
A Web-based on-line Monitoring and Diagnosis System for
Machinery of Hot Strip Mill

Hung-Chieh Yeh^, Chung-Nan Lee^, Song-Jau Tsai*, Chuan-Wen Chiang^,

Ming-Shen Jen^, Chang-Tsun Lin*, Cheng-Yu Wei*, Shaw-Ching Chang#, Der-Lin
Wang#, Kun-Hong Shieh#, and Sheng-Yang Lin*

^Department of Computer Science and Engineering, National Sun Yat-Sen University,

*Steel and Aluminum Research and Development Department, China Steel
Corporation,

#South Area Information Division of Institute for Information Industry
Kaohsiung, Taiwan

Abstract

A multi-agent based on-line monitoring and

diagnosis system (MAMDS) is developed for

distributed measuring, monitoring and diagnosis

machines of a hot strip mill in the China Steel

Corporation. MAMDS takes the advantage of

Web-based properties, it releases the restrictions of

temporal and regional isolation and provides a

platform-independent user interface. Through the

system, users can easily monitor and diagnose the

machines on remote production lines through its

graphical user interfaces, such as display of machine

status, malfunction alarming, trend chart, waveform,

and spectrum. It uses collaborative agents to reduce

the cost of development and enhance the feature of

reuse. The system provides a real-time and dynamical

operation circumstance and can meet the needs of

different levels of users. Consequently, it is of great

help to run machines smoothly, lower the cost of

personnel and enhance the ability of market

competition.

Keywords – monitoring and diagnosis, web-based

system, multi-agents, plant automation

1. Introduction

As modern industrial facilities move toward high

speed and automation, the on-line monitoring and

diagnosis become important. Since a production line

facility may break down unexpectedly, the

unscheduled shutdown will cause losses and

deteriorate the quality ofproducts. The traditional

time-based maintenance strategy does not take the

practical machine condition into account and only

performs the maintenance practice at a fixed time

interval from the maintenance personnel. Therefore,

accidental breakdowns unavoidably happen, when the

chosen time interval is too long; otherwise, it leads to

over-maintenance, when the chosen time interval is

too short [1].

In order to increase industrial automation,

industrial monitoring and diagnosis system based on

computer technology gains popularity [2-4]. In

general, monitoring the machines or supervision is

carried out by measuring some data from some

machines in the plant production lines. The

development of on-line monitoring and diagnosis

system is prompted by the needs to increase the

availability of machines and to protect machines from

problems. Furthermore, maintenance personnels can

access the information that is provided from a

 2

machine monitoring system to check whether these

machines are running normally.

As the Internet is in widespread use, many

enterprises take advantage of the Internet to extend

services without temporal and regional

restrictions[5,6]. Therefore, the trend has brought

about changes in the manufacturing procedure. The

distributed measurement system is gradually

developed for carrying out remote control and

information retrieval on machines to be monitored. In

general, those systems are built as traditional

client/server architecture. But such architecture has

some restrictions on the use and development of the

system, for example, a user has to often install

updated software on the operating platform often.

Consequently, when the number of clients grows

gradually, the management of versions and

compatibility of application softwares on different

operating platforms become tedious.

In recent years, system developers of large

applications adopt agent technology; it simplifies

functions of the system by the cooperation of agents

[3,7-9]. Those agents in their executing environment

can work asynchronously and autonomously [10].

Furthermore, they can work with each other for an

objective requested by a user. In this paper we use a

collaborative software agent to achieve the objective

of MAMDS. By collaborative agents, the modification

of MAMDS becomes simple and easy. According to

the objectives of the users’ requests, some designated

agents will be able to handle the requested.

In order to release the restriction of temporal and

regional isolation, MAMDS is developed as a

Web-based system too. Hence, some problems such as

exchanging information, sending/receiving messages,

and uploading/downing files through a standard web

browser need to be taken care of. Furthermore, the

system has been developed over the years. It needs to

exchange and interact information among agents

implemented in different programming languages.

The remainder of the paper is organized as follows.

Section 2 presents the architecture of MAMDS.

