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Abstract

Based on the two-dimensional (2-D) operator
correlation algorithm, a novel approach of VLSI
architecture design called non-separate architecture is
developed to implement the 2-D discrete periodized
wavelet transform (DPWT) in this paper. The main features
of the architecture are short-time latency, short bit length
request, and fast to derive intact octave band components
for the purpose of perfect reconstruction. The architecture is
composed of three functional units: parallel multipliers,
data accumulator, and input data controller. The architecture
is in the nature of a parallel processing structure. As a
consequence, its parallel modularity makes it well suited for
VLSI implementation. A detailed analysis of finite
precision performance on the accuracy of 2-D filter
coefficients, 2-D DPWT coefficients, and the reconstructed
data is also presented in this paper. The overall architecture
has been successfully simulated with 21 data bits of Verilog
behavioral model simulation to confirm the feasibility.

L. Introduction

With the significant capability of multi-scale spatial-
frequency representation, the 2-D discrete wavelet
transform (DWT) developed by Mallat [1-2] has been used
in digital image analysis as a powerful tool. The 2-D DWT
decomposes a digital image into its different frequency
components with octave separation manner, exactly, four
sub-images, called octave band decomposition. It is well
known that the original image can be reconstructed by the
inverse 2-D DWT of the octave band components. In many
practical applications such as image coding and
compression [3-7], digital image processing [8], scene
analysis [9,10], and computer graphics [11,12], they
generally require the results of perfect reconstruction (PR)
in the inverse process. By this means, the reconstructed
image from the inverse 2-D DWT is identical to the original
image to the 2-D DWT [4].
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To guarantee the PR result, a finite image in each
resolution level (or decomposition stage) should be
regarded as a 2-D periodic signal. Otherwise, the
information loss will be occurred on each octave image
boundary, particularly, when the discrete-time filter length
is greater than two. As illustrated an example is shown in
Fig.1, a 512x512 image is recursively decomposed until the
resolution level of 8x8 image by using the 4-tap Daubechies
filter. The result of serious distortion phenomenon is
revealed in the upper and left part of the reconstructed
image. The periodic assumption implies that PR result of
the 2-D DWT can be derived by using the periodized
wavelets [13], i.e., the 2-D DPWT.

For real time processing, several VLSI architectures
have been proposed to implement the 2-D DWT. Lewis and
Knowles [14] proposed an architecture without multipliers
to compute the 4-tap Daubechies 2-D DWT. However, this
architecture is not suitable for other wavelets. Based on
using the RAM transposer, the architecture [15-16] can
provide intact octave band components for the purpose of
PR result. But, the disadvantage of this architecture is that
it needs long latency. Recently, Vishwanath et al. [17] have
proposed a systolic-parallel architecture for computing the
2-D DWT with the advantages of area efficiency and short
latency (latency=1). The main idea of the architecture
design is based on the interleaved computation technology
to reduce the latency. In other words, the computations of
the various octaves are interspersed into the first octave.
The part of systolic architecture is based on the recursive
pyramid algorithm [18]. The architecture requires 64

multipliers, 2dN storage cells, and N* + N clock cycles
for decomposing an NxN original image, where d
denotes the discrete-time filter length. However, due to
lacking the ability of saving the boundary data, the
architecture can not provide the inverse 2-D DWT with the
PR result. To solve the problem, Truong et al. {19] have
proposed a new VLSI architecture to perform the 2-D

_DPWT process. The architecture design is based on the

concept of batch processing. That is, all the octave
components in same resolution level are centralized and
processed in a specified time interval in which the data
sequence can not be interleaved and inserted by the
components of other resolution levels. In this architecture,
the first stage decomposition is processed during the even-
number rows of original image while the other levels are all
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concentratedly processed during the odd-number rows. The
architecture requires 4d multipliers, (2d-1)N storage

cells, d+3 de-multiplexes, and less than N? + N clock
cycles for decomposing an NxN original image.
However, to deal with the boundary data, the architecture
(2 (k+1) 1) N
clock cycles, to derive the last row components in the k -
th decomposition level, where k22.

