
 1

An Improved Transaction Scheduling Policy for Mixed Real-Time
Nested Transaction Models

Hong-Ren Chen

Graduate Institute of Technology Development and Communication
National University of Tainan, Tainan 7005, Taiwan R.O.C.

hrchen@mail.nutn.edu.tw

Abstract
In this paper, we study the problem of
scheduling transactions in the distributed
mixed real-time/non-real-time databases
systems, in which both real-time and
non-real-time flat/nested transactions exist
simultaneously in a multiprocessor
environment. Feedback adjustment policy
(FAP) is proposed to attempt minimizing the
number of missed real-time transactions, and
reducing the impact on the performance of
non-real-time transactions. FAP allocates the
processors to both of real-time transactions
and non-real-time transactions dynamically
based on the real-time ratio for overload
adjustment measured statistically by
MissRatio. Simulation Results are shown to
deliver good performance when an
application requires a mixed real-time/non-
real-time transaction model.

1. Introduction
In the last decade, most studies in a RTDBS
always concern scheduling real-time flat
transactions and reducing the MissRatio
[1-7]. Single type of real-time transactions
was only considered in the RTDBS. In
practices, not all transactions in advanced
database applications have real-time
requirements and single level structures. For
examples, in Internet travel application, the
travel agent transaction may be formed as a
nested transaction consisted of three
subtransactions. One of subtransactions with
real-time constraints is responsible for
buying a flight ticket. Others without
real-time constraints are executed for
lodging and car rentals [8]. In stock trading
systems, some of transactions perhaps are
nested real-time transactions, such as stock
data update. There are maybe non-real-time
flat transactions, such as system

management proposes [9]. In this paper, we
focus on the design of Feedback Adjustment
Policy (FAP) to accomplish different
performance goals in processing real-time
and non-real-time transactions at the same
time. The performance goal is processing
real-time transactions is to minimize the
number of deadlines violation while
processing non-real-time transactions is to
maximize the system throughput.

The remainder of this paper is organized
as follows. Section 2 discusses the typical
scheduling policies. Section 3 presents FAP
and relative processes. Section 4 provides
the workload model and performance results.
Finally, a conclusion is made in Section 5.

2. Transaction Scheduling Policy
In processing real-time transaction, the
real-time scheduler assigns a priority to each
(sub)transaction based on the priority
assignment policy, such as earliest deadline
(ED), highest value (HV), highest reward
and urgency (HRU) or flexible high reward
for nested transactions (FHRN). For
scheduling non-real-time transactions, the
traditional scheduling policy provided by
general operating system is used, such as
first-come first served (FCFS) and
shortest-job-first (SJF). In the following, we
briefly describe these typical scheduling
policies.
2.1 Priority Assignment Policy
The ED policy assigns high priorities to
transactions with early deadlines [1]. The
disadvantage of ED is that it does not
consider the values o f t ransact ions.
Assigning high priorities to transactions
with high values is called HV policy [2].
The HRU policy gives a high priority to a
transaction with high value and shortest
remaining execution time. It considers the

 2

CPU1

CPU2

CPUn

CPUi

CPUi+1

CPUi+2

Priority
Assignement

Policy

Tranditional
Scheduling

Policy

Concurrency
Control

Strategies

Statistical
InformationFeedback Adjuster

END

Real-Time Transactions

Ready Queue

Non Real-Time Transactions

Ready Queue

RT-group

NRT-group
Figure 1. Diagram of FAP [10, 11]

reward ratio of scheduling a transaction and
provides an adjustable policy for various
system load conditions. Using the concept of
the distributed slack time given by Kao and
Garcia-Molina [12, 13], and the influence of
the shape characteristic for nested
transactions [14, 15], FHRN policy is
proposed. It considers the reward ratio,
reflection of the shape characteristic,
distributed slack time and degree of urgency
[12].
2.2. Traditional Scheduling Policy
SJF associates with each process the length
of the latter’s next CPU burst [15]. When the
CPU is available, it is assigned to the
processes that have the smallest next CPU
burst. This paper focuses the minimizing the
number of missed real-time transactions, and
reducing the impact on the performance of
non-real-time transactions. It’s only
considered in our experiments because its
performance.

