
A VLSI MULTIPROCESSOR SYSTEM FOR CIRCLE DETECTION:
HARDWARE DESIGN AND LOAD DISTRIBUTION

Ming-Yang Chern (陳 明 揚)

Department of Electrical Engineering
National Chung-Cheng University

160 San-Hsing Village, Min-Hsiung, Chia-Yi, Taiwan
e-mail: ieemyc@ccunix.ccu.edu.tw

ABSTRACT

Circle detection through the use of Hough
transform is usually time-consuming. In this paper,
we use a VLSI multiprocessor system to generate
candidate circle center addresses in parallel, while
in each processor only adder operation is needed to
determine the accumulator address. To match the
updating speed of accumulator memory with the
parallel address generation, the accumulator
memory is partitioned into modules for parallel
access and updating. With the number of memory
modules chosen equal to the number of processors,
an interleaving scheme for partitioning the circle
template table and accumulator memory is
proposed. It balances the load of processors and
avoids accumulator memory contention. Variations
of our scheme are presented and performance is
analyzed in this paper as well.

Keywords: Circle detection, Hough Transform,
Parallel Processing, VLSI, Multiprocessor

INTRODUCTION

Detecting circles in digitized image is
frequently approached through the use of Hough
transform [1-3], for the Hough transform (HT) is
an effective technique for pattern recognition and
has good performance even if applied over images
with noise and occlusion [5].

Based on the principle of Hough transform, for
any point P(x, y) on a circle in the image space, it
may possibly belong to a circle of radius r with
circle center located at (i, j) as given by

i = x + r cosθ
j = y + r sinθ (1)

whereθ, ranging from 0° to 360°, represents the
direction of circle center with respect to the point P.
In other words, a detected edge point of image
coordinates P(x, y) can be mapped to a set of
locations ((i, j), r) in the 3-dimensional parameter
space, according to Equation (1). And the content
of every location AC((i, j), r) in the accumulator
array must be incremented by one for each edge

point mapped to it. The basic operation steps for
circle-detection Hough transform can be
summarized as follows:

1. Quantize the parameter space between
appropriate maximum and minimum values for
i, j, and r, respectively; and form an
accumulator array AC((i, j), r).

2. Initialize the contents of the whole accumulator
array AC to zero.

3. For each edge point P(x, y) in the edge map
(image), produced by edge detection, increment
all locations of its possible circle centers in the
accumulator array, i.e.,

AC((i, j), r) = AC((i, j), r) + 1
for (i, j) and r satisfying i = x + r cosθ, j = y +
r sinθ, in the range of our definition.

4. With certain threshold, extract local maxima
from the accumulator array and report their
locations (circle centers).

Appropriate threshold value usually depends on
the radius r and the need of applications. The count
value of the detected location provides a measure
of the number of edge points on the circle while
the locations of local peaks indicate the parameters
of the detected circles.

The major drawback of the above conventional
circle Hough transform (CCHT) is the need of
large memory space and relatively long processing
time. To reduce the accumulator memory
requirement, one simple way is to perform a series
of Hough-transforms, each of them dealing with a
single value of radius [4]. By this scheme, only a
two-dimensional accumulator plane is needed, yet
the total processing time remains unreduced.

To reduce the processing time, two approaches
are generally adopted. One is to modify the circle
Hough transform in order to simplify the process,
the other is to apply parallel processing. Quite a
few modified versions of Hough transform have
been proposed [5-12]. Many of them use edge
directions while some combines the use of other
properties of the circle to reduce the complexity of

mailto:ieemyc@ccunix.ccu.edu.tw

Hough transform voting process. In general, these
methods take advantage of certain properties of
circles to reduce the processing time of the image.
Nevertheless, in reducing the algorithm’s
complexity, the more specific we extract the image
features, the more difficult it becomes to perform
parallel processing on these modified algorithms.
Thus the chance for further improvement of the
processing speed is usually limited.

