1998 International Computer Symposium
Workshop on Cryptology and Information Security

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

DATA SECURITY FOR ENTERPRISE APPLICATIONS — A UNIVERSAL APPROACH

Nita Sarang

CMC Limited, CMC House, C-18 Bandra-Kurla Complex, Bandra (E), Mumbai - 400 051, India
Email : nita@indiawatch.org.in

ABSTRACT

Securing application data and controlling its access is one
of the key issues in implementing applications. Very often
we design and even deploy systems without the security
layer. Is security really an add-on functionality?

Described is a generic implementation of security that can
be uniformly used and can also be easily added to existing
applications. The paper covers common security issues,
the need for controlling functional access through
functional classes, and also describes a typical
implementation of the same. The paper also addresses
authorizations and routing. Adding authorization
functionality to existing applications is easy and
implemented with small efforts to add real value to the
application. A typical implementation of authorities and
associated workflow in applications is also discussed.

The paper also touches upon the issues and concerns for
securing on the WEB.

1. INTRODUCTION

As businesses are expanding, the IT requirements of the
business are exponentially growing; end-users are looking
towards total enterprise solutions within the infrastructure,
environment and framework of their existing highly
customized and isolated business applications. As the user-
group for such enterprise systems grows, the need to
secure data becomes more and more critical. A good
number of systems currently deployed provide minimal or
no data security.

Security add-ons are readily available to improve on the
standard security requirements of applications. Controlling
access to data based on certain roles and responsibilities is
application specific, much more involved and best defined
individually based on application requirements and needs.
This calls for a generalized solution that can be customized
as required and integrated with minimal efforts in existing
applications.

2. THE SECURITY CONCEPT

A typical application or system consists of various layers;
viz. client, network, server; etc. based on the deployment

Tg

architecture. Clearly, security at all such application layers
is necessary and important.

<=)
Network
Security

2.

Server Database

L
C 1
[
C]
L]
L]

Client
Security

Any security system architecture must then address
security issues at each of the layers of client, network and
server (and WEB where applicable) to cover the complete
gamut of security levels; viz.

s System Security for client workstation and database
server

e Database Security through database administration

e Application Security through authorized users and
password protection

e Data Security on application data

Data Security is the focus of discussions. All other levels
of security are standard qualifying factors for security and
achieved through system/database administration and the
integration of security add-ons.

2.1 Data Security

Data Security is an application level security that controls
access to application data ~ be it create, update, delete or
view based on the users and their roles in the business
application. Again, data security in applications can be
implemented through various levels based on the genuine
need and criticality of data. A completely secured data
system falls through five levels of data security to
determine access to application data.

1998 International Computer Symposium
Workshop on Cryptology and Information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Data
Constraints

User Level
Control

Functional
Level Access

DATA

Data Access
Security

Authorization

The diagram describes the levels in the order of
implementation.

Data Constraints are the basic validations on data for
field/occurrence level checks and database integrity. Such
constraints are foremost in specifying business rules and
currently provided by all applications. In today’s visual
and 4GL application development environments, any
model driven approach for application development makes
it easy to define such basic data constraints at the
application model level. At a more detailed level, the same
is also specified globally through procedures and services.

User Level Control forms the basis for all other levels of
security. It is the first step to validating system users and
providing entry into the system. User level control is easily
achieved through standard user definition screens and a
system “logon” functionality. Encryption/ decryption of
user passwords and their maintenance is effortlessly
provided through the use of <ENCRYPT>, <DECRYPT>
triggers, cryptology and the definition of common services
to handle the same.

Other three levels of data security are the theme of
discussion and will be discussed in depth in the following
sections.

The generalized solution discussed is based on the above
security model and can be used to selectively enable
security layers as determined by the business
requirements.

The criticality of implementing security as an add-on is not
affected by the need to add on new definitions and
configuration/administration front-ends but determined by
the level of change required in existing application
components to incorporate the same system-wide and into

the already existing, well tested and implemented
functionality. As will be seen, the proposed solution
integrates with absolutely minimal changes to code and
design.

3. IMPLEMENTING FUNCTION ACCESS

The business requirements of today’s IT solutions are
more and more turning towards work distribution and the
identification of users and the association of specific roles
and responsibilities at their level of operation. It is then
imperative to assign each user with a specific role in the
application process that determines the workspace of
application data that the user is responsible for
maintaining.

