

Wrapping Interactive Unix-Based Applications
into CORBA Components

Jih-Woei Huang, Ping-Hung Kuo, Chih-Ping Chu+
Department of Computer Science and Information

Engineering
National Cheng Kung University, Tainan, Taiwan

701, R.O.C.
E-mail: chucp@csie.ncku.edu.tw

Weng-Long Chang

Department of Management
Information

Southern Taiwan University of
Technology, Tainan, Taiwan 701,

R.O.C.

Abstract

Component software is now the mainstream of

software development due to its superior features in

maintainability, reusability and productivity. Besides,

distributed applications are currently very popular for

the rapid development of the Internet and CORBA is

one of the main underlying infrastructures to support

distributed applications. Also, nowadays there exist a

large number of legacy systems in the enterprises.

Wrapping the legacy systems into reusable

components is an economic way for the enterprises to

enhance the information processing capability. In this

paper, we present an interactive wrapper technique to

make Unix-based interactive legacy systems act as

CORBA components. We take Unix shell as the

legacy system to realize the presented technique.

Besides, we compose the wrapped Unix shell

component with other self-developed CORBA

components to build a 3-tiers distributed component

software.

Keywords: Component Technology, Distributed

Computing, Software Architecture, Software

Integration, Software Reuse.

1. Introduction

Software reuse is an economic means to speed

up the software development. As the way of

manufacturing computer hardware, building software

rapidly by means of assembling reusable components

has been a goal for the software industry to strive.

Generally, software component is an individual

software piece with specific functions and can be

viewed as a software IC, similar to its hardware

counterpart. The software developed in the manner of

assembling collaborative components, which interact

with each other through consistent communication

interfaces, is called component software (or

componentware). The functions of the

componentware are flexible to be changed by

altering its components such that the componentware

satisfies the need of software customization [6]. Due

to superior features in maintainability, reusability and

productivity, componentware is now the mainstream

of software development.

Besides, the distributed applications are

currently very popular due to the rapid development

of the Internet. CORBA [13, 14] is, at present, one of

the main middlewares (i.e., CORBA, DCOM and

Java) to support distributed applications. It provides

the facilities to support the interoperations between

components run on heterogeneous distributed

environments.

Nowadays, there exist, especially in the

enterprises, a large number of earlier developed

application systems  legacy systems (legacy assets

or legacy applications) that are designed to process

enterprise information and are executed on their own

specific operating environments. These legacy

applications still play important roles in the

enterprises and cannot be easily substituted. The

information processing capability inside an enterprise,

however, needs to be enhanced for satisfying the new

business requirements. One of the ways to achieve is

to redevelop the information systems from scratch

with the emerging computer technologies, such as

distributed-object technology, etc. Nevertheless, this

will cost plenty of development time and money. As

mentioned, software reuse is an effective means to

speed up software development. Reusing the legacy

systems in developing new application systems can

apparently save software development cost.

Furthermore, enabling the legacy systems to act as

components can make them integrated or composed

with other components on heterogeneous

environments through the support of middleware so

as to come up to the new trend of software

development.

There have been works [2, 4, 7] to present the

methodologies or procedures for enabling the legacy

applications to turn out to be the components.

However, it is not an easy work to make legacy

systems into components due to that most of them

are in binary codes form  we have no way to

access their source codes. Generally, the wrapper

technique for software integration can be used for

this. The primary notion behind the wrapper is to

present the functions of the legacy systems according

to the component communication protocol supported

by the middleware.
There are many legacy systems that are

Unix-based and operationally interactive. But how to

wrap the Unix-based interactive legacy systems into

components are scarcely discussed. In this paper, we

present the interactive wrapper technique to make

interactive Unix-base legacy systems into CORBA

components. We take Unix shell as the sample legacy

system to practice the proposed technique. In

addition, the Unix shell component is composed with

other self-developed CORBA components to build a

3-tiers distributed componentware.

The rest of this paper is organized as follows. In

Section 2, the related works is introduced. In Section

3, our interactive wrapper technique is detailed

discussed. In Section 4, the implementation of the

3-tiers distributed componentware is presented.

Finally, a brief conclusion is drawn in Section 5.

2. Related Works

The wrapper is the key technique for software

integration of binary code level. Most of the

proposed wrappers relate to data integration or need

the support of well-defined programmatic interfaces

[8, 11, 12]. Whereas, the wrapper in the FIM

(Function Integration Model) [9] intercepts and

redirects the command/data streams between the

integrated applications such that the whole or part

functions of these applications are cooperatively

performed. The FIM wrapper can integrate both the

data and the functions of different applications

without specific tool-supported APIs.