In our attempt to reduce the processing time,
the use of VLSI parallel processors is considered.
The success of this approach depends on the
parallelism of the underlying algorithm, the
homogeneity of the data flow, and the simplicity of
the processor operations and system I/O. As noted
in [8], the approach of using edge directions to
guide the voting in accumulator plane(s) facilitates
the serial performance but may not lead to the
homogeneous operations for the SIMD parallel
processing.

Kumar et al. [13] reported a more recent work
on parallel circle detection. Three parallel
algorithms on an n x n mesh-connected processor
array were proposed (where n x n is the image
size). The first algorithm is for CCHT; the second
one performs circle HT with the guidance of
gradient directions. Yet the performance of these
two designs is still worse than the best (theoretical)
time complexity for an order of magnitude. The
third one, based on the tracing of circle edge points,
runs with a time complexity of O(n2) and is the
best of the three. Although the third design is
efficient, the implementation of the large n x n
image-sized processor array is very costly unless
the circuit of the element processor can be much
simplified. Further research on their design is still
needed.

So far, few cost-effective parallel architecture
(array processor) designs have been proposed for
circle detection. To explore the possibility of
designing cost-effective VLSI parallel processor,
we constrain this research on parallel processor
design using only dozens to few hundred processor
elements. For the array processor we propose here,
it does not make use of gradient direction. With the
proposed partitioned memory scheme, the array
processor is highly cost-effective for Hough
transform-based circle detection and can be
implemented on a single VLSI chip.

THE BASIC HARDWARE CONFIGURATION

For some applications, the radius of circles that
we want to detect is known in advance. So we can
focus on the fixed-radius circle detection. If we do
not have such priori knowledge, we may still work
on each possible radius one at a time. With fixed
radius in Equation (1), we can pre-calculate the r
cosθ (latter denoted xr) and r sinθ (denoted yr)

values for all angles θ and store them in a table
for later use to save computation time. When the
point P(x, y) in the image is an edge point, its
candidate circle center locations (i, j) can be
calculated by adding the (x, y) coordinates with
each table-stored (xr, yr) value respectively. This
table look-up scheme is efficient, because it uses
only the integer addition to determine the circle
center (i, j). To generate the circle points (xr, yr) in
the table (circle template), knowing the fixed
radius, we may use the midpoint circle scan
conversion algorithm [14,15]. There are three
coordinates systems involved. The location of the
edge pixel is expressed in the image coordinates;
the circle-template coordinates expresses the
address of a circle point relative to its center; and
the accumulator-array coordinates expresses the
location of circle center in the accumulator array.
The notation of these three systems is shown in
Figure 1.

x

y

(0,0)

image
(512x512)

x

y
(xr,yr)

circle template

i

j

(0,0)

accumulator array

Figure 1. The three involved coordinate systems

Without losing the generality, we assume the
image size of 512x512. Then each coordinate pair
(xr, yr) of the circle template points stored in the
table is chosen to be of 9 bits each (one bit for sign
and 8 bits corresponding to the maximal radius
size of 255).

According to Equation (1), the coordinates of
circle center (i, j) may be negative or positive, but
the accumulator array (memory) is usually
accessed with positive addressing. To remedy this
problem, we propose a simple address offset
scheme in the hardware implementation. The
address-offset scheme is also convenient to confine
the circle detection to the range of the image space
we are interested in. The offset values (xoff, yoff) are
determined by the position of upper left corner of
the accumulator array with respect to the origin of
the image coordinates system.