3. FAP
Attempting to minimize the number of
missed real-time transactions and reducing
the impact on the performance of
non-real-time transactions, FAP is shown in
Figure 1 dynamically allocates the
processors to both of real-time transactions
and non-real-time transactions based on the
status of a system. The total CPUs in the
system are partitioned into the RT-group that
executes the real-time transactions and the
NRT-groups that executes the non-real-time
transactions by the feedback adjuster.
Real-time or non-real-time transactions
arriving at the system enter the separate
ready queues, and wait to be scheduled by a

priority assignment policy or a traditional
scheduler for utilizing the CPUs. The
number of CPUs allocated to RT-group or
NRT-group is adjusted dynamically based on
the real-time ratio for overload adjustment
measured statistically by MissRatio. Namely,
while at most RA percentage of the total
CPUs are allocated to the real-time
transactions. For instance, suppose the total
number of CPUs in the system is 10 and RA
is 70%. The number of CPUs for RT-group
and NRT-group should get 7 and 3,
respectively.
 FAP works by the request rule, release
rule and adjust rule [16]. The detail
functions are described as follows:
Request Rule:
For a real-time (sub)transaction Ti arriving
at the sytem, it requests the processors for
execution. If there are free processors, the
FAP randomly allocates one processor to Ti.
In case no free processor exists, the priority
of Ti is compared with those transactions in
the RT-group to check the possibility of
preemption.
Release Rule:
Whenever a processor is released by a
(sub)transaction, FAP picks up the
(sub)transaction with highest priority in the
ready queue of the group to execute on the
released processor based on the priority
assignment policy or traditional scheduling
policy of the corresponding group.
Adjust Rule:
Whenever a number of transactions in an
observed period are completed, MissRatio
during this period, MRc, is compared with
that of setting for overload adjustment, MRs.

 3

If MRc<=MRs, i.e. the status of system is at
normal load, no action must be token.
Basically, a system is considered as overload
if MissRatio exceeds 20% [2]. If MRc>MRs,
it presents the system is under an overload.
Let RA = RA + (MRc – MRs), which indicates
RA is increased by the difference between
MRc and MRs. On the other hand, the
number of processors in RT-group will be
increased to get better performance.

4. Performance Evaluation
4.1. Workload Model
This section describes the simulation model
was developed by using SIMPACK
packages to evaluate the performance of
FAP [17]. Table 1 lists the workload model
parameters and their base values. The
parameters page_cpu and page_io determine
the CPU and disk time needed to access a
data page, respectively. The parameter used
to model the load of the system is
arrival_rate, which specifies the mean rate
of transaction arrivals and has a Poisson
distribution. In other words, the inter-arrival
time of nested transaction is in exponential
distributed with mean 1/arrival_rate.
Restart_delay gives the delay time caused
by restarting a transaction. Write_prob
determines the probability of updating data
pages after a transaction has read the data
pages. Sub_trans signifies the number of
subtransactions varying randomly in a
(sub)transaction tree. Tran_size represents
the number of leaf subtransactions in a
nested transaction, which is the mean of a
uniform distribution varying range between
0.5*tran_size and 1.5*tran_size. The
parameter leaf_size determines the number
of operations per leaf subtransaction varying
uniformly between 0.25*leaf_size and
1.75*leaf_size. The parameter level_size
represents the depth of a nested transaction
tree varying uniformly from 0.25*level_size
to 1.75*level_size.

