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Abstract 
In this paper, we study the problem of 
scheduling transactions in the distributed 
mixed real-time/non-real-time databases 
systems, in which both real-time and 
non-real-time flat/nested transactions exist 
simultaneously in a multiprocessor 
environment. Feedback adjustment policy 
(FAP) is proposed to attempt minimizing the 
number of missed real-time transactions, and 
reducing the impact on the performance of 
non-real-time transactions. FAP allocates the 
processors to both of real-time transactions 
and non-real-time transactions dynamically 
based on the real-time ratio for overload 
adjustment measured statistically by 
MissRatio. Simulation Results are shown to 
deliver good performance when an 
application requires a mixed real-time/non- 
real-time transaction model. 

1. Introduction 
In the last decade, most studies in a RTDBS 
always concern scheduling real-time flat 
transactions and reducing the MissRatio 
[1-7]. Single type of real-time transactions 
was only considered in the RTDBS. In 
practices, not all transactions in advanced 
database applications have real-time 
requirements and single level structures. For 
examples, in Internet travel application, the 
travel agent transaction may be formed as a 
nested transaction consisted of three 
subtransactions. One of subtransactions with 
real-time constraints is responsible for 
buying a flight ticket. Others without 
real-time constraints are executed for 
lodging and car rentals [8]. In stock trading 
systems, some of transactions perhaps are 
nested real-time transactions, such as stock 
data update. There are maybe non-real-time 
flat transactions, such as system 

management proposes [9]. In this paper, we 
focus on the design of Feedback Adjustment 
Policy (FAP) to accomplish different 
performance goals in processing real-time 
and non-real-time transactions at the same 
time. The performance goal is processing 
real-time transactions is to minimize the 
number of deadlines violation while 
processing non-real-time transactions is to 
maximize the system throughput.  

The remainder of this paper is organized 
as follows. Section 2 discusses the typical 
scheduling policies. Section 3 presents FAP 
and relative processes. Section 4 provides 
the workload model and performance results. 
Finally, a conclusion is made in Section 5. 

2. Transaction Scheduling Policy 
In processing real-time transaction, the 
real-time scheduler assigns a priority to each 
(sub)transaction based on the priority 
assignment policy, such as earliest deadline 
(ED), highest value (HV), highest reward 
and urgency (HRU) or flexible high reward 
for nested transactions (FHRN). For 
scheduling non-real-time transactions, the 
traditional scheduling policy provided by 
general operating system is used, such as 
first-come first served (FCFS) and 
shortest-job-first (SJF). In the following, we 
briefly describe these typical scheduling 
policies. 
2.1 Priority Assignment Policy 
The ED policy assigns high priorities to 
transactions with early deadlines [1]. The 
disadvantage of ED is that it does not 
consider the values o f t ransact ions. 
Assigning high priorities to transactions 
with high values is called HV policy [2]. 
The HRU policy gives a high priority to a 
transaction with high value and shortest 
remaining execution time. It considers the  
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Figure 1. Diagram of FAP [10, 11] 

 
reward ratio of scheduling a transaction and 
provides an adjustable policy for various 
system load conditions. Using the concept of 
the distributed slack time given by Kao and 
Garcia-Molina [12, 13], and the influence of 
the shape characteristic for nested 
transactions [14, 15], FHRN policy is 
proposed. It considers the reward ratio, 
reflection of the shape characteristic, 
distributed slack time and degree of urgency 
[12]. 
2.2. Traditional Scheduling Policy 
SJF associates with each process the length 
of the latter’s next CPU burst [15]. When the 
CPU is available, it is assigned to the 
processes that have the smallest next CPU 
burst. This paper focuses the minimizing the 
number of missed real-time transactions, and 
reducing the impact on the performance of 
non-real-time transactions. It’s only 
considered in our experiments because its 
performance. 