Section 3 describes the analysis and design of

MAMDS. The issues of implementation are described

in Section 4. Demonstrations illustrating the operating

production line of a hot strip mill are given in Section

5. Section 6 concludes the paper.

MA

DB

DAS

DA

BA

operating client

Web server

SQL server

IEA

UA

TAoperating client

developed in COM

to be developed in Java

Plant Network

operating client

measurement bench

UA : Userinterface agent
TA : Tracking agent
BA : Broker agent

MA : Monitoring agent
DA : Diagnosis agent
IEA : Information Exchange agent

Fig.1 The system architecture of MAMDS

 3

2. The Architecture of MAMDS

In order to fulfill users’ requests and requirements,

MAMDS must complete each request and requirement

by the autonomous, cooperative, and coordinated

agents. Agents in MAMDS can be implemented in

different programming languages, for example, Java

or COM (Component Object Model). As illustrated in

Fig.1, the MAMDS architecture consists of agents,

web server, database server, and measurement bench

for operating machines of a production line. The

agents in MAMDS can be divided into three tiers: the

application tier, the middle tier, and the data tier as

shown in Fig. 2. In the following paragraphs, the tasks

and functions of each agent will be first described,

followed by a discussion on the relationships of

agents.

� Monitoring agent (MA): It is capable of performing

measurement on monitored machines of a

production line in an independent way or accepting

a measurement command at any time. It performs

measurement independently according to different

measured points at different measurement modes.

Those measurement modes are either at constant

time interval or at some triggered condition. The

measurement mode can be configured by a user.

� Diagnosis agent (DA): It is responsible for

accepting the measurement data from MA. And

then, it compares the up-to-date measurement data

with some defined threshold values and operations

to generate diagnosis results that consists of statuses,

and preliminary diagnosis messages. The defined

threshold values can be modified and stored into a

database.

� Data acquirement and storage agent (DAS): This

agent is employed to store information into a

database. The information consists of raw

measurement data provided from MA,

post-processing analysis data provided by DA, and

setting data from each user.

� Broker agent (BA): This agent acts as a broker for

all other agents at different tiers. The main

responsibility of this agent is to send requests and

receive process results between the application tier

and the data tier. In addition, this agent coordinates

all requests to solve the synchronous accessing

problem.

� User interface agent (UA): In order to interact with

users smoothly, this agent provides sequences of

manipulation graphic user interfaces. This agent

constructs user interfaces in accordance with the

model-view-controller (MVC) pattern to help to

display and to manage visualization information.

Besides, it is responsible for sending a user’s

requests to servers.

� Tracking agent (TA): In order to respond to the

status and measurement information of monitored

points at any time, this agent must update the

up-to-date information continuously. At the

application tier, it must track communication

between a client and a server and notify UI agent

when visualization information is updated. Besides,

in order to send the up-to-date information to

current on-line clients, this agent also tracks

communication conditions of current clients.

� Information Exchange agent (IEA): This agent is

responsible for wrapping heterogeneous

information into Java-based agents. Therefore,

agents implemented in Java can retrieve the same

information provided by other agents implemented

in COM. Besides, this agent must ensure message

passing correctly and smoothly among agents

implemented in Java and COM, so that the

measurement data can be received and updated.

 4

Moreover, MAMDS operates and provides

monitoring and diagnosis services at a plant network.

It consists of database server, measurement bench, and

a Web server. Database is responsible for storing

measurement and diagnosis data and providing

historical measurement data for pre-diagnosis. Besides,

Web server can provide transmission of web pages

and applets to achieve files uploading/downloading

and execute applets. Measurement bench provides

measurement data during runtime of machines of a

production line.

Figure 2 shows the relationships of agents in

MAMDS during user operating runtime. During

runtime the monitoring agent, the diagnosis agent, the

data acquirement and the storage agent, the

information exchange agent, and the tracking agent

are operating in the data tier to collect measurement

information and wait for users’ requests. The broker

agent is running at the middle tier to act as an

information exchange broker. The user interface

agent and the tracking agent operate at the application

tier to allow a user to manipulate monitoring

information collected from machines of a production

line.

2.2 Measurement Bench

The core of MAMDS is a measurement bench that

takes all measurement information corresponding to

all measurement points on the machines of a

production line. The measurement bench connects to

all monitored machines and collects measurement

information continuously during the operating time of

a production line. MAMDS measurement bench of a

hot strip mill in the China Steel Corporation (CSC)

uses the Distributed Input/Output Controllers

(DIOCs)[1] which are data collection devices

designed by CSC. MA of MAMDS is made up of the

DIOCs. MA measures the signals coming from

various sensors and transmits the digitized signals

through the plant network to DA and DAS. The

measurement bench consisting of a number of DIOCs

and hardware units is shown in Fig.3.

