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ABSTRACT

A new deformed shape retrieval method based on
the hidden Markov model (HMM) is proposed in this
paper. Shape features as well as statistical and contextual
information are incorporated into the HMM to derive
probability values. Then, the probability values can be
considered matching scores to retrieve similar shapes. The

proposed method is translation, rotation and scale invariant.

In addition, it is robust to various non-rigid deformations
such as perspective, shear, occlusion and nonlinear
distortions. The advantages are accomplished by the
strategies we adopt. First, the proposed shape features are
translation, rotation and scale invariant. Secondly, the
flexibility of shape matching can be increased since the
HMM is high tolerance to noise and distortion. Henceforth,
non-rigid deformation can be coped with, Finally,
although the HMM is computation intensive, only few
high-level shape features are necessary for shape
representation, thus, the computation efficiency is
satisfactory. Our method has been applied on two
Jdatabases: geometry and character. The experimental
results  prove  the  effectiveness, robustness and
practicability of the proposed approach.

Key words: deformed shape retrieval, shape matching,
hidden Markov model (HMM), non-rigid deformation,
similarity measure, content-based retrieval,

1. INTRODUCTION

With the increasing popularity of the use of digital
libraries, it becomes imperative to build an efficient
content-based image retrieval system to browse through
the entire library. A new shape-based image retrieval
method is proposed in this paper. The proposed method is
translation, rotation and scale invariant. In addition, it is
robust to various non-rigid transformnations such as

perspective, shear, occlusion and nonlinear distortions. In
other words, a shape being rotated, translated or scaled
still looks alike itself, and even those are deformed noin-
rigidly such as perspective, shear, occlusion, and other
nonlinear distortions. Examples of a shape and its
deformed shapes are shown in Fig. 1.

In general, those approaches in the field of shape
matching [1-14] can be broadly classified into two
categories according to their objectives: recognition-
oriented [1-7] and retrieval-oriented approaches [8-13].

The proposed approach is based on the polygonal
approximation using the hidden Markov model. Shape
features as well as statistical and contextual information
are incorporated into the HMM to derive protability
values. Then, the probability value can be considered
matching scores to retrieve similar shapes. The advantages
of our method are listed below.

()Most dynamic programming approaches used either
global [5, 7, 8] or local features [4,5]. In general, global
features convey overall property and are noise-
insensitive but occlusion-sensitive, while local features
convey local property and are noise-sensitive but
occlusion-insensitive [4]. Our method adopts noise-
insensitive  global features, while deformation
robustness including occlusion can be achieverd by
incorporating HMM into shape matching,

(2)The deviations resulting from polygonal approximation
can also be handled by the HMM since the HMM is a
flexible statistical model and tolerant to segmentation
errors as proved in many applications [14, 16, 17}. The
probability computed from the hidden Markov modecl
can be regarded as the similarity measure {13,17),
which in turm can be considered matching scores to
retrieve similar shapes.
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Fig. 1. Deformation of A. (a) Original character A; (b) rotated A; (c) perspective A; (d)
sheared A; (€) pincushion A; (f) barrel A; (g) occlusion A.
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(3) In general, a shape has more global features than local
features. Since fewer numbers of global features are
used, computation efficiency of our method can be
satisfied, even when exhaustive searching by starting
at each global feature is necessary for rotation
invariant requirement.

The implementation of the proposed approach
includes two steps. The first is the database creation step
which is concerned with the construction of a HMM for
each shape in the database. The second is the query
comparison step, which deals with matching of the query
shape with each HMM in the database.

The database creation step consists of two major
phases: feature extraction and HMM construction. In the
feature extraction phase, a contour is first extracted from
each image. The shape features for each contour are then
derived from corresponding breaking points, which are
derived from critical points. Note that they are invariant to
translation, rotation and size varations after suitable
normalization is applied. Finally, we use shape features to
construct HMMs for shape matching.