A specific role of a user is defined in terms of the
application processes or functions and the actions or
operations on the same that the user has access to. Thus, a
need to associate users with functions or business
processes of the application. At a more detailed level, it
may also be necessary to define the action or operation list
on the accessible functions available to the user. The
concept of defining users along with their access
permissions to the application processes/functions is called
functional security.

Since roles and responsibilities cannot relate one-to-one
with system users, a number of users would fall within the
category of each role that can be defined. That is users can
be classified into groups where all members of the group
share the same roles and responsibilities. Defining user-
wise responsibilities is not necessary. Defining user groups
and the functional access permissions at the group level is
sufficient. All users assigned to a specific group will
maintain common system access permissions. The concept
of user groups to define functional access to the system is
called functional classes.

Functional classes and functional security is easily
implemented in existing applications though the following
steps:

1. Definition of a simplistic data model to define users,
user groups and mapping between system functions.

2. Administration/configuration front-ends to specify the
user groups and define the functional access
permissions.

3. Simple modifications to code to incorporate the
function access check.

80.

1988 International Computer Symposium
Workshop on Cryptology and Inforration Security

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

31 The Data Model
MODULES
Function Code GROUPS
Function Description Group Code
Group Description
(module code)
(group code)
1
SCREENS L]
FORM Name USERS
Screen Description User Code
Module Code (group code) User Name
Password
(FORM name, module code) Group Code
11 11
GROUP SCREENS
Group Code, FORM Name
Module Code
Create Flag
Update Flag
Read Flag
Delete Flag
USERS User Level Control A library of service components together with the global
variables (denoted by ‘$$’) will finally form the core of
GROUPS User Group the application system.
(Role Identification)
The service is:
MODULES Application Functions
$3group_code is available
SCREENS Entry FORM Identifier for service "SYS_ACCESS".SET(Sformname,
Function Screen $SACCESS_STATUS)
if ($3ACCESS_STATUS = -1)
GROUP Group-wise Functions and service "SYS_SERV"MSG_TEXT(
SCREENS Access Rights "M4515", $$TABLE NAME, %\

The data model is simplistic and easily added to existing
application model definitions.

3.2 Modifications te Code

Function entry points must include an access validation
check to determine whether access to the function is
available to the user requesting it.

The check is easily implemented through a simple
access_check service that checks and sets access
permissions from GROUP_SCREENS as global flags that
are checked as required to determine access at the
operation/action level.

Services are self-contained components of code that are
centrally available for applications to use as required.

81

$IMSG_STATUS); access
denied

endif

Again, access checks at the individual action level can be
performed through a ‘check’ operation on the same
service.

service "SYS_ACCESS".CHECK
(33ACCESS_STATUS)

A pre-defined application user group may be supplied
along with the application. The group must have
administrative permissions to configure the functional
classes and user access permissions for the user groups.
This also provides the flexibility to configure the security
layer to individual requirements of organizations.

1998 intemnational Computer Symposium
Workshop on Cryptology and Information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

4. IMPLEMENTING DATA ACCESS SECURITY

Defining roles and access permissions to functions only
guarantees that application data is generated and
maintained by the right people through the right functions.
Functional Access security cannot be used to restrict read
access based on data values stored in the system.

Critical data must also be protected from view access
through view mode, queries and reports. Selectively
controlling access to such data at the table level (business
transactions) is easily achieved through the definition of
categories for data access and a common criteria for ranges
of data values accessible for each category. The category
and its set of data values then govern the access
permissions to data.

Typical categories are amount fields, departments, account
heads, vendors, customers, etc.

Data access security is easily implemented in existing
applications though the following steps:

1. Definition of a simplistic data model to define users,
categories and category range values.

2. Administration/configuration front-ends to defining
categories and its ranges.

3. Implementation through view definitions.

4. Simple “read time” modifications to code to

incorporate the access check.

4.1 The Data Model

CATEGORIES
Category Code
Category Description
(category (category)
code) code)
] |
CATEGORY RANGES USERS
Category Code, Range User Code
Number User Name
Range From User Password
Range To Category Code

CATEGORIES Access Category
(One per User)

CATEGORY Category Ranges for Data
RANGES

Multiple category ranges can be specified. Ranges must be
disjoint and overlapping values are not permitted.

82

The system may be provided with a pre-defined category
that allows complete access to data.

4.2 Implementation Details

Read access to data based on ranges of data values is
achieved through the definition of views for each category
based on the ranges specified. Thus views must be defined
for all transactions. The views are then used while
retrieving records from the associated tables. The same
strategy is used for reports so that only accessible data is
displayed.