Figure 2 shows the relationship between the
offset values (xoff, yoff) and the position of
accumulator array with respect to the origin of the
image space. With the added address offset, the
equations for calculating the accumulator address
(i, j) must be modified as:

i = (x + r cosθ) + xoff = (x + xr) + xoff

j = (y + r sinθ) + yoff = (y + yr) + yoff

Table

Accumulator
Array

Checker

A
dd

er (i, j)

CE

(x, y) Offset
Adder

(xc, yc)

(xr, yr)

xoff yoff

Xw0,Xw1
Yh0,Yh1

Figure 3. Basic processor hardware configuration for circle detection

(x0, y0)

accumulator array

x

y

(0, 0)

image
(512x512)

Figure 2. The relationship between offset values
(xoff = -x0, yoff = -y0) and the upper left corner
(x0, y0) of the accumulator array with respect
to the origin of the image space

The basic hardware implementation with added
address offset for calculating the (i, j) address is
depicted in Figure 3. Note that the implementation
adopts to add the (xoff, yoff) value first, because this
sum can be shared by the parallel processors.
Adding this offset first, we need only one adder
pair to get the sum for all processors in the system.

The table in Figure 3 contains the address pairs
(xr, yr) of the points in the circle template, and (x, y)
denotes the position of edge point in the image. By
adding the edge-point address (x, y) and the
accumulator offset quantity (xoff, yoff), we have the
offset edge-point address (xc, yc).

xc = x + xoff

yc = y + yoff

The values of (xc, yc) are then added to each pair of
the (xr, yr) entries in the circle template table, with
their sum to become the candidate circle center
address (i, j) corresponding to each location (AC(i,
j)) of the accumulator array to be incremented.
That is,

i = xc + xr

j = yc + yr (2)

Before updating the accumulator array, the
address (i, j) must be filtered first by an Address
Checker. The address checker compares the
incoming (i, j) address with the predefined upper
and lower bounds of the accumulator array. In
Figure 3, the Xw0, Xw1, Yh0, and Yh1 values are
preloaded into registers as our defined accumulator
array boundary. Only when the address (i, j) is in
range: Xw0≦ i ≦Xw1 and Yh0≦ j ≦Yh1, the
control signal CE will be active. Then its
corresponding position AC(i, j) of the accumulator
array will be incremented. This scheme protects
the accumulator memory from erroneous access. It
confines the detection of circles all centered within
a predefined window in the parameter space.
Moreover, this provision in effect saves
unnecessary accumulator memory access time and
updating time as well.

After all the pair entries (xr, yr) in the circle
template table have each summed with (xc, yc) to
generate the address needed, the (x, y) position of
the next edge point will be read in. And the same
process is repeated. When all edge points in the
image are processed, the peak detector then
extracts peaks from the accumulator array. The
locations of the extracted peaks indicate the circle
center positions of the detected circles.

THE PARALLEL ADDRESS GENERATION

In the operation of circle Hough transform, for
each edge point, there will be usually quite a few
candidate circle center addresses (i, j) to be
generated. The calculation of (i, j) by addition,
though simple, would still become the speed
bottleneck. Taking the advantage of the uniform
operation in calculating (i, j), we may adopt a
number of adder-pairs (which are the element
processors, called processing elements or PEs in
short) to share the load and to largely facilitate the
speed of processing (i.e., the address generation).

For an incoming edge point P(x, y), the value
of (xc, yc) can be calculated through the Offset
Adder. Then the remaining tasks are to add this (xc,
yc) value with every stored entry (xr, yr) of the
circle template table. Just like the data flow
computer, it is important to provide (or arrange)
the operands for each PE to proceed. Now the
problem is how to distribute the operands to the
available PEs. As mentioned before, the (xc, yc)
values can be broadcast to all PEs. In order to
calculate the (i, j) address in parallel and to balance
the load of each PE, the stored entries of the circle
template table should be equally or near-equally
divided into N partitions, one for each available PE.