In the query comparison step, it also consists of two
major phases: feature extraction as well as matching
between query shape and HMMs in the database. The first
phase is the same as that in the database creation step. To
match query to HMMs in the database, matching steps
must be performed. More specifically, the corresponding
HMM can generate the probability values between the
query and database shape. The probability values can
provide useful information to derive similarity measure. In
other words, the contours whose corresponding HMMs
best match the query can be retrieved and ordered
correctly.

In the remainder of this paper, basic concepts of
HMM, feature extraction, HMM construction and the
query comparison are described in Sections 2, 3, 4 and 5,
respectively. Experimental results and conclusion are
included in Sections 6 and 7.

2. BASIC CONCEPTS OF HMMS

Basic concepts of HMMs are briefly introduced in
this section. A detailed description of HMMs can be found
in the reference [15,16]. A left-to-right HMM, also called
the Bakis model is used in this paper for simplicity. Let

the observation sequence be denoted as 0=0,0, af in

. ) . . .
which each observation ~* characterizes the input signal
at time t, and T is the number of observations in the
sequence.

For an HMM, the notation 4A=(A,B,II) is used to
represent the model. The parameter set is described below.

1 N: the number of states in the model. We denote the

§=(5,.5 Sy}

set of states as , and the state at time t

as q’,where 1<tsT,
2. V: the observed value in each state. The range of v
may be infinite.
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3. A=l&lISiJSN). the set of state-transition
probability distributions, where 9 =19 =5,14,=5] g
the probability of transition from state 5 to state .
at time t. Obviously, each state transition coefficient
is greater than or equal to zero, and the sum of

N

Zaij = l
each row in A will equal to one, i.e., /! .
B=tb,(syj<sN}. e set of
probability distributions, in
b;(v)=P0, =v |q,=S5,]

observation
which

is the probability of
observing Vinstate 5 attimet

5. O=ImisisN}: (he set of initial state probability
distributions, in which % =fl&a=51 is the

probability of the initial state 5 at time 1.

In order to find the optimal state sequence, the Viterbi
algorithin [15] is employed and stated as follows.

Algorithm. Viterbi

Inputt. An HMM A= ( A, B, II ) and an observation
sequence 0=0,,0y0, 0
Output. ? bl the probability of the observation sequence
O generated by
the HMM A,
Stepl 8,(i) = 7, - ,(0,) 1<i<N,
w,(i))=0.
Step2. a()= }’23}{@1(‘) a; ]'bj(",) 2<t<T, 15j<N,
v (j) = arg max[dl_,(i)-a»u»] 2<t<T, l<j<N.
ISigN
P [O IT]= max |6, ()]

1sis N

Step 3.
g. = argls‘r?:,xx [6, (i )]

Step4 qu =V o (éu-l)‘
Step 5. Stop. _

3. FEATURE EXTRACTION

The feature extraction consists of two major phases
* polygonal approximation and feature derivation. In the
former phase, contours are first extracted from images.
Critical points and then breaking points are detected on the
contours to represent the contour. In the latter phase, the
shape features are derived on the basis of breaking points.
In the remainder of this section, polygonal approx:mation
and feature derivation are described in Sections 3.1 and
3.2, respectively.

3.1 Polygonal Approximation
Polygon approximation is essential to
matching. Only ifa good polygonal

shape
approximation is



is obtained , the subsequent matching work will be done
well, Zhu et al. [18] and Gupta et al. {3] proposed novel
methods to find out segmentation points. In the proposed
method, a hybrid of the two approaches is proposed to
obtain proper segmentation points (breaking points). The
detection of critical points and then breaking points are
briefly described below.

When a binary image is input, the corresponding
edge image can be obtained by detecting all the black-to-
white or white-to-black transitions. Actually, a pixel is an
edge point if the pixel is different at least one of its 8-
neighbors. When all the edges are detected, we can find
out outer boundary contours by contour tracing.

Then the modified Zbu-Chirlian algorithm [12] is
employed to encode a contour as critical-point sequence.
In general, the critical-points are the local maximum or
minimum points of the boundary of the shape.

