1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0O.C.

Improving Branch Target Prediction with Register References
Yueh-Hung Liu and Chang-Jiu Chen

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

Branch instruction can interrupt the steady flow of
instruction stream in the pipeline. To resolve this problem,
various branch prediction schemes have been proposed and
some of these schemes can achieve high prediction
accuracy. However, there is a fact that the accuracy of
branch target prediction is usually not as high as the
accuracy of branch direction prediction.

In this paper, we propose a new branch prediction
mechanism to attempt to increase the prediction accuracy
of branch targets. This mechanism will refer the register
file and make predictions according to the register
contents.

We simulate our design using the SimpleScalar tool set
and compare our scheme with a basic predictor model on
some of the SPEC95 benchmarks. The simulation results
show that the average improvement on prediction accuracy
of branch targets are 1% ~ 9% for different benchmarks. In
addition, from our experiments we obtain an advantage of
this newly proposed prediction scheme that we can use
less hardware to get higher accuracy.

1. Introduction

Branch instructions are always the performance bottleneck
of modern pipelined superscalar processors. They can
interrupt the steady flow of instruction stream in the
pipeline. To resolve this problem, various branch
prediction schemes have been proposed and some of them
can achieve high prediction accuracy.

The problem of branch prediction can be divided into two
parts: branch directions and branch targets. For branch
directions, the frequently discussed two-level branch
predictor has an excellent performance. For branch targets,
the common BTB-based mechanism and the recently
proposed target cache scheme are used. Now the accuracy
of predicting branch directions can achieve 90% ~ 99%
correct prediction. However, the accuracy of branch target
prediction is usually not as high as branch direction
prediction.

In this paper, we present a branch prediction mechanism
that try to increase the branch target prediction accuracy
for both direct branches and indirect branches. Our
mechanism is slightly differed from most recent schemes,

We do not use any branch history as its prediction
information, but use the contents of registers to predict
branch targets. We call this mechanism as register
reference branch predictor (RRBP).

2. Register Reference Branch Predictor

2.1 RRBP Structure

The RRBP is a branch predictor based on registers
reference and the BTB structure. It attempts to improve the
prediction accuracy of branch target archived by BTB-
based branch prediction schemes commonly used in the
modern pipelined superscalar processors.

2.1.1 Organization

The organization of the RRBP is shown below.

BTB

| BTB Entry
m— (e[[]

\ﬂ_l
Extended fields to indicate which
} registers a branch will refer l

Target Array

Target
s —

Figure 1: Logical organization of the RRBP

There is also a BTB in this branch predictor, but each entry
of the BTB has been extended. In addition to the branch
address and valid bit, we add fields to record registers a
branch will refer. The number of these fields is dependent
on the instruction set architecture (ISA), especially the
format of branch instructions.

For each instruction, we only mention the source operands.
If a specified instruction set is a two sources instruction set
then we will allocate two fields for each BTB entry. And if
the branch instructions haven’t any source operand, there
are some unused fields and become inevasible
redundancies. Since a branch can read any register in the
register file, thus each field should be long enough to
distinguish different registers.

22

There is another extension for the BTB entries. We extend
the target address storage to two or more fields instead of
one field in the ordinary BTB. These target address storage
fields form an array, we call it farget array. For each BTB
entry, there is one and only one target array associated
with it. The number of the target array entries is not fixed,
but due to the high hardware cost and in our results, two
entries for each target array are enough to obtain good
prediction accuracy.

2.1.2 Characteristics

The basic observation behind the RRBP is that some
branches can be more accurately predicted if the values of
source registers are known at the predicting time. Consider
the following 3-statement code.

if(a=0) {r1 =r2=50;} /*al ¥/
else {r1 =0;r2=100;} /*a2 ¥
ifel=nr2){...} /*bl*

The condition in statement 5/ is dependent on statement
al and a2. Statement al and a2 are executed exclusively;
that is, there is only one of them can be executed at any
time. Every time the program including these statements
arrives at b1, the phenomenon described above will appear.
If we want to predict whether the condition in b1 is true or
not, that is, whether the branch in 57 will be taken or not,
we can refer to registers rl and r2 while arriving at &/.
Since the RRBP allocates more than one field for each
BTB entry (the target array) to store targets, thus if the
branch associated with b/ is in the BTB; we can predict
one target from the target array according to the values of
registers rl and 12.