Since every user is uniquely identified by a category, an
application logon session uniquely identifies the access
category. This category is then used in determining all data
access ranges. View names are formed as

‘v’+’category code’+’transaction id’

Example: Category:
Transaction:

Branches (code = 2)
Purchase Order (id = PO)

The view definition for the transaction will be:
create view v2PO (srl_no) as

select (srl_no from po_hdr where

(branch between 100 and 200) or

(branch between 500 and 600))

Transaction: Journal Voucher (id = JV)
create view v2JV (srl_no) as

select (srl_no from jv_hdr where

(branch between 100 and 200) or

(branch between 500 and 600))

4.3 Modifications to Code

Modifications are limited to accessing appropriate data
from the view definitions based on the logon user’s
category. This is implemented through a single service call
in the read trigger of the outer-most (primary) transaction
entity.

$KEYLISTS = "location ; sls-xref_num"

itemlist /id $KEYLISTS

service "TRANS_SERV"READ (SKEYLISTS,
$TRANSACTION_IDS, $SREAD_STATUSS)

$SCATEG _ID is available.
SKEYLISTS is the list of key fields.

The service itself will be coded as follows :
if ($%cateq id=1)

read
else
read while < key field > in %\
(select < key-field > from
< view-name >)
endif

The implementation calls for minimal changes to existing
code.

While the above solution achieves data access control as
desired, the implementation is based on a number of
assumptions and limited by the need to define one view
per transaction.

Assumptions:

1. The category field used for access control maintains
consistency in its name and data type across all
entities in the application data model.

2. The entity and key names for transactions follow
standard naming conventions.

Limitations:
1. One view definition per transaction.

2. Multiple category restrictions per user not supported.

Enhancements:

The data model described above is aimed at a first level
implementation. To provide complete control for multiple
categories per user, access restrictions can be based on
defining selection criteria along with permitted ranges for
the same. Such selection criteria are then defined at the
transaction level. This permits users to have multiple
access categories based on the transaction requirements.
Such level of control is implemented through two tables:

Transaction
Entry

Approve
Y/N?

Edit
Transaction

1

Return to
Originator’s
Pending List

1998 International Computer Symposium
Workshop on Cryptology and Information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

CRITERIA MASTER
criteria code, criteria name, datatype, size of datatype

Each user is associated with multiple criteria; viz.
customers, vendors, account heads, branch; etc.

TRANSACTION-CRITERIA MASTER

transaction-id, criteria code

Based on the transaction-id, related criteria are picked up
to create the view definitions.

Developers can start with a minimal implementation and
then extend further to provide full versatility.

5. IMPLEMENTING AUTHORITIES

Authorities are the highest level of security implemented
in applications. Authority means the ability to approve
transactions entered into the system before the results of
the same are effected on system data. Financial systems, in
particular, necessitate various types of approvals. Levels
of approval are determined by the business requirements —
one approval, multiple approvals in sequence or at 2 much
broader level, even multiple approval types in parallel; e.g.
both of, functional and financial approval. This calls for a
standard approval process that can handle approvals based
on business requirements.

The approval process introduces its own workflow with a
need to route the transaction information as defined by the
approval routing. A typical approval workflow in terms of
states and transitions is depicted below:

New State for Approvals

Get
Routing
Details

Y

Last
Approval?

YES

Routing
Approve Pending SER
Y/N? Approval List v
of Approver

User Intimation through
INBOX facility

-83_

1998 International Computer Symposium
Workshop on Cryptology and Information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

In terms of enhancements to existing applications, the above
implementation of authorities relates directly to the following
changes:

1.

4,

5.1

Addition of a new status to indicate ‘Save for Approvals’.
That is, the transaction is saved but the actions/processing
and related updates; e.g. books of accounts, are not
effected.

Deferment of “store” time updates until after approval.

A routing service.

A user notification through an “INBOX” functionality.

Modifications to Code

For applications that follow a component-based design, “save”
time changes for approvals are easily incorporated and
involve, first and foremost, the addition of a new transaction
status in the system.

The system then provides for the following states for
transactions:

e posted in existing system
implementations
+ saved for approvals New for approvals

e saved butnot postcd?r Already provided

All processing involved with posting transactions is
deferred until the approval process is complete. The
business processing is then easily shifted to a later point
in the application processing logic.

