 5 is kept and the path from node 5 to node 
7 including node 5 is pruned. We process other 
identical nodes in accordance with this rule 
continuously. The resulting selected paths for node 1 
to all other destinations are shown in Figure 6. The 
detailed algorithm to generate the multicast routing 
table is described in Figure 7. 

Topology_update_proc() { 
do{ 

for (node i and j, i≠j){ 
        if (node i connects with node j){ 
            for (every j’s routing entry m){ 
                for (every i’s routing entry n){ 
                    if (identical link) 
     No update node i’s routing entry n; 
              else 
                     if (shorter path exists) 
                         update node i’s routing entry n; 
                    else 
                    if (same shortest path length exists){ 
                        if (shortest path num < 2 and  

non-  identical path) 
                        insert m into node i’s routing entry; 
                    } 

    } 
    if (no condition matches) 
        insert m into node i’s routing entry; 
} 

} 
} 

}while (routing table of any node i changes); 
}

 

4 

 1 

Figure 6. The selected paths to all destinations  
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. The common path selection algorithm 
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Common_path_selection_proc() 
{ 

int ancestor[an_size]; 
int max_no; 
while (search hop <= largest hop distance) 
{ 

for (search all nodes which have the same hops) 
{ 

 if (identical nodes exists) 
 { 

find all identical nodes' ancestors and  
store them in ancestor[an_size] 

 } 
} 
for (j=1;j<=an_size;j++) 
{  
compute the numbers of 1-hop children for  
all the ancestors which in the ancestor array  
and choose the ancestor which has the largest  
1-hop children and store it as max_no 
if (more than two ancestors have same 1-hop nodes) 
{ 

 randomly select one ancestor and store it as max_no 
} 
} 
while (search the whole topology  routing table 

entries) 
{ 
prune all identical nodes and their descendants 
except which ancestor is max_no 
} 

} 
}
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4. TESTBED PERFORMANCE 
 

In this section, both algorithms are implemented 
in the Linux operation system kernel 2.4 over the 
802.11b platform and the system performance is 
evaluated.  

 
4.1 Emulation Scenario  
 

In order to simulate the multihop scenario and 
measure the routing protocol performance, a string 
topology is used that is shown in Figure 8. We also 
edit the IP table in each platform to make nodes only 
deal with the topology update messages from its 
nearest neighbors for indoor performance 
measurement. 

 

1 2 3 4

 
Figure 8. The multihop ad hoc testbed scenario 

 
4.2 Average Throughput Performance 

 
A network performance and measurement tool 

Iperf [8] is used to measure the throughput 
performance for the following two network 
configurations. This source node delivers UDP 
packets to destinations and the destinations measure 
the throughput results. These two configurations 
include an indoor configuration and a mobility 
configuration.  

 
4.2.1 Indoor Configuration 

 
The indoor connection configuration is same as 

Figure 8. Node 1 sends out the multicast packets and 
node 2, 3, and 4 measure the desired throughput 
performance. The performance result is shown in 
Figure 9. The resulting throughput performance is 
decreasing when the hop distance is increasing. This 
performance results reflect that the hop distance has 
significant influence to the throughput performance 
for this testbed. In addition, we demonstrate that the 
source directly relay algorithm can also operate 
correctly. 
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Figure 9. Throughput of indoor configuration 
 
4.2.2 Mobility Configuration 

 
In this mobility configuration, only two nodes are 

put into vehicles to measure the throughput 
performance in outdoor environment. Each node is 
mounted with a 5 dBi omni-directional vehicle 
antenna to achieve 300 meter communication 
distance with an average 6 Mbits/sec transmission 
rate in an outdoor static environment. 

Two mobility cases are used and measured for 
throughput performance. One is the group movement 
pattern in which two nodes go around a building 
together with a 40 km/hr speed. The other one is the 
relative movement pattern that two nodes head to 
each other with 40 km/hr speed in the line of sight 
environment. Figure 10 shows the throughput 
performance results for these two movement cases.  

With the result of group movement case, there is a 
deep fade in throughput performance. From our 
observation, this performance is seriously influenced 
by the shadow effect when two nodes cannot see 
each other directly by building blocking. Otherwise, 
the average throughput performance of group 
movement pattern is almost same as the static case 
when two nodes can see each other directly. 

With the result of relative movement case, the 
average throughput is about 4.5 Mbits/sec in this 
high relative speed environment. This throughput 
performance is smaller than the group movement 
case in the line of sight condition. This result reflects 
that the mobility issue has significant influence on 
this throughput performance. 
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Figure 10. Throughput of mobility configuration 
 

5. CONCLUSIONS 
 

In this paper, we build a multihop ad hoc testbed 
by implementing the MIL-STD-188-220C routing 
protocol over the 802.11b platform. During the 
implementation, some technical issues were found 
and we developed our solutions for implementing 
this routing protocol.  

In the topology update module, a hello-like 
routing entry is designed to deal with the assumption 
issue. In addition, the topology update algorithm is 
implemented in accordance with the three topology 
update rules. Besides, the identical redundant path 
problem is solved in this algorithm and the topology 
table is updated correctly. In the source directly relay 
module, a common path selection algorithm is 
developed and implemented to select the common 
shortest paths for multicast applications.  

Finally, the performance results also show that our 
MIL-STD-188-220C routing protocol over the 
802.11b testbed is feasible for both unicast and 
multicast applications of multihop as well as mobile 
ad hoc networks. 
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