The branch history is unnecessary, we just have to know
what the values of registers rl and r2 are at the moment b/
is encountered. However, the register value is a kind of
correlation information, since while a specified instruction
is encountered, the registers may usually keep some
specified states. For branches, with different register states,
especially the states of source registers, the behavior of
branches may change. The RRBP attempts to record the
relation between source registers and targets of branches,
and uses such relationship to predict where branches
probably go.

For indirect branches, the RRBP will have higher accuracy
of target prediction than traditional BTB-based schemes
because of the target array mechanism. In traditional BTB-
based schemes, although we can expect that an indirect
branch may jump to a different address each time it is
executed, we still have only one possible target to predict.
In the RRBP, there are multiple selections to predict a
target for any indirect branch, and hence the probability of
correct prediction is increased.

22 RRBP Manipulation

1998 Intemational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Manipulation of the RRBP is concerned with the issues of
accessing and updating the RRBP. Good manipulation
schemes can significantly improve the performance of the
RRBP.

2.2.1 Accessing the RRBP

While an instruction is fetched at the IF stage of pipeline,
the extended BTB of the RRBP should be indexed. As the
traditional BTB, the extended BTB of the RRBP is
indexed using the instruction address. The lower bits of
address are formed an index into the BTB, then the tag and
valid bit of indexed BTB entry will be checked. If there is
an entry in the BTB associated with the instruction, we
know the instruction is a branch instruction and the
information contained in the indexed entry will be used to
predict a target.

Otherwise, if there is no entry associated with the
instruction, the next instruction address will be returned;
that is, if the instruction is a branch, the branch is predicted
non-taken. In addition, if there is no entry associated with
the branch instruction, a new entry will be allocated in the
BTB for the branch.

Branch Address

BTB
BTB Entry
= R | R,
]
‘ Register File
"R
Hash
Target
l Address
R Target Array

Figure 2: Accessing the RRBP to make arprediction

As shown in Figure 2, when a proper BTB entry is found,
the additional fields that record which registers the
associated branch will read, as illustrated in section 2.1.1,
are accessed. '

According to these fields, we can know which registers
should be referred to make a target prediction, and then we
access the register file to read the contents of the specified
registers. The contents of the specified registers will be
hashed together to form an index into the target array of
the BTB entry associated with the predicted branch. The
hash function used here is simply the logical function
Exclusive-OR.

In our experiments, we use the least significant bits (LSB)
to index the target array. We suppose that the values to be
compared are not usually too large, thus the least
significant bits can reflect the difference of different
branch instance. The other branch instructions in the

23

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

instruction set are unconditional direct/indirect branches.
We don’t care the direct branches because they won’t
access any register. For each indirect branch, it will jump
to an address stored in a register and we guess the least
significant address bits of different branch instance are
usually distinguishable. Thus we also use the least
significant bits of register values to index the target array
for indirect branches.

Finally, when we index the target array for a branch
successfully, the address stored in the indexed entry will be
the predicted branch target.

2.2.2 Updating the RRBP

When a branch is finished, the BTB of the RRBP must be
updated with the actual outcome of the branch. Which
BTB entry should be updated is decided at the time the
BTB was accessed with the branch address as an index. If
there is an entry associated with the specified branch, then
this entry will be updated; otherwise, a new entry should
be allocated in the BTB.

We can know an instruction whether it is a branch or not at
the ID stage of pipeline, and if it is a branch without an
associated BTB entry, we must allocate one for it at the 1D
stage or later. For the new BTB entry allocation, if the
BTB is direct mapped, we simply replace the indexed
entry with the outcome of the “new branch”. But if the
BTB is set-associative, we have to select a “suitable” entry
for the new branch. Trivially, an “empty” entry is always a
suitable entry. However, if all entries in the indexed set are
in use that is, each entry had been allocated for a different
branch, then we must select one to be replaced. We use a
common scheme called the least recently used (LRU)
algorithm to select an entry to be replaced.