The main performance metric is the
MissRatio as given in [2, 4, 12] and are
restated below:

number of transactions missing the deadline = *100%
total number of submitted transactions

MissRatio

The comparing real-time scheduling policies
are ED, HV, HRU, and FHRN+FAP
(denoted as FFAP) underlying various
conditions. We also concern the variety of
response time for non-real-time transactions.
SJF and SJF+FAP (denoted as SFAP) were
included in this experiment. The
concurrency control protocol used is
two-phase locking with high priority for
nested transactions (2PL-HPN) as shown in
[12] because it is a simple and effective
protocol for most real-time database
researches.
4.2. Basic model
In this experiment, we varied the arrival rate
from 20 real-time transactions/second
(abbreviated as real-time trans/sec) to 120
real-time trans/sec in increasing steps of 20
to model different system loads. The
parameters are set as in Table1 based on the
previous studies [1-2, 12, 16, 18]. As shown
in Figure 2, the performance order from the
best to the worst based on the metrics of
MissRatio and LossRatio is FFAP > HRU >
HV > ED (i.e., FAP performs the best and
ED performs the worst). The excellent
performance of FFAP is due to its dynamic
allocation of processors to both of real-time
transactions and non-real-time transactions
based on the system load. Meanwhile, we
observe the impact of arrival rate of
real-time transactions on response time of
non-real-time transaction. Figure 3 that the
performance of non-real-time transactions
under SFAP is slightly affected and its
response time keeps the small value at heavy
load of real-time transactions. The effective
utilization of rt_ratio makes more real-time
transactions meet the deadlines and gets a
lower MissRatio.

5. Conclusion
In the past decades, real-time transaction
scheduling has been an active research topic.
Many previous approaches for scheduling
transactions in a RTDBS often assume that
all transactions with real-time constraints
and having the single level structure.
However, the DMRTDBS is an advanced
database system in a multiprocessor enviro-

 4

Parameter Description Value
System
num_sites number of sites in the system 4
num_proc number of processors in the site 4
page_cpu CPU time for accessing a data page 0.03 ms
page_io disk time for accessing a data page 4.8 ms

arrival_rate the rate of real-time transaction arrivals
the rate of non-real-time transaction arrivals

50 trans/sec
10 trans/sec

restart_delay delay time to restart a transaction 5 ms
remote_trans the ratio of remote transactions in the system 0.3
min_slack minimal slack factor 2
max_slack maximal slack factor 8
mean_value mean value of transaction 100
rt_ratio adjustment ratio of processors for real-time transactions 70%
nt_period number of observed transactions in a period 100
Transaction
sub_trans
tran_size

number of subtransactions in a (sub)transaction
number of leaf subtransactions in a nested transaction tree

4
8

leaf_size number of operations per real-time leaf subtransaction
number of operations per non-real-time leaf subtran-saction

4
8

level_size the depth of a nested transaction tree 4
remote_op the ratio of remote operations for a remote transaction 0.5
Database & Network
db_size number of pages in database 1600 pages
write_prob write probability for accessing a data page 0.5
transfer_rate transfer rate of the network 100Mbps
commit_time commit time for completing a decision phase 40ms

Table 1. Workload parameters and base values.

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120

Arrival Rate (real-time trans/sec)

M
is

sR
at

io
 (
%

)

ED

HV

HRU

FFAP

Figure 2. MissRatio for basic model.

0

500

1000

1500

2000

2500

3000

20 40 60 80 100 120

Arrival Rate (non-real-time trans/sec)

R
es

po
ns

e
T

im
e

(m
s)

SJF

SFAP

Figure 3. Response time for basic model.

ment consisting of both real-time and
non-real-time transactions, and its structure
is flat or nested type. The techniques
proposed for real-time scheduling policies
may not be suitable to DMRTDBS due to
the existence of non-real-time transactions.

This paper proposes feedback adjustment
policy (FAP) to attempt minimizing the
number of missed real-time transactions, and
reducing the impact on the performance of
non-real-time transactions. The main
concept of FAP is utilizing the information
recording system load status to allocate
processors dynamically to the both of
real-time transactions and non-real-time
transactions. From simulation results, the
performance order from the best to the worst
based on the metrics of MissRatio and
LossRatio is FFAP > HRU > HV > ED (i.e.,
FFAP performs the best). The performance
of non-real-time transactions under SFAP is
slightly affected and its response time keeps
the small value at heavy load of real-time
transactions.

