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Abstract 

 
An FIFO memory architecture is proposed 

to be utilized in data exchange between 

processing units which possess 

non-homogeneous bus widths. Neither arbiter 

logics nor modules are required in such a design 

to determine input sequences or output 

sequences. Hence, the delay is drastically 

shortened. Two pointers, which are read pointer 

(RP) and write pointer (WP), respectively, point 

to the head and the tail of the valid data queue in 

the FIFO.  The simulation results of the 

proposed design which is implemented by 

Verilog HDL (hardware description language) 

reveal that the design is capable of processing 

the data under a 200 MHz clock rate using 

TSMC 0.35 1P4M CMOS technology.  

Key Words: FIFO, data exchange, nonhomoge- 

neous bus width, arbiter 

 
1. Introduction 

 
The demand of high-speed and reliable data                
 

 

 

transfer between two devices is very critical in 

multi-processor systems and communication 

systems, [2], [3], [6]. FIFOs, thus, become a 

non-redundant module in such data transfer 

scenarios. Reliable FIFO operations guarantee 

the removal of the bottleneck, and the resilience 

to error scenarios [8]. Many efforts has been 

thrown on the performance improvement of 

either synchronous or asynchronous FIFOs [4], 

[5]. A long ignored question is what if the data 

widths are different on both sides of the FIFOs. 

That is, the bus width is non-homogeneous. An 

immediate solution to such a problem is to add 

encoder-decoder-like (codec-like) modules at 

two sides of the FIFO. The codecs performs 

either a serial-to-parallel format transformation 

for a short-data stream to a long-data stream, or 

a parallel-to-serial format transformation the 

other way around. For instance, one device uses 

a byte-wide I/O port, while another device uses a 

double-word-wide (DW-wide) I/O port. The 

FIFO between these two devices must possess a 

certain arbiter module to determine and control 

the bidirectional data flow [1], [4], [6], [7]. 

Unavoidably, the arbiter module itself becomes 
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the bottleneck of the entire operation. In this 

paper, we present a FIFO design which is 

capable of processing the data exchange between 

a byte-wide device and a DW-wide device. 

There is no arbiter in the proposed design such 

that the delay of the data format transformation 

is eliminated. Two pointers, read pointer and 

write pointer, are employed to cope with the 

determination of the data I/O sequencing. 

 
2. Non-homogeneous Bus Width FIFO 
 

Referring to Fig. 1 [3], a typical FIFO 

design is illustrated. A slow arbiter is required to 

determine the read and write sequences. Notably, 

the data widths of the two sides of the FIFO is 

identical. 

 
2.1. Architecture of the proposed 
FIFO 

 

It is obvious that the drawbacks of prior 

FIFO works are lack of flexibility of data widths, 

and slow due to the arbiter operation. We 

propose a design in Fig. 2 to resolve these 

difficulties. A two-port 256 8 RAM module is 

the core of the FIFO storage. Each address is 

associated with one “VALID” bit to indicate 

whether the corresponding byte is good for any 

future read operations. The two-port RAM cell is 

capable of simultaneous reading and writing 

given certain conditions. Referring to Fig. 3, the 

ith RAM cell is allowed to be written provided 

that FULL = 0, and WPi is activated. Note that 

WPi is the output i of the WR_decoder given 

WP[7:0] as the input.  By contrast, the data 

storage of the ith RAM cell is readout when RPi 

is activated, and VALIDi = 1. Similarly, RPi is 

the output i of the RD_decoder given RP[7:0] as 

the input. It should be noted that the data of the 

RAM cells are kept being readout without any 

triggering actions of a clock signal. Not only will 

it drastically reduce the delay, the hold time and 

setup time violations are also avoided. The 

details of the operations of the proposed design 

are given as follows.  

Write Operation : Notably, the WP[7:0] 

contains the current address of the FIFO for the 

buffered-in byte . It is called the write pointer 

(WP). The flow of the write operation is shown 

as Fig. 4. 

 

(W1). As soon as the Write_request is raised, 

the contents of WP is buffered into the 

Full Detector to determine whether RP 

= (WP + 2) mod 256. At the same time, 

the WP is also fed into the 

WR_Decoder to pre-decode the address 

to be written. 

 

(W2). If RP = (WP + 2) mod 256 is true, the 

FULL flag is set and then an error 

message is delivered to the sending 

device to indicate an overflow error. 

Note that the write operation of the data 

byte keeps running without any 

hesitation. However, its corresponding 

valid bit is marked reset, which means 

invalid. 

 

(W3). If RP = (WP + 2) mod 256 is false, the 

data is written into the address which 

WP indicates. In the meantime, its 

corresponding valid bit is set. 