After each contour is first approximated by a
sequence of critical points, they are then grouped together
according to the colinear principle [3] to obtain global and
stable representation of the contour. A set of critical points
is said to be colinear if they lie on a straight line. The
iterative algorithm proposed in {3] is adopted to locate
pseudo breaking points from a sequence of critical points.
Two constraints are then evaluated to screen out the
actually breaking points. The two constraints are related
with subtended angle as well as triangle region formed by
consecutive pseudo breaking points as described.

(h)Let Bp%,, Bp’ and Bpi,, be three consecutive pseudo
breaking points. If the subtended angle Dbetween
BpBprand Bp BP -, is larger than 150° the pseudo
breaking point Bp1 is deleted.

{2) If the area of the triangle formed by three consecutive
psendo breaking points ABp7.,Bp] Bp ., is smaller than
one percentage of total area of the contour, the pseudo
breaking point Bp is deleted.

In summary, a sequence of CN critical points,
denoted as (Cp,, Cp,, ..., Cpey), is obtained by the critical
point-finding algorithm. Then, a sequence of BN breaking
points, denoted as (Bp,, Bp. ..., Bpgy), is obtained by the

(a) ()

Fig. 2. An example of critical points and breaking points for
character A. (a) The critical points of character A; (b) the
breaking points of character A.
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breaking-point-finding algorithm. An example of critical
points and breaking points for character A is shown in
Fig.2.

3.2 Feature Derivation

In this paper, shape features are derived only from
the breaking points since breaking points convey more
high level and reliable information than critical points,
Assume that the contour be represented as a sequence of
BN breaking points (Bp,, Bp., ..., Bpgy). Some notations
used for the derivation of shape features are first defined
followed by the {feature derivation procedure. An
illustration of shape features is shown in Fig. 3.

1

Xc = "];[:‘EZOBX)
1

Ye= -N;iezogy:

()Contour centroid: The contour centroid P, (x,. y,) is
denoted as the centroid of the shape and ran be
computed as
where object O, denotes all the pixels belonging to
enclosing region for the shape’s contour and N, denotes
the number of points inside object 0.

(2)Contour area: The contour area B4 is denoted as the
area of the enclosing region for the contour.

(3)Polar distance: The polar distance p(Bp,) is denoted as
the distance between the point Bp, and the centroid P,.

The shape features for the breaking point Bp; include
the vertex angle, B¢, the chord subtended angle, By, the
chord distance, Bp/, and the chord length, BI7 A}l ihe
features are normalized and described below.

BpH BP,—',

e

p(Bp)

Fig. 3. Nlustration of shape features.
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(1)Vertex angle: The vertex angle B¢, is demoted as the
angle between the two line segments Bp, ,Bp, and

Bp; Bp.; , where Bp., Bp, and Bp,,, are three
consecutive breaking points. Then the vertex angle can

be normalized as Bgusing the following expression

1-3% GhenBg 20
._J 180
Bé. =18y,
—%1_1  whenBg, <0
180

(2)Chord subtended angle: The chord angle By, is demoted
as the angle subtended by the two line segments Bp.P, -
and Bp;,,P,, where Bp, and Bp,,, are two consecutive
breaking points and where Bp, is the centroid of the
contour. Then the chord subtended angle can be
normalized as By’ using the following expression

qu; - B(p, B¢min
meax - qumin
where Bg,,, and Bg,,, are the maximum and minimum
values of the By, for all the values i from 0to BN, i.e.
Bg,,.= max (Bp)Vi=0,1,....BN-1
Bg,.,= min (Bp)Vi=0,1,... BN-1,

(3)Chord distance: Let the point Bpm; be the middle point
between the line segment Bp; Bp,,, , where Bp, and
Bp;., are two consecutive breaking points. Then, the
chord distance Bp; is denoted as the polar distance o(
Bpm,) for the point Bpm, and can be normalized as Br/
using the following expression

Bpi —Bpmin

Bo. =
p Bpmax —Bpmin

i

where Bp,,,, and Bp,,, are the maximum and minimum
values of the Bp’for all the values i from 0 to BN.