The approach of partitioning the circle
template table by pages (multiple consecutive rows
of fixed size, such as the exponent of 2) looks
feasible but may not work well for circles of small
sizes. In some cases, a few PEs may not have any
jobs to do. In order to minimize the difference on
the number of stored entries (xr, yr) in the partial
table module for each PE, we propose a simple
address-based interleaving scheme for partitioning
the circle template table. With N the number of
PEs in use, the entry (xr, yr) allocated to the k-th
partial table module must match the relationship:

k = mod(yr, N) (3)

For convenience in our design, usually the number
N is set to an exponent of 2. Taking N = 8 as an
example, we use the lower-order 3 bits of the yr-
value to determine the table module number k for
the pair-entry (xr, yr) to store. Figure 4 shows how
the circle template is partitioned into partial table
modules for N=8.

circle template
module 0

circle template
module 1

y (xr, yr)

x

Figure 4. The partitioning of circle template table by
interleaving scheme

ACCUMULATOR MEMORY PARTITIONING

With multiple processors generating the
address (i, j) in parallel, it is important that the
accumulator array (memory) can be updated in
parallel as well. The accumulator array must be
partitioned into multiple memory modules to
match the speed of PEs. Since memory updating
takes about the same cycle time for (i, j) address
calculation, we choose the number of memory
modules to be N, which is the same as the number
of processors (PEs). Now the next problem is how

to partition the memory. And what is the scheme
that can avoid memory contention?

As the circle template table is divided into N
modules by interleaving scheme as mentioned, the
N processors in our design are each devoted to one
different module of the circle template. Thus if the
accumulator memory is partitioned in the same
row-interleaving way, for any one specific
incoming edge point P(x, y), all the accumulator
address (i, j) generated from a specific processor
would fall into the one memory module. On the
other hand, the addresses generated from different
processors would fall into different memory
modules, since the circle template entries of
different modules undergo the same displacement
in the address calculation.

The need of partitioning accumulator memory
modules by the same row-interleaving scheme is
quite obvious. It allows a one-to-one mapping
between the address generation PEs and the
accumulator memory modules for any edge point
P(x, y). This scheme simplifies our design and
avoids memory contention.

With choice of ways to assign the memory
module numbering, here we let the h-th row of the
accumulator memory be allocated to the l-th
memory module based on the expression in (4).

l = mod(h, N) (4)

where N is the number of memory modules (i.e.
the number of PEs as well).

Using Equation (3) for circle template
modularization and Equation (4) for accumulator
memory, the circle centers (i, j) calculated by each
PE for an edge point P(x, y) correspond to a
specific memory module. Unless the row address
of the edge pixel is changed, the circle centers (i, j)
calculated by one PE are all mapped into the same
memory module. And this characteristic allows
some convenience of data flow arrangement in our
design to be presented latter.

Figure 5 presents a basic configuration of our
design. It uses a switching network for the
connection between PEs and accumulator memory
modules. The table of each PE contains the values
of the pairs (xr, yr) associated with circle template
module (i.e. the circle template module k is
preloaded into the table k). When the edge point
P(x, y) is read from edge map, the (x, y) values are
addressed offset by the Offset Adder. Then (xc, yc)
values are broadcast to all PEs. The values of each
stored entry (xr, yr) in each table and the (xc, yc)
value are then added together to become circle
center address (i, j). The (i, j) values from the same
PE connects to each corresponding accumulator
memory module through the switching network.
Before the memory module is updated, the (i, j)
value is checked first by address checker. If it is in

the range of our defined window (the range values
is preloaded into the checker), the checker sends
the control signal CE to the memory module to
allow the increment of the corresponding
accumulator location AC(i, j).

M0

M1

M(N-1)

+1

+1

+1

Ml

+1

PE0

PE1

PEk

PE(N-1)

Table0

Table1

Tablek

Table
(N-1)

da
ta

 lo
ad

in
g

bu
s

da
ta

 lo
ad

in
g

co
nt

ro
l

si
gn

al
s

(x, y)

sw
itc

hi
ng

ne
tw

or
k

(i, j)

where l=mod(j,N)

Offset
Adder

(xc, yc)

(xr, yr)

xoff yoff

checker

checker

checker

checker

Xw0,Xw1
Yh0,Yh1

(i, j/N)

Figure 5. The parallel processor configuration for
circle detection, with a switching network for
the PE to accumulator module connection

It is possible to use the lower-order bits of row
address of each calculated (i, j) to control the
switching network. Taking N=16 as an example,
we may use the lower-order 4 bits of the row-
address (j) to determine which memory module Mk
this j-th row in the accumulator memory should
belong to. From the regularity of the switching
behaviors, we can even use only the y-address of
the incoming edge point to control the switching of
the whole interconnection network. The switching
control thus can be quite simplified. Nevertheless,
besides propagation delay, the switching network
requires quite a few switches (channel-width x N2

switches). This induces the thought of alternative
designs to reduce the switching network, or even
better, completely eliminate the need of such a
network.