MADA

UA

BA

MAMA

MADAS
MAIEA

MATATA

sub
sele
ct
me

Browser

DBDBDBDB

M
easurem

ent B
ench

M
easurem

ent B
ench

M
easurem

ent B
ench

M
easurem

ent B
ench

Application tier Middle tier Data tier

Fig.2 The relationships of agents in MAMDS

 5

DIOC is a data collection device that is installed in

the vicinity of the machines to be monitored. Its main

functions include:

(1) Providing various kinds of signal process

modules for preprocessing of the measured

signals

(2) Diagnosing of the signal property to judge

whether the signals are short-circuited or open.

(3) Accepting commands to execute measurement.

(4) Digitizing measured signals.

3. Analysis and Design

The Unified Modeling Language (UML), which is

proposed by Rational Software Cooperation, Grady

Booch, James Rumbaugh, and Ivar Jacobson [11] is

widely accepted for the representation of developing

enterprises or large-locale?? software systems. It

allows users to designate, represent, construct, and

record various components in systematization

procedures.

We follow the analysis and construction concepts

of UML to analyze and design the on-line monitoring

and diagnosis system. The use case model in UML is

used to represent scenarios of system’s functions.

3.1 The Use Case Model

The use case in UML specifies actions for a

system to interact with external actors including users

and the system. It describes the main functions

including the system, high-level system architecture,

external actors, and then interaction relationships. The

use case model for MAMDS is shown in Fig.4.

The levels of authority of the system for external

actors (users) are classified into normal monitoring

personnel, local operator, and system administrator.

MAMDS offers functions, such as system monitoring,

Measurement Bench

Plat Network

DIOC DIOC DIOC

MA

DIOC

Fig.3 The measurement bench for

<<actor>>
File System

Multi-Agent based MonitoringMulti-Agent based MonitoringMulti-Agent based MonitoringMulti-Agent based Monitoring
and Diagnosis Systemand Diagnosis Systemand Diagnosis Systemand Diagnosis System

<<actor>>
Database

Management System

identifier
confirmation

normal monitor ing
personnel

system administer

local operator

system
management

system
monitoring

<<uses>>

system
monitoring

system setting

<<actor>>
Measurement

System

Fig.4 The use case model for MAMDS

 6

system setting, system management, and identity

confirmation. Identity confirmation is responsible for

verifying the identification of each user and for

determining the levels of authority of the user. Then, it

decides what kinds of functions and data a user can

access. System monitoring provides a real-time and

current operating status. Since some functions are

only for acquiring information, it can be used for all

users. System setting includes measuring methods,

measurement time interval, and companion basis of

diagnosis about a measurement point. In addition,

system setting provides modifying current monitored

points, such as adding and removing. An administrator

can edit the users’ data and modify a user’s level of

authority through system management function. The

data storage repository is used by database

management function and file system function to store

the information of the production line, users of the

system, and other system data settings.

3.2 Operational Phase Analysis

MAMDS mainly uses operational phase to achieve

monitoring and diagnosis objectives. Operational

phase includes monitoring and diagnosis, login

checking, data browsing, file uploading, file

downloading, measurement mode configuration, and

information updating. Functions in an operational

phase are as follows:

(1) Monitoring and diagnosis: MA and DA are

activated unless all machines stop operating. MA

must continuously measure points to be

monitored either at constant time interval mode or

at triggered condition mode. In addition, MA also

can take measurement on behalf of a user’s

request. When MA takes measurement data, it

transmits measurement data to DA for diagnosis.

MA transmits raw measurement data to DAS.

And DA also sends the diagnosis results to DAS.

(2) Login checking: It determines a user’s validity

using the levels of authority. The levels of

authority classify the levels of users, from which

it protects the system from inappropriate

operations by unauthorized users that might lead

to system and security problems or unnecessary

information provided by normal users. When a

user completes login phase, UA must notify TA to

record this UA information in the data tier via BA

in order to display the UA updated information.

MAMDS can transmit and notify current

measurement information of measurement points

via TA in the data tier.

(3) Data browsing: UA presents monitoring and

diagnosis information in terms of waveform,

spectrum, and trend chart. UA can receive the

messages about visualization information that is

updated from TA at the application tier. It helps to

display the real-time measurement information to

a user by the cooperation of UA and TA.