Essentially, all the proposed VLSI architectures [14-19]
are based on the conventional separate computation, i.€.,
they use the 1-D filter coefficients in row and column
transforms. The conventional architectures have the merit
of small area. However, the separate computation usually
needs long bit length representation of the 1-D filter
coefficients for satisfying the desired finite precision. The
long bit length request eventually results in decreasing the
area efficiency. Besides, the conventional architectures
need complex circuit to deal with the boundary data and
long delay time to derive intact octave band components
for the PR result.

Employing the modified high pass filter, an operator
correlation algorithm is presented to implement the 2-D
DPWT process. The modified 2-D DPWT can provide the
octave decomposition processes with synchronously
handling the boundary data. In addition, the 2-D operator
correlation algonthm requesting shorter bit length and less
multiplication is superior to the conventional method.
Based on the 2-D operator correlation algorlthm, a novel
parallel-like VLSI architecture is proposed in this paper.
The architecture directly using the 2-D filter coefficients is
called the non-separate architecture. It is composed of three
basic function units: parallel multipliers, data accumulator,
and input data controller. The non-separate architecture has
the features described as: 1) short-time latency; 2) simple,
modular, no input delay, and free to the constrain of

needs a long extra processing time, i..,

decomposition stages; 3) short extra time to derive the last

row components, ie., KN clock cycles for the k-th
decomposition stage.

In next section, the 2-D operator correlation algorithm
for the modified 2-D DPWT implementation is presented.
The analysis of finite precision in 2-D DPWT is shown in
section IIl. The non-separate VLSI architecture as well as
its simulation result are presented in the section I'V. Finally,
the section V presents the discussions and conclusion.

I Operator Correlation Algorithm for Implementing
the 2-D Discrete Periodized Wavelet Transform
Applying the periodized wavelets [13] into the 2-D
DWT, the multiresolution decomposition process of a 2-D
image is called the 2-D DPWT. With the 2-D DPWT, PR
result of the reconstructed image can be derived in the
inverse process. However, since the classical 2-D DPWT
has time lag between the low pass and the high pass
filtering processes, the time lag may cause inconvenience
in VLSI architecture design when to deal with the boundary

data. In this section, an operator correlation algorithm is
presented to perform the modified 2-D DPWT. This
algorithm for implementing the 2-D DPWT requires less
multiplications and shorter bit length for required accuracy
than the separate computation method.

2.1. Review of The 2-D DPWT

The periodized wavelets [13] can be defined by a sum
of copies of periodically shifted wavelets with reasonable
decay. These periodized wavelets form an orthonormal

basis in the L*([0,1]) which denotes a 1-D Hilbert space in
the interval [0,1]. Let #(x) and w(x) denote a scaling
function and the corresponding mother wavelet function,
respectively. For a certain jeZ, the set of translation
functions {g,,(x)=2"""2¢(2/x-n)neZ} constitutes
an orthonormal basis for the multiresolution approximation
subspace ¥, < L*(R). Whereas the set of dilations and
translations {y;,(x)=2"/"?y(2/x-n); jneZ} consti-
W,
is the closed subspace with basis {y,,(x),ne Z} and also

tutes an orthonormal basis for L*(R). For fixed j,

referred to as the multiresolution approximation subspace.
The 1-D periodized scaling and wavelet functions are
defined as

§0()= 24+ 05 95,00= 2,648 (1)
The correspondmg perlodlc multlresoluuon approxunatlon
subspaces V and W are spanned by ¢J (x) and
as in the
satisfy the
embedded property and orthogonal complement property. It
is also shown in [13] that for j<O0, I7j is spanned by
finite functions of ¢;,(x) with ne Z; = {0,127/ -1}.
A similar result holds for W , with ;Zj’,,(x) replaced by