CONNECTION BETWEEN PROCESSORS AND
ACCUMULATOR MEMORY MODULES

In order to reduce the interconnection network
between the PEs and the accumulator memory
modules, we explore the various possibility in the
(i, j) address generation scheme. For each PE, if it
can always generate the (i, j) addresses which fall
into the same accumulator memory module, then
the architecture of one-to-one fixed connection can
be employed and the switching network will be no
longer needed.

To achieve the above premise, each PE
connecting to a specific accumulator memory
module must access to appropriate circle template
module in responding to the input edge-point
address (x, y). This means, each PE must process
one appropriate (xr, yr) module, in responding to
the current offset edge-point address (xc, yc), such
that the resultant (i, j) addresses will map to the
one specific accumulator module connected.

The one-to-one fixed connection scheme
eliminates the need of interconnection network and
thus much reduces the complexity of our parallel
processor system. The key issue resides on the
problem of how to determine which (xr, yr) circle
template module should be selected and how to
access to the selected module for each PE. Three
variations of the processor design for solving this
problem are to be presented in the following.

Processor with Full Template Table
The parallel processor configuration with each

processor having a full circle template table is
shown in Figure 6. Without losing the generality,
we assume that the k-th accumulator memory
module is connected to the k-th PE. The table of
each PE contains all the stored pair-entries {(xr,
yr)}, and the PE can access any pair (xr, yr) in the
table.

M0

M1

M(N-1)

+1

+1

+1

Ml

+1

PE0

PE1

PEk

PE(N-1)

Table0

Table1

Tablek

Table
(N-1)

(x, y)

da
ta

 lo
ad

in
g

bu
s

da
ta

 lo
ad

in
g

co
nt

ro
l

si
gn

al
s

Offset
Adder

(xc, yc)

(xr, yr/N) (i,j/N)

checker

checker

checker

checker

Xw0,Xw1
Yh0,Yh1

Figure 6. Parallel processor configuration of which
each processor has a full circle template table

For a given edge point P(x, y) addressed with
offset, the k-th PE may select to process the group
of table entries which belong to the same circle
template module. Since we desire to have all the
generated (i, j) addresses falling into the k-th
accumulator module, we must have:

mod(j, N) = k (5)

From equation (2), we have j = yr + yc . Thus the
above equation can be rewritten as:

mod((yr + yc), N) = k

mod((yr + yc - k), N) = 0

mod(yr, N) = mod(-yc + k, N) (6)

where yr is the y-value of the pair (xr, yr); yc is edge
point’s y-value with offset; k is the numbering of
the accumulator module for the k-th processor (0
≦ k ≦ N-1); and N is the total number of
processors. For N=16, we may use the lower-order
4 bits in (-yc + k) to determine which group of
entries (xr, yr) should be selected. As a result of
this mechanism, all the (i, j) addresses generated
by the k-th PE will definitely have the lower-order
4 bits of the j-address equal to k. In fact, only the
remaining bits of the (i, j) address is used to
address the connected accumulator memory
module.

Since each PE must access to all the entries
{(xr, yr)} of the circle template, a large table
memory is needed in each PE. Based on the
geometric symmetry of circle in Figure 4, we may
store only the right half of circle in the template
table and use 2’s complement to generate the left
half (i.e. the entry (xr, yr) generates (-xr, yr) through
the 2’s complement device). The entry (xr, yr) may
generate (i, j) and (-xr, yr) values at the same time,
so no extra time is consumed. This scheme reduces
the table (memory) size to one half; it saves
hardware resources.