 

The safe margin between RP and WP is 



chosen to 2 instead of 1 in the above flow is due 

to the fact that the data placed on the bus won't 

be processed until the next working clock edge, 

regardless of positive edge or negative edge.  If 

“1” is used, a read operation and a write 

operation might be invoked to one single cell. 

Read Operation : It is noted that the RP[7:0] 

contains the starting address of the FIFO for the 

buffered-out double word . It is called the read 

pointer (RP). The flow of the read operation is 

shown as Fig. 5. 

 

(R1). RP[7:0] is concatenated by the output 

of the Read Pointer module, which is 

6-bit long of RP[7:2], and two padding 

``0''s at RP[1:0]. The reason is that the 

format of the output is double word, i.e., 

32 bits. Hence, the contents of RP[7:2] 

is the aligned 4-bit boundary in the 

RAM module.  

 

(R2). The Output Buffer always contains the 

data bytes in (RP), (RP+1), (RP+2), 

(RP+3). They, however, will not be 

placed on the output bus until all of 

their corresponding valid bits are 

verified to be set by the Valid Decider 

module. 

 

(R3). As soon as the Read_request is sensed, 

the contents of the RP is sent to the 

Valid Decider along with two padding 

zeros at the two LSB bits. Meanwhile, 

it is fed into the RD_Decoder to 

pre-decode the bytes to be read (or 

deleted from the FIFO). The selected 4 

bytes are fetched to the Output Buffer 

waiting for the permission from the 

Valid Decider. 

 

(R4). The Valid Decider checks all of the 

valid bits of the consecutive 4 bytes 

starting from where RP points to. If 

there are all valid, the double word in 

the Output Buffer is placed on the 

output bus. 

 
2.2. Performance analysis 
 

The features of the proposed design 

compared to prior FIFO designs are summarized 

as follows.  

 

a). Prior FIFOs are not designed for 

non-homogeneous data width. Hence, the 

long data must be divided into small 

partitions which then are either written or 

readout.  The complexity of such a design 

will be O(n), where n is the ratio of the 

long data to the short data. On the contrary, 

the proposed design is independent of the 

data length, which implies that complexity 

is O(1).  

 

b). No slow arbiter is required in our design. 

The arbiter in prior FIFO works is 

basically used to prevent the write and read 

operations occurring at the same time.  It 

intrinsically contains a clock-triggered 

FSM (finite state machine), which 

generally is a slow circuit.   

 
3. Performance Simulations 

 
In order to verify the performance of the 

proposed FIFO, the entire design is carried by 



Verilog RTL codes, and then synthesized by 

SYNOPSYS using TSMC 0.35 1P4M cell 

library.  Fig. 6 is the normal read and write 

operations of the proposed FIFO.  Detailed 

descriptions of the notations are given as 

follows.  

 

(N1). Byte 1, 2, 3, and 4 are validated at the 

end of clock 5. Hence, a valid double 

word is placed on the output bus. 

 

(N2). During clock period 7, though the 

Read_request is pulled low, the double 

word is not delivered owing to the valid 

bit of the highest byte is not set. 

 

(N3). At the end of clock period “a”, byte 5, 

6, 7, and 8 are all validated to be sent 

out. 

 

(N4). Byte 9, a, b, and c are similarly 

manipulated. 

 

(N5). The Write_request is kept low to 

continuously feed data bytes to the 

FIFO.  

 

By contrast, Fig. 7 is the scenario that the 

FULL flag is set which is highlighted as “F1”. 

Notably, any further write operation is prohibited 

unless there is a readout operation, which is “F2” 

in Fig. 7. The maximal I/O clock rate is 208 

MHz (≈ 200MHz), which implies that the 

throughput is 6.4 Gbps = 32 bits  200 MHz. 

The critical delay of the proposed design is 4.36 

ns. The overall synthesized gate count of the 

proposed FIFO is 29494.0. Fig. 8 reveals the 

dual part of the proposed design. 

 

4. Conclusion 
 

We present a novel FIFO design which is 

capable of processing the data transfer between 

two devices with different data lengths without 

using any arbiter. The readout operation and the 

write operation are executed simultaneously.  A 

minimum number of flags is required. The 

simulation results turn out to be very appealing. 
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Figure 1: Coventional FIFO configuration 
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Figure 2: Proposed FIFO architecture 
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Figure 3: Two-port memory cell and control signals 
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Figure 4: Write operation data flow 
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Figure 5: Read operation data flow 
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Figure 6: Simulations of the proposed FIFO in a normal status 
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Figure 7: Simulations of the proposed FIFO with a FULL error 
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Figure 8: Proposed 32-to-8 FIFO design 
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