¥in(x) for neZ, respectively. Besides,

nonperiodic case, subspaces V; and W,

W;n(x). For j<0, the functions ¢, .(x) and 7, (x)
satisfy the following dilation equations:

- Nt -

$a(x)= Z: hi(k —2n)y 16,14 (x), @
N-1 _

V7j_n (x)= I‘Z_: gl(k-2n)y ]¢j—l,k (=), 3)

where N=2"Y"  (k-2n), denotes the residual of

(k—2n) mod N and the two coefficients I;[(m) ~) and
g[(m) ] have the orthogonal relationship of
gl(m)y 1= (D" A{(=n +1),]. @
The 1-D periodized wavelet theory can be extended to

the 2-D case [1-2] in which the 2-D DPWT is usually
performed by a separable approach. The four corresponding
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V Wj,and

periodic multiresolution subspaces W} ,

"713 are spanned by ®@;, . (x,), W (5,5),
g2 Jony (X,9) 92 jumy (%,y) for my,ny, € Z , respectively.

For j<O0, a finite 2-D function f(x, y)eV,, can be
approximately represented as

f(x,y)= Z Z (SSj+l[nl’n2] q)j,nl,nz(x’y)

meZ;, nyeZ;,

+‘S'Dj-l-l[nl’nZ] lFlf»"h"z (X,,V)

+ DS [, 1] ¥ oy (%, )

+DD(n,m] P (%, 7) - (%)
Note that the term SS;,[n,n,] can be further
decomposed recursively. The fout 2-D DPWT coefficients
SS;., SDju, DS;,;,and DD, corresponding to the
projection of f(x,y) onto the subspaces 17]., W} ,

w jz ,and W 1-3 , respectively. To derive the 2-D DPWT

- coefficients in a separable case, there exists a pyramid
algorithm [2]. The algorithm can be represented in terms
of matrix form. An example of j=-3 is shown as

follows:

[SS_,(m.n)]= H x[SS_3 0k, k)X AT, ©6)
[SD_; (1)) = A [SS_3(ky, k)< GT Q)
[DS_y(m,m)]= G x[SS_s (ki k)X AT, ®)
[DD_,(m,m,)] = G x[SS_3(k1, k)]x G, ©)

where HT and G” denote the transposes of H and G,
respectively. The filter matrices H and G are given by

[ h{0] Al1] W23 0 0 0 0

G| O O HOIANARIAB] 0 O 10)
0 0 0 0 A[0]A[1)A[2]A[3]
A[21AB31 0 0 0 0 A{0]A[1]

and i '

R11-A[0) 0 O O 0 &[3]-A[2)
Go|HBI-H2 A -AOI 0 0 0 0 )
0 0 h[B1-A21A1]-A0] O ©
[ 0 0 0 0 h[3]-A[2] A1] - A[0]

Egs. (6)-(9) called the 2-D DPWT show a recursive
decomposition process. It can be easily shown that the 2-D
DPWT provides adequate octave components for perfect
reconstruction. For an image decomposed into six stages,
The reconstructed image by the inverse 2-D DPWT is
shown in Fig.2.

2.2. The Operator Correlation Algorithm

Comparing the two matrices H and G, it is obvious
that the low pass filter has two points of time lag relating to
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the high pass filter at beginning process. This will cause a
problem in the VLSI architecture design. To eliminate this
time lag problem, the orthogonal property of even cyclic
shift in the high pass filter can be used. That is,

< 81n) 2l(n + 2m), 1 >= < Zlul, Blulexpl jrma/ N>
=St expljammu/ N1 =0, 1)

where meZ, N =27 and glu] denotes the discrete
Fourier transform of g{n]. By Eq.(12), one takes right
circular shifting of d—-2 elements in the G matrix,
where d denotes the discrete-time filter length. Then the
modified matrix G, can be yielded as
R[3]-A[21 A1) -h0] O O O
0 O h[3]-h[2]Al1]-A[0] O
0 0 0 O AB)-A21A1]-A0]|
B1]-h[0] 0 0 0 0 A3]-A[2]