Figure 2. The architecture of the wrapper

On the other hand, the CFIM (CORBA Function

Integration Model) [1, 10] extends the FIM to enable

an application to act as a CORBA object. The

wrapper (CORBA wrapper) in the CFIM serves as an

interface that presents the non-CORBA based

applications as the CORBA services. In addition to

being responsible for redirecting messages to the

wrapped application, the wrapper needs to provide

CORBA interfaces for it. The architecture for

CFIM-based system integration is shown in Figure 1

[10].

To serve the requests from CORBA client, the

wrapper needs to fulfill the following operations:

1. Receive the CORBA requests and transform them

into corresponding command/data streams

accepted by the wrapped application.

2. Transfer the command/data streams to the

wrapped application.

3. Receive the result from the wrapped application

and transform into corresponding CORBA

messages.

4. Return the CORBA messages back to the client.

On the whole, as shown in Figure 2, the CORBA

wrapper includes two main parts: an I/O redirector to

redirect the command/data streams to and out of the

wrapped application; a CORBA interface adaptor to

present the outsides the CORBA interfaces of the

wrapped application, the internal implementation of

which is to receive, transform and convey the

CORBA messages or the messages of the wrapped

application.

Based on this CORBA wrapper, pipe is

employed to be the communication infrastructure

between the I/O redirector and the wrapped

application [1]. However, due to the operational

limitation, the pipe is not suitable to be that between

the I/O redirector and the wrapped application which

originally communicates with the users interactively.

We will discuss this in next section.

3. The Interactive Wrapper

In this section, we present the interactive

wrapper for making Unix-based interactive legacy

systems into CORBA components.

3.1 The I/O redirector

It is obvious that a communication link needs to

be established to redirect the command and data

streams between the I/O redirector and a legacy

Figure 1. The CFIM diagram

system. In Unix, this can be achieved by employing a

specific IPC (Inter-Processes Communication)

mechanism. In terms of the Unix, the I/O redirector

and the legacy system are coprocesses that

communicate through the IPC, and the output of the

former is the input of the latter and vice versa, as

shown in Figure 3.

Unix I/O Buffering

To lessen the number of reading/writing the input

and output data stream so as to promote the system

performance, the Unix standard I/O library offers

various I/O buffering mechanisms: fully buffered,

line buffered, and unbuffered [15, 16]. Essentially,

the fully buffered will be adopted if the input and

output data streams are operationally related to the

interactive device; otherwise, the line buffered will

be used. The unbuffered is mainly employed in

connection with the standard error.

 Pipe

There are many diverse IPC mechanisms, e.g.,

pipe, FIFO, message queue, shared memory and

socket, to be provided by different operating systems

[15, 16]. In Unix, pipe that connects the standard

output channel of one process (the writer process) to

the standard input channel of another process (the

reader process) is a commonly used IPC mechanism.

Figure 4 shows the typical Unix pipes between two

processes.

Being an IPC mechanism between two processes,

the pipe works well if the two processes

communicate with each other through it for once.

However, utilizing the pipes as the IPC mechanism

between the I/O redirector and the interactive legacy

system will cause troubles.

Firstly, an interactive legacy system originally

interacts with the user by means of the terminal. The

user inputs the command/data from the keyboard, the

legacy system eventually receives and processes the

request and returns the result back to display on the

monitor. If the I/O redirector transmits command and

data to the interactive legacy system through a pipe

and returns the result to the user through another pipe,

the “stdin” and “stdout” of the legacy system is

apparently connect to the pipes rather than the real

terminal.

Besides, if the pipe is adopted as the IPC

mechanism and the legacy system employs the

standard I/O functions to read/write the “stdin “and

“stdout”, then the standard input and standard output

Figure 3. The coprocesses diagram

Figure 4. The Pipes between coprocesses

will be operated in the manner of fully buffered. The

fully buffered type requires the writer process (I/O

redirector) to be terminated for enabling its output to

be read by the reader process (legacy system). This

will disable the I/O redirector to continuously

interact with the legacy system. Thus, the pipe is not

suitable to be the IPC mechanism between the I/O

redirector and the interactive legacy system since

they generally need to be continuously kept alive and

interactively transfer data to each other.