The above proposed design has two major
drawbacks: (1) Each PE needs to determine which
entries (xr, yr) are to be used to generate (i, j) for
the connected accumulator module. (2) The table’s
memory requirement is somewhat large, though
the full table can be reduced to a half table. The
mechanism of using partial circle template (i.e., the
circle template module) in the table is thus
proposed in the following.

Each Processor with One Partial Table
The parallel processor configuration with each

processor having one partial table is shown in
Figure 7. This new configuration is almost the
same as the one shown in Figure 6 except its table
size and the table circulation capability.

Based on the relationship in Equation (2), the
contents of each circle template module are
initially preloaded in the partial table of each
corresponding PE. On the other hand, the edge
points to be processed are sorted into N sets
according to the lower-order bits of their y-
addresses. With the pre-known offset value (xoff,
yoff), we may let an edge point (x, y) belong to the

set with ID number = mod(y+yoff ,N) = mod(yc ,N).
For edge points of the same set performed with the
same circle template module (i.e., the same partial
table), the resultant addresses will all map to the
same accumulator memory module. This is
obvious, as we can see from the equation:

 mod((yr + yc), N) = mod((yr + y + yoff), N) = k

M0

M1

M(N-1)

+1

+1

+1

Ml

+1

PE0

PE1

PEk

PE(N-1)

Table0

Table1

Tablek

Table
(N-1)

(x, y)

da
ta

 lo
ad

in
g

bu
s

da
ta

 lo
ad

in
g

co
nt

ro
l

si
gn

al
s

Offset
Adder

(xc, yc)

(xr, yr/N) (i,j/N)

checker

checker

checker

checker

Xw0,Xw1
Yh0,Yh1

Figure 7. Parallel processor configuration of which
each processor has one partial table

With the set number defined above, the sorted
edge points are input to our system sequentially
and set by set in the order of ascending set number.
Every time before the first edge point of the next
set is processed, the circle template module in each
PE must be shifted to the partial table of the next
PE for matching the new-coming set of edge points
to produce addresses belonging to the same
accumulator memory module. The one-to-one
fixed connection between the processors and
accumulator memory modules thus can be
maintained.

This proposed design reduces the memory
requirement much by using the partial table
scheme, but it needs the shifting time for each new
set of the edge points. To reduce the processing
time further, the approach of using alternating
partial tables can be adopted.

Each Processor with Two Partial Tables
In the alternating partial table scheme, two

partial tables are implemented for each processor.
During the operation, one of these two tables
contains the entries of the current circle template
module, while the other is used to load the circle
template for the next incoming set of edge points.
The PE accesses the data from its two partial tables

in an alternating way. Thus using two partial tables
can eliminate the effect of the circle template data
shifting time delay in the previous design.

SYSTEM OPERATION

We use the proposed design to detect circles of
specific radius. At first, the pre-calculated circle
template entries of the specific radius are loaded
into the table of each PE. Then the address offset
values are loaded into the Offset Adder registers,
while the check-bound (window limits) values are
loaded into the address-checker registers for
confining the range of circle center (i, j) within our
defined domain. With all the preloaded data ready
and the accumulator memory been reset, the edge
points in the image are then sequentially read in to
generate candidate circle center locations for
Hough transform.

After all the edge points are processed, the
above-threshold peaks in the accumulator array
must be extracted. The peak point detected in the
accumulator array indicates the detection of a
circle, which is centered at that peak position and
of the specific radius. The count value of the peak
point represents the number of the edge points on
that circle. As to the hardware for detecting peaks
from the accumulator memory, there are different
ways to design it. In our study, an on-chip parallel
hardware for such peak detection has been
reported in [16].