Comparing Eq.(11) with Eq.(13), it can be found that the
two vector spaces spanned by the four orthonormal row

0
0

13)

vectors in G and &, are identical. However, employing

the G, and H in the 2-D DPWT, all the four band
components can be computed synchronously and require
same boundary data. Besides, for a filter with length d,

the separate computation requires d* +d multiplications
to compute each 2-D DPWT coeflicient.
The modified 2-D DPWT can be further simplified by

applying the m -shift operator correlation process (0,,)

defined as follows:

Definition 1. Let f(x,y) denote a N xM digital image
and w(k,f) denote a K x L operator, where 0<K <N
and O0<L<M. The m-shift operator correlation
processes of f(x,y) and w(k,f),ie., o, isdefined by

b(i, =Wk, 0) 0, f(x,¥) =
L-1 K-1

2 2 Sm+ k), (j-m+0),)-wk,0),
=0

k=0
.o s . N-1 .
where b(i, j) is a (int(——)+1)x(int(
m

M ‘1)+1) digital

m
image and int(x) denotes the integral part of x. With

m=2 in o, ,the 2-D DPWT process can be rewritten by

[SS_o(m,m)] =Wy, 0, [SS_3(h. k)]s (14)
[SD_y(m, )| =Wy 0, [SS_30k,K5)]; 15
[DS_y ()= Wy, 0, [SS_3(ki,ky)); (16)
[DD_y(ny,m)]= Wy, 0, [SS_3(ki k)], amn

where W, , W, Wy, and Wy, are called the 2-D
DPWT operators defined as follows:

Wy =[hG)-h(N); jez, s (18)
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Wi =10’ h(i)- BB = ) jez, s (19)
We, =[(=1" BB =i)-h(D], jez, 5 (20)
War = (D hB=i)- k(3= )], jez, - 1)

In general, there are dxd elements in each 2-D DPWT
operators for a filter with length 4. The elements in the
operators are called the 2-D DPWT filter coefficients. To
compute a 2-D DPWT coefficient, the 2-D operator

correlation algorithm needs d? multiplications.

I11. Performance Analyses of Finite Precision

For VLSI implementation of the 2-D DPWT process, it
is desirable to convert the real number of 2-D filter
coefficients to finite precision integer. In this section, three
performance analyses of a finite precision 2-D DPWT
process are presented. It shows that more accuracy result
can be derived by directly using the 2-D filter coefficients
than using two transforms of the 1-D DPWT. In other
words, fewer bits for filter coefficients representation is
required in the 2-D operator correlation algorithm.

Since the input data of digital image are integral
numbers, e.g., 8-bits, one defines the 2-D filter coefficients
in p bits precision and the intermediate 2-D DPWT

coefficients in ¢ bits precision, where ¢>p+8. For
simplicity in our analyses, the 2-D filter coefficients are
normalized such that the sum of the filter coefficients in LL
band is equal to one and the sums in other bands are all
equal to zero. To have p bits precision, let I, =27,
we multiply each 2-D filter coefficient by /_,_ .and round
the result to the closest integer value. Then all the 2-D filter
coefficients for even number of p can be converted to the
integral numbers located in the half open region
[—1 s+ m ) - For odd number of p, the converted 2-D
filter coefficients will locate in the open region
(1 s L rax ) - To keep g -bits precision in the 2-D DPWT
process, one divides all the 2-D DPWT coefficients in LL
band, ie., SS;,; by I, for next stage decomposition.
The exact g value can be determined by the maximum 2-

D DPWT coefficients in an analysis.