3. FAP 
Attempting to minimize the number of 
missed real-time transactions and reducing 
the impact on the performance of 
non-real-time transactions, FAP is shown in 
Figure 1 dynamically allocates the 
processors to both of real-time transactions 
and non-real-time transactions based on the 
status of a system. The total CPUs in the 
system are partitioned into the RT-group that 
executes the real-time transactions and the 
NRT-groups that executes the non-real-time 
transactions by the feedback adjuster. 
Real-time or non-real-time transactions 
arriving at the system enter the separate 
ready queues, and wait to be scheduled by a 

priority assignment policy or a traditional 
scheduler for utilizing the CPUs. The 
number of CPUs allocated to RT-group or 
NRT-group is adjusted dynamically based on 
the real-time ratio for overload adjustment 
measured statistically by MissRatio. Namely, 
while at most RA percentage of the total 
CPUs are allocated to the real-time 
transactions. For instance, suppose the total 
number of CPUs in the system is 10 and RA 
is 70%. The number of CPUs for RT-group 
and NRT-group should get 7 and 3, 
respectively.  
  FAP works by the request rule, release 
rule and adjust rule [16]. The detail 
functions are described as follows: 
Request Rule:  
For a real-time (sub)transaction Ti arriving 
at the sytem, it requests the processors for 
execution. If there are free processors, the 
FAP randomly allocates one processor to Ti. 
In case no free processor exists, the priority 
of Ti is compared with those transactions in 
the RT-group to check the possibility of 
preemption. 
Release Rule: 
Whenever a processor is released by a 
(sub)transaction, FAP picks up the 
(sub)transaction with highest priority in the 
ready queue of the group to execute on the 
released processor based on the priority 
assignment policy or traditional scheduling 
policy of the corresponding group. 
Adjust Rule: 
Whenever a number of transactions in an 
observed period are completed, MissRatio 
during this period, MRc, is compared with 
that of setting for overload adjustment, MRs. 
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If MRc<=MRs, i.e. the status of system is at 
normal load, no action must be token. 
Basically, a system is considered as overload 
if MissRatio exceeds 20% [2]. If MRc>MRs, 
it presents the system is under an overload. 
Let RA = RA + (MRc – MRs), which indicates 
RA is increased by the difference between 
MRc and MRs. On the other hand, the 
number of processors in RT-group will be 
increased to get better performance. 

4. Performance Evaluation 
4.1. Workload Model 
This section describes the simulation model 
was developed by using SIMPACK 
packages to evaluate the performance of 
FAP [17]. Table 1 lists the workload model 
parameters and their base values. The 
parameters page_cpu and page_io determine 
the CPU and disk time needed to access a 
data page, respectively. The parameter used 
to model the load of the system is 
arrival_rate, which specifies the mean rate 
of transaction arrivals and has a Poisson 
distribution. In other words, the inter-arrival 
time of nested transaction is in exponential 
distributed with mean 1/arrival_rate. 
Restart_delay gives the delay time caused 
by restarting a transaction. Write_prob 
determines the probability of updating data 
pages after a transaction has read the data 
pages. Sub_trans signifies the number of 
subtransactions varying randomly in a 
(sub)transaction tree. Tran_size represents 
the number of leaf subtransactions in a 
nested transaction, which is the mean of a 
uniform distribution varying range between 
0.5*tran_size and 1.5*tran_size. The 
parameter leaf_size determines the number 
of operations per leaf subtransaction varying 
uniformly between 0.25*leaf_size and 
1.75*leaf_size. The parameter level_size 
represents the depth of a nested transaction 
tree varying uniformly from 0.25*level_size 
to 1.75*level_size. 