Pseudo terminal

Instead, the pseudo terminal [17], which adopts

the line buffered as the buffering type that requires

no termination of the writer process and thus allows

the reader process to interactively interact with the

writer process, is suitable to be the IPC mechanism

between the I/O redirector and the interactive legacy

system. Due to the interactive communications

between the legacy system and the outsides, the

pseudo terminal that acts as a terminal to an

application but is not a real terminal is adopted to be

the IPC infrastructure in our implementation of the

I/O redirector, as shown in Figure 5.

The followings are the main operational features

of the pseudo terminal:

1. A parent process (I/O redirector) first invokes

“open” system call to open a pseudo-terminal master

process and then calls “fork” to generate a child

process. The child process sets up a new session,

invokes “open” system call to open the

corresponding pseudo-terminal slave process,

duplicates the slave to be its standard input, standard

output and standard error device, and finally calls

“exec” to execute the interactive legacy system. Thus,

the pseudo-terminal slave becomes the controlling

terminal of the legacy system.

2. In this way, the pseudo-terminal slave appears to

be a terminal device related to the standard input,

standard output and standard error of the legacy

system. It can issue all the terminal I/O functions on

these descriptors. But since it is not an actual

terminal device, some functions that make sense to

real terminal (e.g., change the baud rate, send a break

character, etc.) will be ignored.

3. Anything written to the master pseudo terminal is

considered to be the input to the slave pseudo

terminal and anything out of the slave appears to be

the output of the master. The pseudo terminal looks

like a stream pipe, but with the terminal line

discipline module above the slave it has additional

capabilities over a plain pipe.

3.2 CORBA interface adaptor

Generally, the major effort to provide CORBA

interfaces for the legacy system with the source

codes available is to define its functions by means of

the corresponding CORBA IDL definitions. However,

we are now devoted to provide CORBA interfaces

for the legacy system with only binary codes

Figure 5. The pseudo terminal diagram

available. The major work for this mainly involves:

converting the CORBA messages into legacy system

message and vice versus; conveying messages to the

I/O redirector for being redirected to the legacy

system or to the ORB for being returned back to the

CORBA client. In our wrapper technique, an

interface adaptor is designed to achieve this. In our

design, the interface adaptor presents a single

CORBA IDL definition to the CORBA ORB. In this

way, the interface adaptor encapsulates the legacy

system as CORBA component. The CORBA IDL

definition the interface adaptor presents is as follows:

module Wrap
{

 interface IO
 {
 unsigned short start(in string APname);

 boolean redirector(inout string, APstream, in
unsigned short APpid, in unsigned short flag);

 };

};

There is only one CORBA interface definition 

“IO” in the interface adaptor. This interface

definition includes two methods  start and

redirector.

The start method definition includes only one

parameter, APname, of which the type is

CORBA::string. The keyword “in” means that the

server (i.e., ORB) write data onto APname for the

client (i.e., interface adaptor) to read. The start

method is for invoking the legacy program with path

name specified in APname. The start method will

return a value with type of CORBA::unsigned short

to represent the process ID of the invoked legacy

program.

The redirector method definition contains three

parameters: APstresm is used for transmitting data

stream to and out of the legacy systems. The

keyword “inout” means that the server can write data

onto APstream for the client to read and vice versus;

APpid is used to store the process ID of the invoked

legacy program; flag is used to store the status of the

legacy systems (1 means invoked just now; 0 means

already in execution). The redirector method will

convert the format of the messages before conveying

them to the legacy system or the ORB.

Due to the interactive feature of the legacy

system we desire to wrap, except the external IPC

mechanism between the I/O redirector and the legacy

system, the internal IPC mechanism between the

interface adaptor and the I/O redirector needs to

support interactivity. Unlike the legacy system in

binary codes form, we take hold of the inside of the

wrapper. To satisfy the requirement, we adopt FIFO

(First In First Out) to be the interactive IPC

mechanism between the interface adaptor and the I/O

redirector in our wrapper. We create two FIFOs, of

which the file names are the process ID of the legacy

system, to manage the bi-direction flow of the

command/data streams. The architecture of the

internal and external IPC mechanisms of our wrapper

is shown in Figure 6.

Figure 6. The IPC mechanisms of the proposed wrapper

4. A 3-tiers Distributed Componentware

We have taken the Unix shell as the legacy

system to realize the presented technique. Besides,

we build a CORBA-based distributed application to

experience the CORBA capability of supporting

distributed heterogeneous environments. This

application can provide the user the information of

current date, current week and current month. The

user can query these information through selecting

the service options on the user interface which is

execute on the MS-DOS environment.