(4) File uploading and downloading: In order to

download the collected data from measurement

devices by operators, MAMDS permits uploading

files or downloading files that contain

measurement results. At the same time, operators

can download files that contain the historical

measurement data. This phase is completed by

the cooperation of BA and DAS.

(5) Measurement mode configuration: In order to

retrieve measurement data from monitored points

on machines of a production line, MAMDS

allows to configure the measurement mode that

consists of measurement time interval and

condition. After UA receives configuration

requests information from a user, it transmits the

configuration requests information to DAS via

BA.

(6) Information updating: MAMDS mainly executes

 7

monitoring and diagnosis. At the same time, TA at

the data tier is notified what measurement point

has measurement information to be updated, and

whether MAMDS has on-line users. Finally, TA

transmits the up-to-date information to the

front-end via BA.

4. Issues of Implementation

This section describes the implementation of

MAMDS for machines. MAMDS has been developed

over several years. During the period of development,

different languages have been used for different

agents. For example, UA, TA, BA and IEA in

MAMDS are implemented in Java language. MA,

DAS, and DA are implemented in COM. Java

language provides several characteristics, such as

platform-independent as “write once, run anywhere”,

powerful network ability and distributed computing,

and integration. Besides, the class files of Java

program can move through the Internet easily and run

through any standard web browser.

Inside MAMDS it has to exchange and interact

information among agents either implemented in

COM or in Java. To achieve the requirements and

objectives of the system, many implementation issues,

such as information exchange, security, and data

consistency must be solved. Details of each issue are

discussed in the following subsections.

4.1 Information Exchange

In order to retrieve current and historical

information of monitored machines from MA and

DAS implemented in COM, IEA of MAMDS is

responsible for handling information heterogeneity

among agents. Since data type and message passing

are different between Java and COM, it may cause

some problems. IEA uses Java Native Interface (JNI)

to implement information exchange function.

Therefore, MAMDS provides a platform-independent

monitoring and diagnosis graphical user’s interface

by the characteristics of Java and function of IEA.

With information technologies that grow gradually,

and protocol and programming languages become

more diverse, APIs of Java alone may not be enough

to satisfy a wide variety of applications. For this

reason, Java provides JNI to communicate among

other programming languages. In order to

communicate among agents implemented in Java and

COM, IEA must be responsible for information

exchange and receiving all events for the updating

measurement information of monitored machines.

IEA uses the techniques provided in [10,11] to

handle different data type exchanges between Java

and COM to communicate and collect measurement

information of monitored machines among agents.

Second, IEA must receive all events for updating

measurement information of monitored machines

validly to protect from measurement information loss.

However, MA is implemented in COM and fires

window’s events for updating information of

monitored machines to a hide window. In other words,

MA notifies updating information via a running

background window. Therefore, IEA is responsible for

communicating with this background window to build

a communication bridge between MA and IEA. The

steps for IEA to receive all events for updating

measurement information from MA are as follows:

Step 1: At the initiation, IEA and MA must

activate. MA is responsible for collecting

the measurement information of

monitored machines continuously.

However, IEA builds a background

window to receive all events.

Step 2: When MA completes a measurement task,

MA fires an updating measurement event

to this background window.

 8

Step 3: After this background window receives an

updating measurement event, this

background window finds current running

Java Virtual Machine (JVM) and retrieves

JNI via JVM. Afterwards, this background

window can send an updating

measurement message to IEA.

Step 4: IEA receives an updating measurement

message and then retrieves the updated

measurement information by the updating

measurement message.

4.2 Security

MAMDS must be accessed from a standard web

browser. However, a standard web browser has to

assume that an applet is not trustable in order to

protect a host from downloading and executing an

unsafe Java applet. It restrains the use of a web

browser in the following ways [12].

� Accessing file system through a web browser

� Executing a native code

� Reading certain system properties

� Receiving incoming socket connections

Based on the restraints mentioned above, the use

of general applet to satisfy our requirements is

impossible. In order to satisfy the requirements of

uploading or downloading files of measurement data,

BA in MAMDS is implemented in the Java Servlet.

Relying on Servlet can accomplish

uploading/downloading measurement data in a binary

file and reducing the cost of development.

4.3 Data Consistency

Measurement data are stored in a database and

accessed via DAS implemented in COM, which are

accessed through pointers. It is quite simple to

maintain those common data through these pointers in

COM. During exchanging and updating of data, the

system only needs to update the up-to-date

information once. However, Java is designed for

simplicity in the initial stage, so it discards all pointer

references. Therefore, it is hard to directly access data

through pointers for agents implemented in Java. In

order to maintain raw relations of data that is accessed

through functions of pointer, we use Java objects to

represent original data object in COM. These relations

among common data objects accessed through

pointers in COM must be handled.

