
An FIFO Memory Design for 8-to-32 Data Exchange Bus §

Chua-Chin Wang, Yih-Long Tseng, and Yi-Wei Chen

Dept. of Electrical Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan 80424

email : ccwang@ee.nsysu.edu.tw

Abstract

An FIFO memory architecture is proposed

to be utilized in data exchange between

processing units which possess

non-homogeneous bus widths. Neither arbiter

logics nor modules are required in such a design

to determine input sequences or output

sequences. Hence, the delay is drastically

shortened. Two pointers, which are read pointer

(RP) and write pointer (WP), respectively, point

to the head and the tail of the valid data queue in

the FIFO. The simulation results of the

proposed design which is implemented by

Verilog HDL (hardware description language)

reveal that the design is capable of processing

the data under a 200 MHz clock rate using

TSMC 0.35 1P4M CMOS technology.

Key Words: FIFO, data exchange, nonhomoge-

neous bus width, arbiter

1. Introduction

The demand of high-speed and reliable data

transfer between two devices is very critical in

multi-processor systems and communication

systems, [2], [3], [6]. FIFOs, thus, become a

non-redundant module in such data transfer

scenarios. Reliable FIFO operations guarantee

the removal of the bottleneck, and the resilience

to error scenarios [8]. Many efforts has been

thrown on the performance improvement of

either synchronous or asynchronous FIFOs [4],

[5]. A long ignored question is what if the data

widths are different on both sides of the FIFOs.

That is, the bus width is non-homogeneous. An

immediate solution to such a problem is to add

encoder-decoder-like (codec-like) modules at

two sides of the FIFO. The codecs performs

either a serial-to-parallel format transformation

for a short-data stream to a long-data stream, or

a parallel-to-serial format transformation the

other way around. For instance, one device uses

a byte-wide I/O port, while another device uses a

double-word-wide (DW-wide) I/O port. The

FIFO between these two devices must possess a

certain arbiter module to determine and control

the bidirectional data flow [1], [4], [6], [7].

Unavoidably, the arbiter module itself becomes

§This research was partially supported by National

Science Council under grant NSC 89-2215-E- 110-014
and 89-2215-E-110-015.

�the contact author

the bottleneck of the entire operation. In this

paper, we present a FIFO design which is

capable of processing the data exchange between

a byte-wide device and a DW-wide device.

There is no arbiter in the proposed design such

that the delay of the data format transformation

is eliminated. Two pointers, read pointer and

write pointer, are employed to cope with the

determination of the data I/O sequencing.

2. Non-homogeneous Bus Width FIFO

Referring to Fig. 1 [3], a typical FIFO

design is illustrated. A slow arbiter is required to

determine the read and write sequences. Notably,

the data widths of the two sides of the FIFO is

identical.

2.1. Architecture of the proposed
FIFO

It is obvious that the drawbacks of prior

FIFO works are lack of flexibility of data widths,

and slow due to the arbiter operation. We

propose a design in Fig. 2 to resolve these

difficulties. A two-port 256 8 RAM module is

the core of the FIFO storage. Each address is

associated with one “VALID” bit to indicate

whether the corresponding byte is good for any

future read operations. The two-port RAM cell is

capable of simultaneous reading and writing

given certain conditions. Referring to Fig. 3, the

ith RAM cell is allowed to be written provided

that FULL = 0, and WPi is activated. Note that

WPi is the output i of the WR_decoder given

WP[7:0] as the input. By contrast, the data

storage of the ith RAM cell is readout when RPi

is activated, and VALIDi = 1. Similarly, RPi is

the output i of the RD_decoder given RP[7:0] as

the input. It should be noted that the data of the

RAM cells are kept being readout without any

triggering actions of a clock signal. Not only will

it drastically reduce the delay, the hold time and

setup time violations are also avoided. The

details of the operations of the proposed design

are given as follows.

Write Operation : Notably, the WP[7:0]

contains the current address of the FIFO for the

buffered-in byte . It is called the write pointer

(WP). The flow of the write operation is shown

as Fig. 4.

(W1). As soon as the Write_request is raised,

the contents of WP is buffered into the

Full Detector to determine whether RP

= (WP + 2) mod 256. At the same time,

the WP is also fed into the

WR_Decoder to pre-decode the address

to be written.

(W2). If RP = (WP + 2) mod 256 is true, the

FULL flag is set and then an error

message is delivered to the sending

device to indicate an overflow error.

Note that the write operation of the data

byte keeps running without any

hesitation. However, its corresponding

valid bit is marked reset, which means

invalid.

(W3). If RP = (WP + 2) mod 256 is false, the

data is written into the address which

WP indicates. In the meantime, its

corresponding valid bit is set.