The 3-tiers software architecture currently is the

mainstream of the architecture of the distributed

application [5]. It extends the traditional 2-tires

(client/server) software architecture by inserting an

additional application layer (or business logic layer)

between the traditional user interface and database

layers.

From the viewpoint of the componentware, the

user interface components, the business logic

components and the database components can be

assembled into larger versatile software applications.

As shown in Figure 7, the developed componentware

is a 3-tiers distributed application.

User Interface Component

We experimentally construct a simple user

interface component to provide the user three main

options  “date”, “week” and “cal” to query,

respectively, current date, current week and current

month. Besides, an “exit” option allows the user to

quit the application. This user interface component is

executed on the MS-DOS environment.

Business Logic Component

As mentioned, this application provides the user

three services  to query the information of current

date, current week and current month. The first and

the last services can be directly achieved by utilizing

the existing Unix utilities  date and cal. However,

the information of current week cannot be directly

obtained but can be produced by combining the

services of the previous two utilities. Thus, we

construct an additional CORBA component to be the

business logic component which can individually

request the date or cal service from the wrapped

Unix shell as well as integrate both services. If the

user request is to query current date or current month,

this component will transmit date or cal request to

the underlying wrapped Unix shell component (or

database component, as describe below) for

acquiring the information of the current date or

current month. If the user request is to query current

week, this component will transmit cal and date

request in turn to the underlying database component,

calculate the current week from the returned data and

return the current week to the user interface

component. The CORBA IDL of this business logic

component can be referred to in the appendix.

Figure 7. The 3-tires distributed componentware

Database Component

In terms of the 3-tiers architecture application,

the wrapped Unix shell component is taken for the

database component in this application. Originally,

the Unix shell accepts the input command and data

from the users and then return the result data as

output to the users. In this way, the Unix shell

behaves as a database to some extent and the input

command and data are viewed to be the query to the

database. When the wrapped shell component receive

date or cal request, it will execute date or cal utility

to acquire the information of current date or current

month and return the information back to the

business logic component.

Figure 8 shows the functional architecture of this

distributed application.

Software IC description file

As described before, the functions of the

componentware are flexible to be changed. From the

viewpoint of the user interface component, the

services it presents to the user are offered by the

business logic components (or the wrapped legacy

components eventually). Properly information related

to these services-providing components can be

specified to describe the presented services, and

altering the information with relation to these

components means to change the functions of the

componentware. On the other hand, each software

component can be viewed as a software IC as

described before. Thus, we define a set of pin-like

descriptions for each of the software IC in a software

IC description file for this purpose. While the

application begins to be executed, the user interface

component will first read the software IC description

file and then initialize the corresponding components

for future collaboration. The software IC description

and our description file for this case can be referred

to in the appendix. The test result of this application

can be referred to in [3].

5. Conclusion

Enabling the legacy systems to act as the

reusable components can facilitate the

development of new applications in an economic

way and comes up to the new trend of software

development as well. In this paper, based on the

CORBA Functional Integration Model, we present

an interactive wrapper technique to make

Unix-based interactive legacy systems into

CORBA environments. The key technique in this

model is the CORBA wrapper that includes two

main parts  an I/O redirector to redirect

messages between the wrapped application and the

outsides; a CORBA interface adaptor to provide

CORBA interfaces for the wrapped application.

Previous researches on software integration utilize

pipe as the underlying IPC mechanism between

the I/O redirector and the wrapped application.

Due to the operational limitation, pipe is not

Figure 8. The functional architecture of the
distributed calendar application

suitable to be the IPC mechanism for two

interactive processes to communicate on. Instead,

pseudo terminal, which is not a real terminal by

which the user interactively interacts with the

application in real world but acts as a terminal to

an application, is employed to be that in our

wrapper to support the interactivity.

From our componentware research, we learn that

the application developer can produce, according

to the user requirement, new business logic

components by appropriately combining the

services provided by the wrapped legacy

components which can be considered to be

database components in terms of the 3-tiers

software architecture. In addition, we find that by

properly assembling the CORBA user interface

components, business logic components and

database components, the componentware can be

built to be distributed application of 3-tiers

architecture through the support of CORBA

middleware.

Reference

1. 吳大欣, 林志敏, 焦惠津, "利用包裝程式技術

達成 CORBA 環境下 UNIX 應用程式之重用

", 第八屆物件導向技術及應用研討會.

2. 柯仁傑, 洪麗玲, 陳茂華, "以元件組裝方式開

發"舊系統上網工具"之經驗報告", 資訊工業策

進會軟體工程實驗室,第八屆物件導向技術及

應用研討會.