In addition to the original BTB fields, such as the tag field
(branch address) and valid bit, there are other fields should
be filled. First, we have to fill the additional fields that
record the register reference; that is, we should determine
which registers a branch will refer to. This work can be
done while allocating a new branch entry in the BTB at the
ID stage of pipeline or later, because after the instruction
decoding, the opcode and operands of that instruction can
be known. The other fields should be filled are the entries
of the target array, and we initiate each entry of the target
array with the actual resolved target address. In other
words, if a branch is really taken, we fill each target array
entry with the address the branch jumps; otherwise, the
fall-through address will be used instead. Note that for a
non-taken branch, the BTB also has to be updated with the
non-taken target address (i.e. the fail-through address).

This situation differs from the traditional BTB-based
schemes since the RRBP doesn’t have any mechanism of
direction prediction. The work of filling the target array
can’t be done at the ID stage of pipeline since the actual
target address has not been resolved yet. After the branch
instruction executing at the EX stage, we can know the
resolved address and can fill it into the target array.

If there is already a BTB entry for an executed branch, the
only work we have to do is to update one of the target
array entries. The additional fields that record the register
reference need not be updated, since registers a branch will
refer are fixed at compile-time. Hence, once such
information exists in the BTB entry for a branch while the
entry was allocated in the BTB, it can be used for each
instance of the branch.

In order to update the target array, we must know the
resolved target address and which entry should be updated.
The resolved target address can be determined at the EX
stage of pipeline as described above. Now the question is
which target array entry should be updated. The entry
should be updated is that was used to predict the branch
target. If the prediction for a branch is correct, no updating
is needed; otherwise, replacing the updated entry with the
resolved target address.

The action of updating the RRBP implies a fact that the
information used to accessing the RRBP at the IF stage of
pipeline should be maintained through all pipeline stages
or at least kept until branches finish their execution. For
instance, the instruction address should be kept for
allocating a new entry in the BTB at the ID stage if a
branch without an associated BTB entry is encountered.
Moreover, the hashing result used to index the target array
should be passed to the EX stage in order to process the
updating. The information is transferred between stages,
thus there must be some mechanism to buffer it, such as
latches.

3 Simulation Results

In this section, we will examine the prediction accuracy
using the RRBP. Three types of accuracy will be shown
separately: branch target prediction, branch direction
prediction, and indirect branch target prediction. We will
also examine the execution performance of the RRBP in
terms of instructions per cycle (IPC). The simulation
results will be compared with a base predictor model to
express the advantages of the RRBP.

3.1 Experimental Methodology

In order to simulate the RRBP design, we employ the
SimpleScalar tool set (version 2.0)[3].

3.1.1 Benchmarks

To experiment for the efficiency of the RRBP design, we
will use a subset of the SPEC95 benchmarks. We only
select 8 of them to simulate (4 are from SPECint95 and 4
are from SPEC{p95).

3.1.2 Experimental Model Configurations

The out-of-order issue, superscalar processor simulator in
the SimpleScalar tool set employs a 16-entry register
update unit (RUU) along with 4 integer ALUs and 4
floating point ALUs. It can decode 4 instructions at one

o4

time, and can issue and execute up to 4 instructions
simultaneously if there are no data dependency among
these instructions to be executed.

In this paper, we use a branch predictor model Base as the
comparison base for the RRBP, as shown in Figure 3.
The Base model employs a two-level adaptive branch
predictor that uses a global history register as its first level
and a PHT (Pattern History Table) as its second level to
predict the direction of branches. The length of the global
history register is 8-bit long and the size of the PHT is
1024 entries. The hash function used to index the PHT is
gselect, this function will concatenate the global history
and the branch address bits to form an index. Moreover,
there is also an ordinary BTB (without any extension) to
store the branch targets in the Base model.

History register

1K entries PHT

2-bit saturating
counter

Branch address

Direction

BTB

Tag Target

Figure 3: Logical organization of the Base model

We simulate the RRBP design using an extended BTB
model as described in section 2. We will allocate two
additional fields to indicate the register reference for each
BTB entry. We use the function XOR to hash two register
values for two-source branches and access the register
directly (no hashing) for one-source branches to form an
index into the target array. The zero-source branches are all
the unconditional direct branches and therefore need not be
predicted they will always jump and always jump to a
single fixed location. In addition, for return instructions (a
type of indirect branches), we allocate an 8-entry return
stack for each model to store the return address of function
calls, thus the targets of return instructions are obtained
from the return stack, not from the BTB.