(4)Chord length: The chord angle B/, is demoted as the
length of the chord segment Bp; Bp,., , where Bp; and
Bp,,, are two consecutive breaking points. Then, the
chord length Bl can be normalized as B/ using the
following expression

Bl' - Bln _Blmin
' Blma‘ —-Blmin

where B/, and Bl,,, are the maximum and minimum
values of the B/, for all the values i from 0 to BN.

Note that all the derived shape features are
translation, rotation and scale invariant. The reasons are
listed below. First, these features are either angle values or
distznce values which are translation and rotation invariant.
Second, proper normalization as described above is
performed to achieve scale invariance,
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4. HMM CONSTRUCTION

After shape features for breaking points are
extracted, two corresponding HMMs can be constructed.
One is the $-HMM with states related to vertex angle and
the other is r-HMM with states related to chord subtended
angle, chord distance and chord length. In general, the r-
HMM inherit more spatial information than the ¢-HMM.
Thus, the matching in the r-HMM is more stringent than
that in the ¢-HMM. However, the ¢-HMM has higher
tolerance to deformation than the r-HMM.

The structures, the definitions of state transition and
the definitions of observation probabilities for the two
HMMs are described in Sections 4.1, 4.2 and 4.3,
respectively.

4.1 Structure of HMMs

The structures of the $-HMM and r-HMM are both
of left-to-right HMMs associated with breaking poinis.
Each vertex angle at breaking point represents a state in
the ¢-HMM, which models observation sequence of
vertex-angles. Similarly, r-HMM models observation
sequence of chord segments between two consecutive
breaking points. When the input shape match to itself, the
relationships between the observation sequence and the
state sequence for ¢-HMM are shown in Fig. 4. Note that
the state S; with index / is denoted as the index of the first

end point Bp; of the chord segment Bp.Bp,.,.

4.2 Definition of State Transition Probability

The state transition probabilities for the ¢-HMM and
r-HMM are defined on the heuristic assumption that each
state can forward jump at most four states. Moreover, the
probabilities of the transition from each state to the
allowed states are set equally for simplicity. On the busis
of the concept, ap;; (from state §; to itself), and a, .,
(from state S; to state S, ), gz, (from state S; to state S, ,),
ag;;+3 (from state S; to state S,.;), and ay ., (from state
to state S,,) are the same. Hence, the state transition
probabilities are defined by

g5 = Qg jje1™ Apjye2™ Apjjes = Agjpee = 1/5

4.3 Definition of the Observation Probability

In each state of the $-HMM, a Gaussian distribution
is used to estimate the probability that an input vertex
angle is observed in the state. Actually, for each prototype
contour in the database, the mean value of the Gaussian
distribution of each state is the vertex angle of the
corresponding breaking point; whereas, the standard
deviation value of the Gaussian distribution is a
prespecified value. In this study, the standard deviatic: s
set as 35/180 empirically.

Thus, for a prototype contour with sequence of BN
breaking points, denoted as (Bp,”, Bp,?,..., Bp,®), the
observation probability for an input breaking point Bp,?
with the vertex angle B¢"@ in the ith state of the ¢-HMM
is
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Fig. 4. Relationships between observation sequence of Bos and state seqence for @-HMM.
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where Bgi? is the vertex angle of the related breaking
point Bp®.

Similarly, in each state of the r-HMM, Gaussian
distributions are used to estimate the probability that input
shape features such a$ chord subtended angle, chord
distance and chord length are observed in the state. In
general, the features related to chord segment have more
spatial information than those related to vertex angle since
the spatial layout related to a contour can be implied by
these features. For example, the contour formed by the
character “I”, “L” and “T” may have similar sequence of
vertex angles, whereas they may have different sequence
of the chord features. Thus, the matching in the r-HMM is
more stringent than that in the¢p-HMM.