To analyze round-off error effect, a finite precision
_performance of 2-D filters is evaluated. All the real values
of original 2-D filter coefficients are firstly converted to p
bits precision integer values. Then, one divides the integers
by /.. and reconstructs the real number form of 2-D filter
coefficients. The reconstructed filter coefficients are
evaluated with the original coefficients for each band. The
root-mean-square value of signal-to-noise ratio (SNRrms)
is used as the measurement parameter. Let 4 denote the
filter length. One accuracy measurement result of LL band
2-D filter is shown in Fig.3 in which the horizontal axis

denotes the precision of p bits, where I =2”". Four

Daubechies’ filters with d =4, 6, 8, and 10 are evaluated.
For comparison with the conventional method that uses 1-D
filter coefficients, one first multiplies the 1-D filter

coefficients (h(n)) by ﬂ/Im and rounds to the closest

integer value. Then, one constructs the integer
representation of 2-D filter coefficients. Finally, one
converts the integral 2-D filter coefficients to real values.
By the same measurement method, the finite precision
performance of the LL band 2-D filter is shown in Fig.4. In
comparison with Fig.3 and Fig.4, it clearly reveals that the
2-D DPWT with the 2-D operator correlation algorithm can
obtain better finite precision value of 2-D filter coefficients
than with the conventional separate method that 1-D
coefficients are used in both row and column transforms.

To analyze the finite precision performance of 2-D
DPWT process, it usually uses practical signals and
requires two accuracy measurements of the 2-D DPWT
coefficients and the reconstructed signals. In our analyses,
four images (baboon, lake, Lena, and peppers images) have
been evaluated and four Daubechies’ filters with d =4, 6,
8,and 10 are used. An image is recursively decomposed into
six stages, where each subband image in the last stage has
8x8 dimensions. All the integral 2-D DPWT coefficients
in each subband image of each stage are then converted to
real value for accuracy measurement. The corresponding
references in the comparison are derived by double
precision real value. Choose the baboon image and let 2-D
DPWT coefficients in all decomposition stages be 21-bits
precision (i, p=12 and g¢=21), an accuracy
measurement of finite precision 2-D DPWT coefficients is
illustrated in Table 1. In the analyses of four images, the
maximum 2-D DPWT coefficient is 534728 happened in
the third stage of lake image with d=10 and I_, =2048.

Since we are only interested in the 2-D DPWT process, the
finite precision effect of inverse process is neglected. Hence,
the converted real values of 2-D DPWT coefficients are
directly used in the inverse 2-D DPWT process to derive
the reconstructed image. Fig.5 shows the accuracy
measurements of the reconstructed baboon images.

IV. The Non-Separate VLSI Architecture

In the operator correlation algorithm, the four 2-D
DPWT operators are parallelly performed by double
shifting in both row and column orientations. Among the
four operators, there exist reflection properties and high
repetition of the 2-D filter coefficients. Based on the
analysis of the operator correlation algorithm, a new VLSI
architecture called non-separate architecture for the 2-D
DPWT implementation is presented in this paper. The
architecture requires interleaved input data that is similar in
the data format to Vishwanath’ architecture [17].

In examining the four 2-D DPWT operators, where the
negative sign is neglected, it can be found that there exist
two mirror reflections among the four 2-D DPWT operators.



The 2-D filter coefficients in ¥, and W,, (or W, and
W) have left-and-right mirror-image correspondence
while those in W,, and W, (or W, and W, ) have

up-and-down mirror-image correspondence. The four
operators will be synchronously used to process the same
input data. To combine the four operator correlation
processes into one processing manner, one can firstly
multiply all the input data by their exact corresponding 2-D
filter coefficients in W, to generate the weighted input