The proposed array processor is designed for
detecting circles of a specific size (radius). For
circles of unknown size or within a limited range
of radius values, the detection of circles of each
possible radius can be successively applied on our
processor. On the other hand, since the PE circuit
in our processor design is quite simple and the
number of PEs is around hundred or fewer, it is
feasible to implement such array processor on one
single VLSI chip. Thus in case we want to
facilitate the processing speed, we may use
multiple VLSI array processor chips to construct a
parallel circle detector hardware for the 3-
parameter ((i, j), r) space.

THE PERFORMANCE ANALYSIS

Our proposed parallel processor design is
based on the much-simplified operations for the
circle detection Hough transform. With the use of
table look-up technique, the calculation of the
candidate circle center address is reduced to the
operation of addition only. The concurrent and
pipelined operations of specialized hardware
components, such as the offset adder, the address
checker, and the accumulator memory incrementor,
do contribute to the speed-up of our processor over
the step-by-step operation of the usual general-
purpose processor CPU for several folds.

On the other hand, the number of processors N
contributes to the speed-up factor in another
dimension. Theoretically, the upper limit of speed-
up due to the N-processor parallel processing is N
times. With the increase of N, the accompanying
increase of processing speed depends on whether
the workload can be evenly distributed to all
processors. In our circle detection array processor
design, the workload is the number of circle
template entries to be accessed in each PE. The PE,
which has the largest number of circle template
entries, would become the bottleneck of the whole
array processor. Under the row-interleaving
scheme, the top row and the bottom row of a circle
usually have the largest number of circle template
entries. The plot of speed-up factor versus N for a
few different radii in Figure 8 shows the trend. For
N = 32, the speed-up factor is about 50% of the
ideal case. While for N = 64, the average speed-up
factor for r = 20 to 120 is only about 30%.

Figure 8. The plot of speed-up factor versus the
number of processors for circles of various
sizes (under the row-interleaving scheme)

For large radius and relatively small N, the
workload is about evenly distributed and the
speed-up factor follows N, since there is only a
small percentage of variation among the workload
of all PEs. As N comes near the size of the radius,
the performance is not smoothly improved but
dependent on the largest number of template
entries in PEs. (ref. to Fig. 9, the plot has more
fluctuation for large N.)

From the plot in Figure 9, we find that the
performance would be much deteriorated for large
N (unless the circle radius is large). To balance the
load and thus improve the speed, we propose a
cross-interleaving scheme. Under this new scheme,
the modularization of the template table and
accumulator memory is in both y- and x-directions.
And as a result, in general, the workload (table

entries) would be more evenly distributed. The
comparison of these two schemes is shown in
Figure 10. The cross-interleaving scheme shows
more rippling in its plot. For small N = 16, the
performance is near. Yet for large N (such as N =
64), it has obviously better performance.

Figure 9. The plot of speed-up factor versus radius
for fixed number of processors (under the
row-interleaving scheme)

Figure 10. The plot of speed-up factor versus
radius for some fixed number of processors
under different schemes

The cross-interleaving scheme does improve
the performance for the case of large N, yet it is
still 30% to 60% below the ideal case depending
on the radius. Considering that the Hough
transform is a statistical detection method, a small
percentage of undetected edge points would not
affect the result. Thus we propose to cut a small
percentage of the table entries (from those PEs

having larger number of entries). The simulated
result is shown in Figure 11. The plot shows a
large improvement even we adopt the simple row-
interleaving scheme. For N = 64, the 5% cut of
circle template entries is competitive to the cross-
interleaving scheme. With 10% cut, the
performance is even better and reaches the ideal
speed for some circle radii.

Figure 11. The plot of speed-up factor versus
radius using 64 processors under different
schemes

CONCLUSION

In this paper, we present a VLSI parallel
processor for high-speed circle detection. In our
proposed design, the circle center candidates (i, j)
can be determined using only the addition
operations. While the accumulator array is
partitioned into memory modules so that it can be
updated in parallel as well. We adopt the row-
interleaving scheme to modularize the circle
template for the partial table in each PE, and to
allocate one accumulator memory module for each
PE. This scheme achieves to distribute the (i, j)
calculation evenly among the multiple PEs, and
avoid the contention on accumulator array memory
updating.