 5

References
1. Abbott, R., Garcia-Molina, H.:

Scheduling Real-Time Transactions: a
Performance Evaluation. ACM Trans.
Data. Sys, vol. 17, pp. 513-560, 1992.

2. Haritsa, J.R., Carey, M.J., Livny, M.:
Value-Based Scheduling in
Real-Time Database Systems. VLDB
J., vol 2, no. 2, pp. 117-152, 1993.

3. Ulusoy, Ö., Belford, G.G.: Real-Time
Transaction Scheduling in Database
Systems. Info. Sys., vol. 18, no. 8, pp.
559-580, 1993.

4. Tseng, S.M.: Design and Analysis of
Value-Base Scheduling Policies for
Real-Time Database Systems. PhD.
Thesis, National Chiao Tung
University, Taiwan, 1997.

5. Lee, V.C.S, Lam, K.Y., Kao, B.:
Priority Scheduling of Transactions in
Distributed Real-Time Databases.
Real-Time Sys., vol. 15, no. 1, pp.
31-61, 1998.

6. Chen, H.R., Chin, Y.H., Tseng, S.M.:
Scheduling Value-Based Transactions
in Distributed Real-Time Database
Systems. Proc. Int. IEEE Symp. Para.
and Dist. Proc, San Francisco, pp.
978-984, 2001.

7. Chen, H.R., Chin, Y.H.: An Adaptive
Scheduler for Distributed Real-Time
Database Systems. Info. Scie.: an Intl.
J., vol. 153, pp. 55-83, 2003.

8. Cram, C.M.:E-Commerce Concepts:
Illustrated Introductory. Course
Technology, Boston, 2001.

9. Lam, K.Y., Kuo, T.W., Kao, B., Lee,
S.H., Cheng, R.: Evaluation of
Concurrency Control Strategies for
Mixed Soft Real-Time Database
Systems. Info. Sys., vol. 27, pp.
123-149, 2003.

10. Ulusoy, Ö.: Processing real-time
transactions in a replicated database
system. Dist. and Para. Data., vol. 2,
no. 2, pp.405-436, 1994.

11. Lee, V.C.S., Lam, K.Y., Hung, S.L.:
Impact of High Speed Network on
Performance of Real-Time
Concurrency Control Protocol. J. Sys.

Arch., vol. 42, no. 6-7, pp.531-546,
1996.

12. Chen, H.R., Chin, Y.H. Scheduling
Value-Based Nested Transactions in
Distributed Real-Time Database
Systems. Real-Time Sys., vol. 27, pp.
237-269, 2004.

13. Kao, B., Garcia-Molina, H.: Deadline
Assignment in a Distributed Soft
Real-Time System. IEEE Trans. Para.
and Dist. Sys., vol. 8, no. 12, pp.
1268-1274, 1997.

14. El-Sayed, A.A., Hassanein, H.S.,
El-Sharkawi, M.E.: Effect of Shaping
Characteristics on the Performance of
Nested Transactions. Info. and Soft.
Tech., vol. 43, no. 10, pp. 579-590,
2001.

15. Silberschatz, A., Galvin, P.B.,Grgne,
G. Operating System Concepts, 6rd
edn. John Wiley & Sons, 2003.

16. Tseng, S.M., Chin, Y.H., Yang, W.P.:
Value-Based Scheduling for
Multiprocessor Real-Time Database
Systems. IEICE Trans. Info. and Sys.
E81-D, no. 1, pp. 137-143, 1998.

17. Fishwick, P.A.: SIMPACK: C-Based
Simulation Tool Package Version 2.
University of Florida, 1992.

18. Agrawal, R., Carey, M.J., Livny, M.
1987. Concurrency Control
Performance Modeling: Alternative
and Implications. ACM Trans. Data.
Sys., vol. 12, no. 4, pp. 609-654,
1987.