data. Then the LL band 2-D DPWT coefficients, i.e., SS
can be obtained by two data accumulation processes. For
matching to input data format generally defined by row
scanner, the data accumulation processes are consisted of
one row accumulation followed by one column
accumulation. In row accumulation, the weighted input data
will be accumulated from left to right to compute the sum
of d length weighted data. In column accumulation, the
row sums will be accumulated from top to bottom to obtain
the coefficients SS. To obtain the coefficients SD, the
row accumulation should be performed in opposite
direction. By the similar way, one can obtain the
coefficients DS and DD by changing the direction of
column accumulation. Hence, in terms of the reflection
properties, The 2-D operator correlation algorithm can be
carried into the simple execution procedures described as: 1)
Multiply input datum by 2-D filter coefficients to derive the
weighted data. 2) Accumulate the weighted data in row
orientation to compute the row sums. 3) Finally, accumulate
the row sums in column orientation to derive octave data.
Based on the execution procedures, the non-separate
architecture depicted in Fig. 6 is essentially consisted of
three functional units, i.e., the parallel multipliers, the data
accumulators, and the input data controller. The overall
aspect of the proposed architecture is in the nature of a
parallel processing structure in which the processing of
each data accumulator is independent. Hence simple control
timing is requested. System clock with frequency f; is
employed in the input data controller and the clock timing
with frequency f /2" employed in the data

accumulator in the k -th decomposition stage. The latency
of 2-D DPWT coefficients is one system clock cycle. Since
a system clock cycle will involve only one multiplication,
two adds, a p 1 bits shifting, and data transmission delay.
Hence, the proposed architecture will have shorter latency
than the conventional separate architecture that needs at
least two multiplies. For simplicity, one defines the original
data sequence as SS, (@) and the intermediate LL band 2-

D DPWT coefficients sequences as SS,,, (H), SS;,, (),
and SS,,;( ¥ ) for the first, second, and third

decomposition stages, respectively.

The parallel-multipliers architecture illustrated in Fig. 7
is to generate alf the weighted input data. For the case of 1-
D filter with length 4, there are ten different 2-D filter

is
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coefficients required in the 2-D DPWT process. Generally,
for a 1-D filter with length d, the parallel-multipliers unit
needs d(d +1)/2 multipliers.

All the data accumulators in Fig.6 are identical. One
data accumulator can be used to derive the octave band
components in one decomposition stage. Thus one can
choose n data accumulators for n stages need. For a 1-D
filter with length d, the data accumulator is consisted of
d row accumulators and one column accumulator. For an
example with d=4, the detailed architecture of row
accumulator is depicted in Fig.8 in which the block
circumscribed by dash-line denotes the architecture for
column boundary data handling. The architecture is
essentially in the nature of a linear systolic array in which
each cell contains only one adder (or one subtracter) and
one register. To deal with the boundary data in two bands,
two storage cells are requested to save the intermediate data.
In general, for the case d >4, each band needs one de-
multiplex and (d—~2)/2 storage cells for saving the

intermediate boundary data. The general case will be
detailedly discussed in the next section.

To accumulate the row sums, the architecture of column
accumulator is illustrated in Fig. 9. Essentially, the column
accumulator is similar in architecture to the row
accumulator except that the register in each cell is replaced
by a shift registers buffer. The registers buffer is to transfer
the row data format into column data format. In the column
accumulator, the LL and LH bands components are
accumnulated downward while the HL and HH bands are in
opposite direction. To save the intermediate row boundary
data, a column accumulator also needs two multiplexes and
two extra registers buffers depicted in Fig. 9. The multiplex
makes the row boundary data be cyclically shifted in the
registers buffer for (N-2) row scanning delay, where N
denotes an image size. One major idea of the column
accumulator design is to make the octave components in the
last two rows be generated simultaneously. However, for
next stage decomposition, the last row will be delayed by a
row scanning time. The length of the registers buffers will
be decreased by power of two as the decomposition stage
increases. Since the registers buffers contain only replicated
register cells, they can be considered identical in
architecture.

The basic function of the input data controller depicted
in Fig.10 is a shift registers buffer in which several switches
are inserted. The goal of the switches is to intersperse
several LL bands components into the original data
sequence for next stage decomposition. The operations of a
switch and its corresponding data accumulator are
synchronous. In addition, the proposed architecture requests
a simple control unit to generate the desired timing.