There are three features related to each chord
segment, therefore, three Gaussian distributions, one for
each feature, are needed in the r-HMM. The three
obscrvation probabilities can be defined in the similar for
$-HMM except that the standard deviation is set as 35/180
for angle feature and 1/8 for length feature

Thus, for a prototype contour with sequence of BNV
breaking points, denoted as (Bp¥,, Bp®,,..., Bp¥s), the
observation probability, BB, ') for an input
breaking point Bp® with features Bp®, Bp®, and B/@ in
the ith state of the r-HMM is

Q @
bB;Bﬁ? , S(P)=b5,;8§? , S(P)-ba;sp ,S(lp)-bB‘Bp ,s(f;)(z)
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where Bp?®, Bp’?, and BI/? are the chord subtended
angle, chord distance and chord length of the related
breaking point Bp,” in the prototype contour P.

S. QUERY COMPARISON

To match query contour to prototype HMMs in the
database, the Viterbi algorithm must be employed to
evaluate the matching probability values between (he
query and prototype contours. The probability values can
be integrated to derive the matching scores to accomplish
the goal of similar shape retrieval. In other words, the
prototype contours whose HMMSs best match the query
contour can be retrieved. The derivation of similarity
values is described below.
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Let the ¢-HMM and 1-HMM related to a prototype
contour P be A 5 and A 5P. For a a query contour Q,
the statistical probability values, p(Q11 5 ) and p(Q1 A
27 )between Q and A 5” and A%, respectively, can
be evaluated by the Viterbi algorithm. However, to employ
the Viterb algorithm in our method, two important issues
must be pointed out. First, under the assumption that the
breaking point Bp® of the query contour Q is observed at
time t, the observation probability b(o,) in the Viterbi
algorithm are justd,, (8. 5:)) and b, (8,5
for the ¢-HMM and r-HMM, as described by Egs. (1) and
(2), respectively. Second, to achieve rotation invariance,
the initial probability for each state must be set the same
value of 1. That means exhaustive search by starting the
matching at each breaking is necessary. In general, the
rotation invariance requirement can be overcome by
rotating the query and the prototype contours to the same
orientation. However, when the shape of the contour is
deformed too seriously, the principal axis or the feature
having the largest value may be changed and can not be
the reference axis anymore. Thus, the exhaustive search is
adopted by our method. Fortunately, such decision will not
sacrifice the execution time seriously since the number of
shape features is small as mentioned in Section 3.

After all, the overall similarity value, S(Q,P)
between the query contour () and the prototype P can be
defined as the sum of statistical probability values, p(Q1 4

»?) and p(Ql A 5,¥). That is
S©,P)=p(O| X))+ p(Q) L))

The similarity value can be used to rank the
prototypes to retrieve similar shapes. In general, the
prowtypes having higher value is considered more similar
1o the query contour.

6. EXPERIMENTAL RESULTS

The proposed method is implemented under the
Windows 95 operation system on a K6-233 PC with
128MB DRAM and Visual C++ 5.0 tool kits. The
proposed method was tested on two databases: geometry
and character as listed in [19). To demonstrate the
performance of the proposed approach, translation,
rotation and scale invariance as well as perspective,

pincushion/barrel, shear, occlusion and any other nonlinear
distortions must be taken into account in the query-shape
design.

A geometry database has six different geometry
shapes, i.e., cross, triangle, star, rectangle, tree and ellipse.
For each shape, its two scaled versions, two rotated
versions, two perspective distortions, two shear distortions,
two pincushion/barrel distortions, one occlusion distortion
and three nonlinear distortions are used as query shapes to
retrieve similar shapes in the database. The fourteen query
shapes are produced by software package Photolmpact. In
a summary, 84 queries are performed for the geometry
database.