3.2 Number of Target Array Entry

In this section, we will examine the effect of target array
size. The results for target arrays of 2 entries and 4 entries
are plotted in Figure 4 and Figure 5, respectively, for the
various benchmarks. The prediction accuracy in these
figures is the average of various set-associative
configurations, including 256 to 1024 sets, direct-mapped
to 4-way associativity, and etc. Both Figure 4 and Figure 5
have three independent charts, these charts illustrate the
accuracy of branch target prediction, branch direction
prediction, and indirect branch target prediction,
respectively. Note that the prediction accuracy of branch
target and branch direction include both the direct
branches and the indirect branches.

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

[BBase Branch Target IRRBP Branch Target |
-
[
£ 100% 92% o
2 0%
S 80%
S -
5 0% : : 2
- o, <Q [=] oo - “ <]
B g S 5 Q % 3 =
8 2 = B 9 &
Benchmarks
ElBase Branch Direction MRRBP Branch Direction i
by % 99%
= 100% 9% N VLAY A
8 9% =
< 90% 84 :
5 8% o [
g 80% z }
:§ 75% ; ..
kol a. =3 124 [=] [-14] L b E
= g £ 8§ § £ 8 § £
8§ & 2 5 § 9 3
Benchmarks
ElBase Indirect Branch Target IRRBP Indirect Branch Target l
I 100%
12 0, 0,
2 100% g 730700755 *82%
g 80% 53% -
< 60% !
g 40% :
I B 2%
= 0%
rog = !
= g !
o |
2

; Benchmarks

Figure 4: Prediction accuracy of branch target, branch direction,
and indirect branch target using 2 target array entries

For branch target and branch direction prediction, all of the
simulated benchmarks have higher accuracy than the Base
model while using the RRBP with 2 target array entries or
4 target array entries. For indirect branch target prediction,
however, most benchmarks also have higher accuracy on
the RRBP except m88ksim, su2cor, and swim; especially
for swim, the prediction accuracy is almost zero (0.02%).
But for swim, even the Base model can only achieve a
prediction accuracy of 3%. This situation tells us that the
indirect branches in swim may have a different target each
time a branch is encountered and therefore hard to predict.
It is also possible that the interference for indirect branches
in swim is serious, thus the information in the BTB could
be “polluted”.

For sulcor, the prediction accuracy of indirect branch
target for the RRBP is only 1% (in fact, less than 1%} less
than the Base model; it will not affect the whole efficiency
too much and hence can be ignored. The difference
between the RRBP and the Base model for m88ksim is
about 17%, it probably reflects that indirect branches in
m88ksim will jump to the last targets more often but the
RRBP always take them to another locations.

o5

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Although m88ksim, su2cor, and swim have worse
prediction accuracy of indirect branch target using the
RRBP, the prediction accuracy of whole branch targets
(the first chart in each figure) still outperforms the Base
model. This point means that the advantage brought by
accurate prediction of direct branch target may be greater
than the damage of inaccurately predicted target of indirect
branch. Note that the direction prediction accuracy is
always greater than or equal to the target prediction
accuracy; it is trivial since we can know an unconditional
indirect branch will jump but we can’t conclude where it
will jump to.

result is slightly worse; this point can be verified in Table
1. In Table 1, we compare the IPC of Base model with the
RRBP (2 target array entries) for su2cor, and the IPC
improvement is also listed. We can see that for the set
associativity of lower degree, the IPC improvement is
much worse (-1% ~ -7%); but for the set associativity of
higher degree, the IPC improvement is only little better
(less than 1%); hence the average value is negative. This
situation can be explained as that since the conflict in the
RRBP is more serious due to the non-taken branch
allocation policy, therefore the useful prediction
information could be replaced frequently, especially when
the degree of set associativity is low.