From the variations of our memory-
interleaving scheme, we see the high potential to
reach ideal performance, while it can be extended
for other geometrical shape detection. As our
design has a high degree of modularity, regularity
and simplicity, it is highly suitable for VLSI
implementation. In practice, our proposed array
processor can be implemented on a single VLSI
chip and is highly cost-effective for parallel circle-
detection.

ACKNOWLEDGEMENT

 This research was supported by the grant
NSC-89-2215-E-194-010, from the National
Science Council of the Republic of China.

REFERENCES

[1] P.V.C. Hough, “Method and means for
recognizing complex patterns,” U.S. Patent
3069654, 1962.

[2] R.O. Duda and P.E. Hart, “Use of Hough
transformation to detect lines and curves in
pictures,” Comm. ACM, Vol. 15, pp. 11-15,
1975.

[3] C. Kimme, D.H. Ballard, and J. Sklansky,
“Finding circles by an array of
accumulators,” Comm. ACM, Vol. 18, pp.
120-122, 1975.

[4] G. Gerig and F. Klein, “Fast contour
identification through efficient Hough
Transform and simplified interpretation
strategy,” Proc. 8th Int. Joint Conf. Pattern
Recognition, pp. 495-500, 1986.

[5] J. Illingworth, and J. Kittler, “A survey of
the Hough transform,” Computer vision,
Graphics and Image Processing, Vol. 44,
pp. 87-116, 1988.

[6] E.R. Davies, “A modified Hough scheme
for general circle location,” Pattern
Recognition Letters, Vol. 7, pp. 37-43, 1988.

[7] H.K. Yuen, J. Princen, J. Illingworth, and J.
Kittler, “Comparative study of Hough
Transform methods for circle finding,”
Image and Vision Computing, Vol. 8, pp.
71-78, 1990.

[8] R. Chan and W.C. Siu, “New parallel
Hough transform for circles,” IEE
Proceedings-E, Vol. 138, pp. 335-344, 1991.

[9] R.K.K. Yip, P.K.S. Tam, and D.N.K. Leung,
“Modification of Hough transform for
circles and ellipses detection using a 2-
dimensional array,” Pattern Recognition,
Vol. 25, pp. 1007-1022, 1992.

[10] P. Kierkegaard, “A method for detection of
circular arcs based on the Hough
transform,” Machine Vision and
Applications, Vol. 5, pp. 249-263, 1992.

[11] C.T. Ho, and L.H. Chen, “A fast
ellipse/circle detector using geometric
symmetry,” Pattern Recognition, Vol. 28,
pp. 117-124, 1995.

[12] N. Guil and E.L. Zapata, “Lower order
circle and ellipse Hough transform,” Pattern
Recognition, Vol. 30, pp. 1729-1744, 1997.

[13] S. Kumar, N. Ranganathan, and D. Goldgof,
“Parallel algorithms for circle detection in
images,” Pattern Recognition, Vol. 27, pp.
1019-1028, 1994.

[14] B.K.P. Horn, “Circle generators for display
devices,” Computer Graphics and Image
Processing, Vol. 5, pp. 280-288, 1976.

[15] D. Hearn, and M.P. Baker, Computer
Graphics, 2nd Ed., Prentice-Hall, Chapter 3,
1994.

[16] M.Y. Chern and C.M. Dai, “Design of VLSI
Parallel Processors for Hough Transform-
based Line Detection”, Journal of The
Chinese Institute of Electrical Engineering,
Vol.7, no.1, 2000, pp.41-52.

	Ming-Yang Chern \(陳 明 揚\)
	Department of Electrical Engineering
	National Chung-Cheng University
	160 San-Hsing Village, Min-Hsiung, Chia-Yi, Taiwan
	e-mail: ieemyc@ccunix.ccu.edu.tw