A character database has twenty-six characters from
“A” to “Z” of the same font Arial. Similarly, for each
character, its two scaled versions, two rotated versions,
two perspective distortions, two shear distortions, two
pincushion/barrel distortions, one occlusion distortion and
two nonlinear distortions are also used as query shapes to
retrieve similar shapes in the database. The thirteen Guery
shapes are also produced by software package
PhotoImpact. In a summary, there are 338 queries for the
character database.

We designed two independent experiments to query
each of the two databases. However, the experiment
schemes and the retrieval accuracy evaluation are the same
for the two databases as described below. We pick each
test shape to retrieve six similar shapes in the respective
databases. On the average, the processing time for each
test query is about 3 and 5 seconds for geometry and
character databases, respectively.

Retrieval accuracy can be measured by the position
(rank) of the required (original) image [10,11]. Ideally, the
first retrieved image in the retrieval list should be the
original image from which the query image is deformed.
Thus, the ideal retrieval rank for each query must be 1. For
each database, the average retrieval ranks are computed
with respect to various shapes and various deformations,
respectively. The average results for geometry database
are listed in Tables 1 and 2, while for character databasc in
Tables 3 and 4. For example, each entry in Table 1 is ihe
average value of 14 retrieval ranks for 14 queries because
each geometry shape in the geometry database has 14
various deformations, thus, there are 14 deformed queries
to test whether the desired original shape can be retrieved.
Some retrieval results are shown in Figs. 5 and 6.

Table. 1. Average retrieval rank for geometry database with respect to various geometry shapes.

Cross Triangie Star

Rectangle

Tree Ellipse | Average|

1.14 1.93 1.0

1.57

1.29 1.0 | 132 ]

Table. 2. Average retrieval rank for geometry database with respect to various deformations.

Magnilied | Minified | Right Left Perspective | Perspective | Shear1 | Shear 2 | Pincu- | Barrel { Occlusion |[Nonlinear|Non- Non- | Average
rotation | rotation (top) 2 (left) (right) | (right- | shion )] linear 2 linear l
down) 3 !
117 | 1.00 1.33 1.00 1.5 1.00 1.17 117 1.83 1.33 1.67 1.17 1.83 1.33 ] 1.32
Table. 3. Average retrieval rank for character database with respect to various characters.
A B C D E F G I 1 J K L M
1.00 3.54 1.54 1.85 1.85 1.61 1.08 1.00 1.39 1.00 1.08 1.08 1.54
N 0 P Q R S T U v w X Y Z Average
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Table. 4. Average retrieval rank for character database with respect to various deformations.

Magnitied Minified Right Left Perspective | Perspective | Shear1 } Shear2 Pincu- | Barrel | Occlusion| Nonlinear | Nonlinear | Average
rotation| rotation 1 (top) 2 (left) (right) | (right- | shion 1 2
down)
1.15 1.11 1.68 1.58 1.61 1.61 1.38 2.18 1.5 1.42 1.11 1.69 1.15 1.47

Fig. 5. Some query results for geometry database. (a) Query shapes; (b) a list of

Fig. 6. Some query results for character database. (a) Query shapes; (b) a list of
six most similar shapes ordered by similarity values.

six most similar shapes ordered by similarity values.
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7. CONCLUSIONS

A new deformed retrieval method based on HMM
is proposed in this paper. Since the shape features
adopted in this study are invariant to ranslation, rotation
and size variations, the proposed method can handle the
invariant requirement. In addition, since HMM is high
tolerance to noise as well as distortion and contextual
information can be incorporated into HMM algorithm in
a natural and elegant way, the flexibility for shape
matching can be improved leading to deformation
robustness results. Finally, although the HMM is
computation intensive, only few high-level shape
features are enough for similar retrieval, the computation
efficiency will not be degraded seriously. Experimental
results prove the effectiveness, robustness and
practicability of our method.

Further research may be directed to the following
topics. First, transition probability and parameter-
learning strategy can be incorporated into HMM to
improve the retrieval performance. Second, the
correspondence information implied by the matching
state sequence can be used to increase the retrieval
accuracy and to solve correspondence problem. Third,
the proposed method can be extended to natural images.
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