{EBase Branch Target MRRBP Branch Target ‘
2 PBase M2 Target Array Entries 004 Target Array Entries J
S 100% ©
2 S
2 0% S
g 8% £0
5 0% g
£ :
; Benchmarks
‘L B Benchmarks
EBase Branch Direction MIRRBP Branch Difectionj Figure 6: Execution performance comparison in terms of IPC
z % or 9%
s 100% 94% 955 93%935% °94% Base |2 TA Entries | Improvement
g 33 j) 7 q Direct-mapped 256 Sets | 1.028 0.9525 -731%
S 85% : 2-way 256 Sets 1.0717 1.0345 -3.47%
£ 80% 4-way 256 Sets 1.0889 1.0947 0.53%
3 5% P — Direct-mapped 512 Sets | 1.0475 1.0294 -1.73%
& g &8 § £ E 2 g 2-way 512 Sets 1.088 1.0938 0.53%
s & =2 = E @ 4-way 512 Sets 1.0889 1.0988 0.91%
Benchmarks Direct mapped 1024Sets| 1.0782 1.0566 -2.00%
1 | 2-way 1024 Scts 1.0889 1.0988 0.91%
‘ 4-way 1024 Sets 1.0889 1.0988 0.91%
| [BBase Indirect Branch Target MRRBP Indirect Branch Target] f average 1.0743 1.0620 -1.14%
s o l Table 1: IPC improvement using the RRBP with 2 target array
2 . 031 00% |
COE 100% g A% 73007 BT 082
' =
I g 8%] 53% . Improvement of 2 TA | Improvement of 4 TA
< 60:/» . Benchmark entries entries
P2 4004’ compress 6.84% 7.58%
L 20% :
- 0% . fpppp 0.16% 0.70%
& s = 2 5
E &] 3 gee 2.21% 4.21%
o & = =3
@ hydro2d 2.51% 2.75%
Benchmarks —
i ijpeg 8.73% 8.49%
Figure 5: Prediction accuracy of branch target, branch direction, m88ksim 10.47% 10.43%
and indirect branch target using 4 target array entries (cont.) su2cor -1.14% -0.66%
) . " swim 1.45% 1.45%
Figure 6 compares the execution performance of the RRBP Table 2 IPC improvement using the RRBP

with the Base model for the experimental benchmarks in
terms of instructions per cycle (IPC). Again, the IPC in the
figure is the average of various set-associative
configuration results. Note that while using the RRBP,
each benchmark has better performance except sulcor,
which is slightly worse than using the Base model. This is
because the statistic is an average value, and there could be
some configurations with much worse performance and
others with little better performance, therefore the final

For reference, the IPC improvement for each benchmark
while using the RRBP instead of the Base model is listed
in Table2. Figure 7 to Figure 9 express the relation
between the number of target array entries and the
prediction accuracy of branch target, branch direction, and
indirect branch target, respectively, for the benchmarks gee,
m88ksim, and swim. Figure is the comparison of IPC on
various target array sizes for gcc, m88ksim, and swim. We

26

select these three benchmarks since they have some
special properties on branches. Based on the benchmarks,
we observe that gcc and m88ksim have the lowest
instructions per branch, and that means branches appear
more frequently in gcc and m88ksim. In addition, m88ksim
and swim have the highest indirect branch rate, and that
means they have more possibility to “meet” a branch that
is an indirect branch.

T [@Base]
» 9% — e
£ 90% i M2 Target Array
2] Entri
: 85% ; ntries
= o 1 004 Target Array
% 80% Entries
§ 5% 8 Target Array
£ 70% A Entries
gcc m88ksim swim M 16 Target Array
Entries
Benchmarks
E132 Target Array
Entries.
Figure 7: Branch target prediction accuracy of various target
array sizes
iy EBase
«
5
3 M2 Target Array
< Entries
=
=3
s D4Tar.get Array
] Entries
&~ gce m88ksim swim B8 Target Array
‘ Entries
! Benchmarks |16 Target Array
... | Enties __._ |

Figure 8: Branch direction prediction accuracy of various
target array sizes

1 T BBasc i
z 100%
g 80% M2 Target Array
3 60% Entries
= 04 Target Array
-% 40% | Entries
3 20% 8 Target Array
& 0% Entries
; gecc m88ksim swim M 16 Target Array
i Entries
Benchmarks
i {E132 Target Array
L _ _.l__Entries

Figure 9: Indirect branch target prediction accuracy of
various target array sizes