3. 郭炳宏, "UNIX 作業環境應用軟體再利用之研

究", 國立成功大學碩士論文, 2001.

4. Paul Allen, Stuart Frost, “Component-Based

Development for Enterprise Systems”, Cambridge,

ISBN 0-521-64999-4.

5. Israel Ben-Shaul, Gail Kaiser, "Coordinating

Distributed Components Over The Internet", IEEE

Internet Computing, Volume: 2 Issue: 2, pp. 83-86,

March-April 1998.

6. Klaus Bergner, Andreas Rausch, Marc Sihling,

“Componentware-The Big Picture”, http://www.

sei.cmu.edu/cbs/icse98/papers/p6.html.

7. Ted J. Biggerstaff, "Design Recovery for

Maintenance and Reuse", Computer, Volume: 22

Issue: 7, pp.36-49, July 1989.

8. Y. S. Lee, Rainbow: Prototyping the DIOM

Interoperable System, http://www.cse.ogi.edu/

DISC/DIOM/yoosh/goodbye/html/goodbye.html.

9. Jim-Min Lin, “Cross-Platform Software Reuse by

Functional Integration Approach,” Proceedings of

COMPSAC 97, pp.402-408, Aug 1997.

10. Re-Chi Lin, Jim-Min Lin, Hewi Jin Jiau,

"Reusing MS-Windows Software Applications

Under CORBA Environment,” Proceedings of

1998 International Conference on Parallel and

Distributed Systems, pp.615-622.

11. M. T. Roth and P. Schwarz, A Wrapper

Architecture for Legacy Data Sources, http://

www.almaden.ibm.com/cs/garlic/vldb97wraprj.ps.

12. A. Sahuguet and F. Azavant, WysiWyg Web

Wrapper Factory, http://ww.cis.upenn.edu/

~sahuguet/WAPI/wapi.

13. Douglas C. Schmidt, Steve Vinoski, “An

Overview of the OMG CORBA Messaging

Quality of Service Framework”, OMG.

Http://www.omg.com/.

14. Douglas C. Schmidt, Nanbor Wang, Steve

Vinoski, “Collocation Optimizations for

CORBA”, OMG. Http://www.omg.com/.
15. W. Richard Stevens, ”UNIX NETWORK

PROGRAMMING Volume 1-Networking APIs:

Sockets and XTI 2nd”, Prentice Hall, ISBN

0-13-649328-9.

16. W. Richard Stevens, “UNIX NETWORK

PROGRAMMING Volume 2-Interprocess

Communications 2nd”, Prentice Hall, ISBN

0-13-020639-3.

17. W. Richard Stevens, “Advanced Programming in

the UNIX Environment”, Addison-Wesley

Professional Computing Series, ISBN

0-201-56317-7.

Appendix

1. The IDL definition of the business logic

component:

module Logic

{

 interface basic_interface

 {

 unsigned short start(inout string APname, in string

CompRelation);

boolean redirector(inout string APstream, in

unsigned short APpid, in unsigned short flag);

 };
};
Parameter CompRelation in the start method is used

to note the order to combine components such that

the logic component can be aware of the next

component to be combined.

2. The software IC description:

a. #SOFT_IC_DEF: the start of the software IC

description.

b. SOFT_IC_NAME: the software IC (function)

name related to the service on the user interface.

c. SOFT_IC_TYPE: the operating platform on which

the software IC is executed.

d. SOFT_IC_PATHNAME: the execution path of the

software IC.

e. SOFT_IC_ENTRY: the entry point of a certain

function of the software IC.

f. SOFT_IC_LOGIC: the (logic) components to

provide the services.

3. The software IC description file for this case:

#SOFT_IC_DEF // Week service description
SOFT_IC_NAME：week
SOFT_IC_TYPE：Linux
SOFT_IC_PATHNAME：cal，date
SOFT_IC_ENTRY：
SOFT_IC_LOGIC：Week

#SOFT_IC_DEF //Date service description
SOFT_IC_NAME：date
SOFT_IC_TYPE：Linux
SOFT_IC_PATHNAME：date
SOFT_IC_ENTRY：
SOFT_IC_LOGIC：IORedirector

#SOFT_IC_DEF //Month service description
SOFT_IC_NAME：cal
SOFT_IC_TYPE：Linux
SOFT_IC_PATHNAME：cal
SOFT_IC_ENTRY：
SOFT_IC_LOGIC：IORedirector