We have to build the Java objects that correspond

to COM’s data models, and translate data from

COM’s data types to Java’s data types by Java Native

Interface (JNI). However, in order to avoid data

duplication as illustrated in Fig.5, we must construct

the relation of Java objects corresponding to the

relation of objects in COM through pointers.

In this situation, MAMDS must update all objects

which are related to this exchanged object for

transforming COM objects to Java objects through

JNI directly. Besides, data duplication may cause

more usage of capacities. In order to solve the above

Object A

Object B

Object C

Java

Object C

COM
object

A

IDispatch

COM
object

B

IDispatch

COM
object

C

IDispatch

Fig.5 COM objects transform to Java objects

 9

problems and to keep the relation of objects through

pointers in COM, we reduce the usage of capacity by

rebuilding the relations of data and modifying the way

of data exchange between Java and COM. We store

every data as Java’s object once and establish

relational reference to a data hash table structure,

which uses ‘id’s in COM data types as a key to

retrieve the related object through the established hash

table. An improved data structure of Fig. 5 is shown in

Fig.6.

5. Demonstration of MAMDS

In this section, we demonstrate MAMDS of a hot

strip mill currently used on the China Steel

Corporation. Figure7 shows a main screen snapshot of

MAMDS. The colored rectangle in the left top corner

of the screen represents the current conditions of the

machines present in the whole production line; green

stands for normal, yellow for alarm and red for danger.

In order to attract the user’s attention, the colored

COM
object

A

IDispatch

COM
object

B

IDispatch

COM
object

C

IDispatch

Object A

Object B

Key 2
:

Key of
Object C

Key 1

::::
::::
::::

Object C

Key n
Hash Table

Java

Fig.6 An improved data structure, which transforms a COM

Fig.7 The snapshot of main screen of MAMDS for hot strip mill

 10

rectangle keeps on blinking unless all unconfirmed

alarms are checked. The hierarchical tree for this

production line is displayed on the left-hand side of

Fig.7. The hierarchical tree shows the workflow of the

production line and each measurement points of

facilities. Each hierarchical node contains one icon

with different colors representing current status of

measured points or production line. Therefore, it

provides concise message for measurement data of

this monitored and measured points. The popup table

lists the measurement information for an arbitrary

node, once it is pressed. On the right-hand side of

Fig.7, a clear image of the production line is shown.

When the hierarchy node representing a measurement

point stops measuring, a solid line is displayed at the

middle of a hierarchy node. At the right hand side, this

system uses transparent buttons on a picture or an

image to represent the workflow structure or facilities’

locations of the production line. These pictures or

images correspond to the tree node on the left hand

side. In addition, it synchronizes with the tree on the

left hand side.

In order to understand the current status of each

monitored and measured point, the system lists the

information of all measurement points in a table, as

shown in Fig.8. The information of each measurement

point consists of name, the latest measured data

(measured data and time, measured parameters,

measurement value, etc.), preliminary diagnosis, and

the types of measured data of the channel. The color

in the status column of each row represents the

condition of the latest measurement data. The

“yellow” or “red” colors represent an alarm or a

danger message, respectively. In order to trace alarm

or danger measured signals for later use; these

measured signals are stored in the database

automatically. The other measured signals with

normal machine condition can also be saved manually.

When the operating time of production line

increases, the system can analyze the records of

measurement data of each measurement point and can

transform them into useful statistical data. These

statistical data help users to observe the trend of each

measurement point and the operating condition of

facilities and to provide forecast information in

accordance with this trend Information, which is

represented into a chart as illustrated in Fig.9.

Fig.8 Display of the latest measurement data

 11

6. Conclusions

In this paper, we have constructed a Web-based

cooperative multi-agent system -- MAMDS to

enhance industrial automation. It may release

restrictions such as geographical isolation, and

operating time. It enhances flexibility for satisfying

the changeable and multiform requirements and

reducing the troubles of updating the application

software in client sites. The system integrates software

modules developed at different phases, as a result, it

also enhances the reuse of industrial software and then

reduces the cost of development by the collaborative

agents. MAMDS offers the users a better operating

environment for monitoring machines of a hot strip

mill. In addition, the system assists users to perform

maintenance and solve harmful problems of machines.