B ——— S g

o |BBase ‘
i =) 1 i |
b = S — —
- 1.40 i |2 Target Array E
-3 120 1 ! Entries ‘
2 T 04T ¥
[—_— i ; arget Array ||
I 2 100 %—-—— - | Entries W
i =1 [|
© B la ﬁ |E18 Target Array |
| § osold e Entries |
% - gcc m88ksim swim E- 16 Target Array i
Benchmarks g Entries i
i lﬂ32 Target Array E

— Enfr

1 . 1€5
Figure 10: Execution performance of various target array sizes

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

As shown in these four figures above, when the number of
target array entries increase, there are almost no change for
the prediction accuracy or for the performance of m88ksim
and swim; that is, the target array size of 2 entries is good
enough to predict branches. For gcc, the prediction
accuracy and the execution performance are increased as
the target array size increasing, but the distance of
improvement is under 5%, and it is disproportional to the
hardware cost for the target array increment. According to
this observation, we can conclude that 2 target array
entries are enough for most applications.

4. Performance and Hardware Cost

In order to make a prediction for a branch, we should first
index the BTB of the RRBP using the branch address. If
there is an entry associated with the branch, the additional
fields will be accessed to index the register file. Then, the
appropriate register values will be hashed to index the
target array and finally the content of the indexed target
array entry is the predicted target. According to these
actions, three indexing and one hashing are needed. In
addition, each indexing brings an access, and hence three
accesses are also necessary. These actions should be
proceeded while a branch instruction is fetched into the
pipeline at the IF stage and completed in one cycle.

How many actions do other BTB-based schemes take to
make a prediction? For a traditional BTB combined with a
two-level adaptive direction predictor, in order to predict a
branch, two indexing are needed. First, the branch address
is used to index the BTB and the branch history table
simultaneously; second, the indexed branch history table
entry is used to index the pattern history table. In these
indexing processes, three tables are accessed: the BTB, the
branch history table, and the pattern history table. But
since the BTB and the branch history table are accessed
simultaneously, we can evaluate them, as just one access is
needed. Sometimes a register called branch history
register will substitute the whole branch history table. In
this situation, two indexing are also necessary, one for the
BTB, and the other for the pattern history table. Before
indexing to the pattern history table, the branch history is
usually hashed with the branch address; thus one hashing
is sometimes needed.

In the scheme just discussed, the actions taken in BTB to
predict a branch are less than the RRBP does. The RRBP
takes one more indexing and one more access. However, if
we combine the access of the target array with the access
of the BTB, and then use the hashing result of registers to
decide which target array entry should be used. Just as the
pattern history is used to decide whether the target address
in a BTB entry should be applied or not in the above-
discussed scheme, we can reduce the access and indexing
actions to two times. In other words, the performance of
the RRBP will not worse than the common BTB-based
mechanism. However, the delay for obtaining a prediction
is fixed on the time to perform two or three
indexing/access and hard to be truncated. If there are
multiple branches in one fetched instruction line and we

_27-

1998 International Computer Symposium
.Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

just want to know which of them are predicted taken, these
branches will be predicted one by one and hence the
predicting actions are difficult to finish in one cycle due to
the fixed long delay. For traditional BTB-based
mechanism, if there are prediction bits in each BTB entry,
the above situation can be easily resolved since only one
indexing/access is needed to determine whether a branch is
taken or not. In our simulations, we restrict that there can
be only one branch in one fetch cycle and therefore we do
not consider this problem now.

For updating the RRBP, we need only update the
appropriate target array entry. For the BTB with a two-
level predictor, however, the history tables and the BTB
entry all need to be updated. In the updating phase, the
RRBP is simpler than the common BTB-based scheme.

One of the main extra hardware to implement the RRBP is
for the additional fields used to indicate register reference
and for the target array. If the instruction set architecture is
a two-source architecture and there are at least 32 general-
purpose registers, the cost of each additional filed is at
least 5 bits and there are two fields for each BTB entry.
That is, the cost of additional fields for each BTB entry is
at least 10 bits. In addition, since the register file will be
accessed (read) while making a prediction, the read ports
of the register file should be increased. In the above
situation, there are at least two extras read ports should be
added to the register file. Moreover, increasing the read
ports will bring additional complexity on implementing
the register file.