The safe margin between RP and WP is

chosen to 2 instead of 1 in the above flow is due

to the fact that the data placed on the bus won't

be processed until the next working clock edge,

regardless of positive edge or negative edge. If

“1” is used, a read operation and a write

operation might be invoked to one single cell.

Read Operation : It is noted that the RP[7:0]

contains the starting address of the FIFO for the

buffered-out double word . It is called the read

pointer (RP). The flow of the read operation is

shown as Fig. 5.

(R1). RP[7:0] is concatenated by the output

of the Read Pointer module, which is

6-bit long of RP[7:2], and two padding

``0''s at RP[1:0]. The reason is that the

format of the output is double word, i.e.,

32 bits. Hence, the contents of RP[7:2]

is the aligned 4-bit boundary in the

RAM module.

(R2). The Output Buffer always contains the

data bytes in (RP), (RP+1), (RP+2),

(RP+3). They, however, will not be

placed on the output bus until all of

their corresponding valid bits are

verified to be set by the Valid Decider

module.

(R3). As soon as the Read_request is sensed,

the contents of the RP is sent to the

Valid Decider along with two padding

zeros at the two LSB bits. Meanwhile,

it is fed into the RD_Decoder to

pre-decode the bytes to be read (or

deleted from the FIFO). The selected 4

bytes are fetched to the Output Buffer

waiting for the permission from the

Valid Decider.

(R4). The Valid Decider checks all of the

valid bits of the consecutive 4 bytes

starting from where RP points to. If

there are all valid, the double word in

the Output Buffer is placed on the

output bus.

2.2. Performance analysis

The features of the proposed design

compared to prior FIFO designs are summarized

as follows.

a). Prior FIFOs are not designed for

non-homogeneous data width. Hence, the

long data must be divided into small

partitions which then are either written or

readout. The complexity of such a design

will be O(n), where n is the ratio of the

long data to the short data. On the contrary,

the proposed design is independent of the

data length, which implies that complexity

is O(1).

b). No slow arbiter is required in our design.

The arbiter in prior FIFO works is

basically used to prevent the write and read

operations occurring at the same time. It

intrinsically contains a clock-triggered

FSM (finite state machine), which

generally is a slow circuit.

3. Performance Simulations

In order to verify the performance of the

proposed FIFO, the entire design is carried by

Verilog RTL codes, and then synthesized by

SYNOPSYS using TSMC 0.35 1P4M cell

library. Fig. 6 is the normal read and write

operations of the proposed FIFO. Detailed

descriptions of the notations are given as

follows.

(N1). Byte 1, 2, 3, and 4 are validated at the

end of clock 5. Hence, a valid double

word is placed on the output bus.

(N2). During clock period 7, though the

Read_request is pulled low, the double

word is not delivered owing to the valid

bit of the highest byte is not set.

(N3). At the end of clock period “a”, byte 5,

6, 7, and 8 are all validated to be sent

out.

(N4). Byte 9, a, b, and c are similarly

manipulated.

(N5). The Write_request is kept low to

continuously feed data bytes to the

FIFO.

By contrast, Fig. 7 is the scenario that the

FULL flag is set which is highlighted as “F1”.

Notably, any further write operation is prohibited

unless there is a readout operation, which is “F2”

in Fig. 7. The maximal I/O clock rate is 208

MHz (≈ 200MHz), which implies that the

throughput is 6.4 Gbps = 32 bits 200 MHz.

The critical delay of the proposed design is 4.36

ns. The overall synthesized gate count of the

proposed FIFO is 29494.0. Fig. 8 reveals the

dual part of the proposed design.

4. Conclusion

We present a novel FIFO design which is

capable of processing the data transfer between

two devices with different data lengths without

using any arbiter. The readout operation and the

write operation are executed simultaneously. A

minimum number of flags is required. The

simulation results turn out to be very appealing.

Reference

[1] A. Bystrov, and A. Yakovlev, Ordered

arbiters, “Electronics Letters,” vol. 35,

no. 11, May 1999.

[2] S. K. Das, M. C. Pinotti, and F. Sarkar,

“Optimal and load balanced mapping of

parallel priority queues in hypercubes,”

IEEE Trans. on Parallel and Distributed

Systems, vol. 7, no. 6, June 1996.

[3] M. Hashimoto, M. Nomura, K. Sasaki, K.

Komatsizaki, H. Fujiwara, T. Honzawa,

K. Abe, T. Tachibana, N. Kitagawa, “A

20-ns 256K 4 FIFO memory,” IEEE J.

of Solid-State Circuits, vol. 23, no. 2, pp.

490-499, Apr. 1988.