This system can provide real-time information of

monitored machines accurately and response to

machine’s condition during the operating period. By

the historical data recorded at every measurement

time, it provides users the operating trend of each

machine and allows operators to take precautions to

prevent machines from becoming deteriorated. As a

result, it avoids machine damages and problems of

product quality. Consequently, this system can assure

smooth operation of the facilities, reduction of

damage of accidental breakdown, and maintenance of

product quality at the desired level.

Acknowledgements

This research was supported by South Area

Information Division of the Institute for Information

Industry and the Automation & Instrumentation

System Development Section, Steel & Aluminum

R&D Department of China Steel Corporation.

References

[1] S. J. Tsai, C. T. Lin, J. J. Jeng, C. Y. Wei, K. M.

Chang, C. C. Chang, C. H. Ko, and Y. C. Chiang,

Fig.9 Trend chart of a measurement point

 12

“An On-line Monitoring and Diagnostic System

for Machinery of CSC No.2 Hot Strip Mill,”

China Steel Technical Report, No. 12, pp.116-126,

1998.

[2] B. Byman, T. Yarborough, R. S. V. Carolefeld, and

J. V. Gorp, “Using Distributed Power Quality

Monitoring for Better Electrical System

Management,” IEEE Transactions on Industry

Applications, Vol. 36, NO. 5, September /

October 2000.

[3] H. Wangand C. Wang, “Intelligent Agents in the

Nuclear Industry,” IEEE Computer, Vol. 30, Issue

11, pp. 28-31, November 1997.

[4] D. Lin, D. H. Zhu, F. Q. Li, and K. X. Tan, “A

Distributed On-line Monitoring and Diagnosis

System of Power Equipment,” Proceedings of the

6th International Conference on Properties and

Applications of Dielectric Materials, Vol. 2, 2000

[5] T. Snadholm and Q. Huai, “Nomad: Mobile Agent

System for an Internal-Based Auction House,”

IEEE Internet Computing, pp.80-86, April 2000.

[6] G. Froehlich, H. J. Hoover, W. Liew, and P. G.

Sorenson, “Application Framework Issues when

Evolving Business Applications For Electronic

Commerce,” Information Systems, Vol. 24, No. 6,

pp. 457-473, August 1999.

[7] T. Wittig, N.R. Jenningd, and E.H. Mamdani,

“Archon Framework for Intelligent

Co-Operation,” Intelligent Systems Eng., pp.

168-179, Autumn 1994.

[8] G. P. Azevedo, B. Feijó, and M. Costa, “An

Agent-Based Approach to EMS in Open

Environments,” Proceedings of the IEEE

PowerTech, Budapest, August 1999.

[9] G. P. Azevedo, B. Feijó, and M. Costa, “Control

Centers Evolve with Agent Technology,” IEEE

Computer Applications in Power, pp. 48-53, July

2000.

[10] http://users.rcn.com/danadler/javacom/

[11] http://java.sun.som

[12] J. Hunter, JavaTM Servlet Programming, O’Reilly,

ISBN 1-56592-391-X, First Edition, October

1998

[13] D. B. Langeand M. Oshima, Programming and

Deploying Java Mobil Agents with Aglets,

Addison-Wesley, ISBN 0-201-32582-9, 2nd

printing, November 1998.

[14] M. Fowler and K. Scott, UML Distilled: a brief

guide to the standard object modeling language,

2nd Edition, Addison Wesley Longman, Inc. ISBN

957-566-755-7

[15] S. A. Albir, UML in a nutshell, O’Reilly, ISBN

957-8247-16-8 , March 2000

[16] Z. Cui, B. Odgers, and M. Schroeder, “An

In-Service Agent Monitoring and Analysis

System,” Proceedings of the 11th IEEE

International Conference on Tools with Artificial

Intelligence, pp.237-244, 1999.

[17] H. Chebeane and F. Echalier, “Reactive Object

Oriented Modeling of Real-time Control,”

Proceedings of the 6th Internet Conference on

Emerging Technologies and Factory Automation,

pp. 387-390, 1997.

[18] R. Schoop and R. Neubert, “Agent-Oriented

Material Flow Control System Based on DCOM,”

Proceedings of the 3rd IEEE Internal Symposium

on Object-Oriented Real-Time Distributed

Computing, pp.342-345, 2000.