However, the potential cost is for the target array. Each
target array entry should have capacity to store an
instruction address as the target address filed in the BTB
entry. In general, there are multiple entries for a target
array, and hence the cost will be times of the target address
field in the BTB entry. The cost of the RRBP is more than
the common BTB-based scheme (with a two-level
predictor), although there are branch history table and
pattern history tables in the common BTB-based
mechanism. The cost of these history tables is less than the
target array. For the pattern history table, each entry is a 2-
bit saturating counter; for the branch history table, each
entry is a shift register, and the length of each register is
usually 6 to 10 bits. In addition, most recent designs of
predictor use a branch history register instead of a branch
history table; that is, the cost of the two-level predictor is
significantly decreased.

Of course it is always a trade-off between the hardware
cost and the prediction accuracy. In our experiments, the
branches are more accurately predicted; thus we may
conclude that we have obtained the advantage from the
higher hardware cost of the RRBP.

5 Conclusions
Although the current branch predictors are effective in

predicting the directions of branches, the prediction
accuracy of branch targets is not as high as branch

directions. In this paper, we proposed a new branch
predictor, the register reference branch predictor (RRBP),
to try to achieve higher prediction accuracy of branch
targets.

The RRBP extends the traditional BTB and refers the
register values to make prediction for branches. In our
experiments, we compared the RRBP to a general (two-
level branch predictor + BTB) model and the RRBP
outperformed this predictor model. The RRBP could have
higher hardware cost due to its target array mechanism.
But fortunately, our experiments showed that a target array
of 2 entries could obtain a reasonable better performance.
We had examined that the RRBP with low degree of set
associativity (and hence less hardware cost), for example,
256 entries and 2-way set-associative, can outperform the
compared predictor model with higher degree of set
associativity (ex. 1024 entries, 4-way set associative;
hence more hardware cost). The selections of the indexing
bits for target array were also examined. The results
showed that the least significant bits are more useful than
other indexing bits selections.

In addition to the content dealt in this paper, there are still
other subjects should be discussed and evaluated in the
future. For the branch without an associated BTB entry,
the RRBP always allocates an entry for this branch at the
time it is encountered, whatever it is taken or non-taken,
since the RRBP has no any direction predictor. This
scheme could lead to a situation that the interference
would be especially serious. Therefore, we will improve
our design to resolve this problem in the future.

In the RRBP, the register values are hashed together to
form an index into the target array; the hash function used
in this paper is XOR. Although it performed a good
experimental result, however, if we attempt to further
distribute different occurrence of branches on the target
array, we have to design a more appropriate hash function
with or without other information to be the hashed
arguments. Furthermore, there are still other selections of
indexing bits, such as odd bits or even bits, etc., can be
investigated to probably obtain the better performance.

The problem of data dependency is still existing in the
current RRBP design. It is certain that the incorrectly
referred register values will degrade the prediction
accuracy. For example, each time a branch is predicted, the
RRBP may read a different register value, and thus a
different prediction is made, but the real value may be the
same each time the branch is encountered! We can expect
that if the problem of data dependency is resolved, the
efficiency will be risen; it is also a researchable subject.

As described in this paper, there is a restriction on the
RRBP that it is hard to predict muitiple branches (in one
fetched instruction line) in one cycle because the
prediction delay for each branch is somehow long. In
actual fact, however, there is sometimes more than one
branch instruction that could be fetched into the pipeline in
one cycle. Therefore, to truncate the prediction delay of the

98-

RRBP is important.

(1]

(2]

B3]

References

T.-Y. Yeh and Y. N. Patt, “Two-Level Adaptive
Branch Prediction,” Proceedings of the 24th Annual
ACM/IEEE International Symposium on
Microarchitecture, pages 51-61, 1991.

T-Y. Yeh and Y. N. Patt, “Alternative
Implementations of Two-Level Adaptive Branch
Prediction,” Proceedings of the 19th Annual
ACM/IEEE International Symposium on Computer
Architecture, pages 124-134, 1992,

D. Burger and T. M. Austin, “The SimpleScalar Tool
Set Version 2.0, Technical Report 1342, Computer
Sciences Department, University of Wisconsin,
Madison, W1, 1997.

29

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

	
	22
	23
	24
	25
	26
	27
	28
	29