In a Verilog behavioral model simulation for the
architecture verification, a three-stage decomposition

process of 16x16 sequential images is taken as an
example. In this simulation, the filter length 4=4 is
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assumed. To illustrate the simulation result, let symbols o,
M. %, and ¥ denote the data sequence of SS 7 S8,
SS,.,,and SS, ;, respectively. Also, let symbols [, v,
and VV denote the intermediate row boundary data of
SS,.. S8S,.,, and SS,,,, respectively. Since the octave

bands compenents are derived simultaneously. Only the LL
bands components are shown. The simulation result shows
that the last row data of resolution level J+1 will be
obtained during the first row in next frame image. The last
row data of resolution level J+2 will be obtained during
the second row in next frame image and so forth.

V. Discussions and Conclusion

A 2-D operator correlation algorithm for performing the
2-D DPWT has been presented. The algorithm has merits of
synchronous boundary data handling, low round-off error,
and fast computation. Based on the 2-D operator correlation
algorithm, a novel approach of non-separate VLSI
architecture design has been proposed, too. The architecture
is a parallel-like structure and has the features of short-time
latency, short bit length request, and fast to derive intact
octave band components for the purpose of perfect
reconstruction. Due to high modularity and processing
independence, the architecture is well suited for VLSI
implementation. A Verilog behavioral model simulation for
the architecture of 1-D filter length d =4 has been taken.
For the general case of 1-D filter with d >4, one needs
more complex circuit to deal with the boundary data. A
verified architecture of =8 is illustrated in Fig.11 for
column boundary data handling in a row accumulator. Since
the column and row accumulators are identical in
architecture. The architecture shown in Fig.11 can be easily
expanded for row boundary data handling in column
accumulators. .

In time domain method for 2-D DPWT implementation,
the VLSI architecture design usually needs to deal with a
compromise among speed, complexity, filter length,
decomposition stages, and hardware utility. Parallel
processing can provide fast computation and simple
architecture for data flow control. However, the hardware
utility of parallel architecture will be decreased due to
increasing either the filter length or decomposition stages.
Because the produced DPWT coefficients in a DPWT
decomposition process are decreased in power of two speed,
the architecture requests low frequency clock to accumulate
the data in low-resolution level. As a sequence, the
hardware utility of overall system will be decreased while
the decomposition stages are increased. Besides, for both
row and column boundary data processing, Fig. 11 clearly
reveals that almost same size of extra circuit and more
complex controller are needed. Since the intermediate
boundary data should be saved for a very long time, it also
results in hardware utility decreasing. However, if only one
stage is concerned and the boundary data handling is
neglected, the proposed architecture has high' hardware

utility.
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Fig 1. Result of imperfet reconstruction. (The bo
' data are dropped).
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Table 1. Accuracy of finite precision 2-D DPWT

coefficients in baboon image (in db).

d |Band| 1’st 2’nd 3'rd 5-th Last LL
Stage | Stape | Stage | Stage | Stage | Band
I1H | 8628 | 81.67 | 76.30 | 80,26 1138.82
4| HL | 74.84 | 77.45 | 75.52 | 87.02 1138.811133.07
HH ] 63.05 | 61.26 | 67.39 | 76.76 1139.69
ILH 81.16.1 73.06 | 73.19 | 74.32 | 81,05
6 HL 17237 § 73.38 | 7194 | 81.25 | 91,36 1132.26
HH | 62.50 | 63.53 ] 66.59 | 7641 1111.46
1H | 84.67 1. 77,63 | 77.73 | 79.91 1113.64
8 L{7563 {7371 17508 | 8682 [126.74]103.43
HH{ 6078 | 5985 | 63.13 | 7048 | 74.93
IH1 799017107 169036952 1| 7223
10| HL 1 62,57 | 66,71 | 65.34 | 76.38 | 83.52 {116.53

HH161.85161.17 |1 6620 | 7421 | 86.57
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