[4] J. Jex, P. Nag, T. Burton, and R. Mooney,

“Split FIFO phase synchronization for

high speed interconnect,” 1995 IEEE

Pacific Rim Conf. on Communications,

Computers, and Signal Processing, pp

66-69, 1995.

[5] M. Muegge, and D. Chenoweth, “36 bits

wide FIFO for deep, bus oriented

applications,” Southcon/93, pp. 615-619,

1993.

[6] D. Picker, and R. D. Fellman, “A VLSI

priority packet queue eith inheritance

and overwrite,” IEEE Trans. on Very

Large Scale Integration (VLSI) Systems,

vol. 3, no. 2, pp. 245-252, June 1995.

[7] G. V. Russo, and M. Russo, “A novel

class of sorting networks,” IEEE Trans.

on Cricuits and Systems - 1 : Funda-

mental Theory and Applications, vol. 43,

no. 7, pp. 544-552, July 1996.

[8] D. Wyland, “New features in

synchronous FIFOs,” Northcon/93, pp.

224-232, 1993.

Oooo

oooooooooooo

256K x 4
RAM

Se
ria

l R
ea

d
Po

in
te

r

R
ea

d
Li

ne
 B

uf
fe

r

Se
ria

l W
rit

e
Po

in
te

r

W
rit

e
Li

ne
 B

uf
fe

r

Array Control Logic

Data
Output
Buffer

Read
Reset

Controler

Serial
Read

Timing
Controler

Read Counter Write CounterArbiter Logic

Ring Oscillator

Output
Line

Selector

A Pointer
A Line
Buffer

Input
Line

Selector

B Pointer
B Line
Buffer

Data
Input
Buffer

Write
Reset

Controler

Serial
Write

Timing
Controler

RE

DOUT
(x4)

RSTR

SRCK

DOUT
(x4)

RSTW

SWCK

WE

Figure 1: Coventional FIFO configuration

256 x 8
RAM

R
D

_D
ecoder

Read
Pointer

00H
01H
02H
03H
04H
05H
06H
07H
08H

FCH
FDH
FEH
FFH

Write
Pointer

Full
Detector

Valid
Setup

Output
Buffer

W
R

_D
ecoder

Read-request

Write-request WP[7:0]

FULL

RP[7:2]

VALID [3:0]

DATA IN[7:0]

256

Input
Buffer

256

OUT0 [7:0]

OUT1 [7:0]

OUT2 [7:0]

OUT3 [7:0]

DATA
OUT [31:0]

"00"RP[1:0]

Figure 2: Proposed FIFO architecture

RAM
Cell

FULL

i

OUT i

VALID i
iRPWP i

IN i

Figure 3: Two-port memory cell and control signals

Write-request = 0

TRUE

RP = 0

TRUE

WP = 256 - 2

TRUE

FULL = 1

WP = RP - 2

FALSE

TRUE

FALSE

Read-request = 0

FALSE

TRUE

FULL = 0

DATA Write in
WP = WP + 1

FALSE

FALSE

Figure 4: Write operation data flow

Read-request = 0

TRUE

FALSE

VALID MSB = 1

TRUE

DATA Read out
RP = RP + 1

FALSE

Figure 5: Read operation data flow

Read-request

Write-request

CLK
DATA IN[7:0]

FULL
RESET

Read_request
Write_request

DATA OUT[7:0]
DATA OUT[15:8]

DATA OUT[23:16]
DATA OUT[31:24]

VALID[RP]
VALID[RP+1]
VALID[RP+2]
VALID[RP+3]

RP
WP

N1 N2 N3 N4N5

Figure 6: Simulations of the proposed FIFO in a normal status

Read-request

Write-request

CLK
DATA IN[7:0]

FULL
RESET

Read_request
Write_request

DATA OUT[7:0]
DATA OUT[15:8]

DATA OUT[23:16]
DATA OUT[31:24]

VALID[RP]
VALID[RP+1]
VALID[RP+2]
VALID[RP+3]

RP
WP

F1 F2

Figure 7: Simulations of the proposed FIFO with a FULL error

256 x 8
RAM

R
D

_D
ecoder

Read
Pointer

00H
01H
02H
03H
04H
05H
06H
07H
08H

FCH
FDH
FEH
FFH

Write
Pointer

Full
Detector

Valid
Setup

Output
Buffer

W
R

_D
ecoder

WP[7:2]

FULL

RP[7:0]

VALID

256

Input
Buffer

256

OUT [7:0]
DATA

OUT [7:0]

"00"
WP[1:0]

Read-request

Write-request

DATA IN[7:0]

Figure 8: Proposed 32-to-8 FIFO design

	Abstract