The main performance metric is the 
MissRatio as given in [2, 4, 12] and are 
restated below: 

number of transactions missing the deadline = *100%
total number of submitted transactions

MissRatio  

The comparing real-time scheduling policies 
are ED, HV, HRU, and FHRN+FAP 
(denoted as FFAP) underlying various 
conditions. We also concern the variety of 
response time for non-real-time transactions. 
SJF and SJF+FAP (denoted as SFAP) were 
included in this experiment. The 
concurrency control protocol used is 
two-phase locking with high priority for 
nested transactions (2PL-HPN) as shown in 
[12] because it is a simple and effective 
protocol for most real-time database 
researches. 
4.2. Basic model 
In this experiment, we varied the arrival rate 
from 20 real-time transactions/second 
(abbreviated as real-time trans/sec) to 120 
real-time trans/sec in increasing steps of 20 
to model different system loads. The 
parameters are set as in Table1 based on the 
previous studies [1-2, 12, 16, 18]. As shown 
in Figure 2, the performance order from the 
best to the worst based on the metrics of 
MissRatio and LossRatio is FFAP > HRU > 
HV > ED (i.e., FAP performs the best and 
ED performs the worst). The excellent 
performance of FFAP is due to its dynamic 
allocation of processors to both of real-time 
transactions and non-real-time transactions 
based on the system load. Meanwhile, we 
observe the impact of arrival rate of 
real-time transactions on response time of 
non-real-time transaction. Figure 3 that the 
performance of non-real-time transactions 
under SFAP is slightly affected and its 
response time keeps the small value at heavy 
load of real-time transactions. The effective 
utilization of rt_ratio makes more real-time 
transactions meet the deadlines and gets a 
lower MissRatio. 

5. Conclusion 
In the past decades, real-time transaction 
scheduling has been an active research topic. 
Many previous approaches for scheduling 
transactions in a RTDBS often assume that 
all transactions with real-time constraints 
and having the single level structure. 
However, the DMRTDBS is an advanced 
database system in a multiprocessor enviro- 
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Parameter Description Value 
System 
num_sites number of sites in the system 4 
num_proc number of processors in the site 4 
page_cpu CPU time for accessing a data page 0.03 ms 
page_io disk time for accessing a data page 4.8 ms 

arrival_rate the rate of real-time transaction arrivals 
the rate of non-real-time transaction arrivals 

50 trans/sec 
10 trans/sec 

restart_delay delay time to restart a transaction 5 ms 
remote_trans the ratio of remote transactions in the system 0.3 
min_slack minimal slack factor 2 
max_slack maximal slack factor 8 
mean_value mean value of transaction 100 
rt_ratio adjustment ratio of processors for real-time transactions 70% 
nt_period number of observed transactions in a period 100 
Transaction 
sub_trans 
tran_size 

number of subtransactions in a (sub)transaction 
number of leaf subtransactions in a nested transaction tree 

4 
8 

leaf_size number of operations per real-time leaf subtransaction 
number of operations per non-real-time leaf subtran-saction 

4 
8 

level_size the depth of a nested transaction tree 4 
remote_op the ratio of remote operations for a remote transaction 0.5 
Database & Network 
db_size number of pages in database 1600 pages 
write_prob write probability for accessing a data page 0.5 
transfer_rate transfer rate of the network 100Mbps 
commit_time commit time for completing a decision phase 40ms 

Table 1. Workload parameters and base values. 
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Figure 2. MissRatio for basic model. 
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Figure 3. Response time for basic model. 

ment consisting of both real-time and 
non-real-time transactions, and its structure 
is flat or nested type. The techniques 
proposed for real-time scheduling policies 
may not be suitable to DMRTDBS due to 
the existence of non-real-time transactions. 

This paper proposes feedback adjustment 
policy (FAP) to attempt minimizing the 
number of missed real-time transactions, and 
reducing the impact on the performance of 
non-real-time transactions. The main 
concept of FAP is utilizing the information 
recording system load status to allocate 
processors dynamically to the both of 
real-time transactions and non-real-time 
transactions. From simulation results, the 
performance order from the best to the worst 
based on the metrics of MissRatio and 
LossRatio is FFAP > HRU > HV > ED (i.e., 
FFAP performs the best). The performance 
of non-real-time transactions under SFAP is 
slightly affected and its response time keeps 
the small value at heavy load of real-time 
transactions. 
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