Approvals per se are implemented as a new functional
component that uses services to determine routing for
the individual transactions. Routing and the
implementation of approval types is based on a
simplistic, yet functionally complete, data model that

" provides full flexibility in configuring approval types
and approval levels for routing. -

5.2 Approvals & Routing — Data Model

USERS APPROVAL TYPES TRANSACTIONS
User Code .
Alternate User Code ﬁppmva} 1];ype C(:d N ';ransacn]oln (I!d .
Credit Limits pproval Description pproval Indication
Availability Details
(User 1d) (Approval Type) (Transaction 1d) (Transaction Id)
—T — | —!
ROUTING FOR APPROVAL TRANSACTION
TYPES ACTIONLOG
Apprf)val Type, Transaction Id,
Routing Sequence Number Serial Number
User 1d Action Flag
User Id
Date Time Stamp
(Approval Type) Transaction Key
11 11

TRANSACTION-WISE
APPROVALS
Transaction 1d,
Sequence Number

Approval type

84

USERS User control and associated
details

APPROVAL Approval categories

TYPES

TRANSACTIONS Transaction classification
for Approvals

TRANSACTION Status log of transactions

ACTION LOG during approval

ROUTING FOR Routing information

APPROVAL TYPES for approval category

TRANSACTION-WISE Approval Information
APPROVALS for transactions

The workflow handles the routing from one user to the
other and maintains a track of the status log for
transactions under approval. The entire processing for the
approval process is handled through the implementation of
a generic component and is independent of the core
application.

5.3 INBOX Implementation

The approval functionality is not complete without the
INBOX. The INBOX is a facility to provide users with
information on activities in the system that are pending
action by the user. Only user specific information is
displayed.

The INBOX is generically developed to support all
transactions and actions on the same and serves in some
way as a diary utility that enables users to determine work
that is awaiting further action. The INBOX has specific use
in event-driven workflow systems whereby tasks are
created for users based on actions initiated by others.

The capability of today’s development tools to support
plug-n-play components and loosely coupled interfaces
make the generic implementation of the INBOX possible.
The INBOX can then display identifying data for all
transactions in a common front-end. Pending action can be
initiated through the same user interface. Additional details
on the transactions are easily provided through drill down
on individual items into the main transaction screen in
“view only” mode, thereby giving full flexibility and
control through a common user interface.

Security can be further enhanced to authenticate users
through the use of digital signatures. Digital signatures for
users are stored into the system and the same are
subsequently used to authenticate the approver during the
approval process.

1998 International Computer Symposium
Workshop on Cryptology and Information Security

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

4. WEB SECURITY

Organizations are seriously looking towards providing
WEB-based solutions. End-users too are eager to exploit
the World Wide Web for core applications. Any native
applications that organizations build today must
necessarily be WEB-enabled. Securing such applications is
then a challenge. No level of application security can
replace security issues on the WEB.

Tremendous research has gone into WEB security for
electronic commerce and the securing strategies are more
or less stabilized. Most Web browsers support some kind
of information encryption mechanisms for securing the
communication. The Internet connections are protected
using Secure Socket Layers (SSL). Firewalls are standard.

The SSL works with “secure” connections using
symmetric encryption in combination with a public key.
Users must then procure digital authentication certificates
to gain access to the applications after the proper exchange
of key information.

Standard WebEnabler support for development enables
applications to be configured to request such digital
certificates from the clients. The WEB server verifies the
certificate and the application is started. No specialized
user-level coding to incorporate digital certificates is
required.

No specific authentication by the application is required
and the client browser and WEB server together handle
security.

5. CONCLUSIONS

The generic implementation of application security
discussed can enhance any application to provide full
security for application .data. The ability to selectively
apply various levels of security allows applications to
customize the implementation to suit the business
requirements. The data model for the various layers is
simplistic and independent of the core application. Current
technologies makes it even easier to implement - with the
component-driven paradigm and the ability to incorporate
standard functionality through services and operations. The
ability to support “plug-n-play” components demands
minimal interface requirements between the calling and
called components.

-85_

1998 Intemationa! Computer Symposium
Workshop on Cryptology and information Security
December 17-18, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

6. REFERENCES

[1] Ronald G Ross, The Business Rule Book -
Classifying, Defining and Modeling Rules; Data Base
Newsletter, 1997

[2] Ivar Jacobson etal; The Object Advantage : Business
Process Re-engineering with Object Technology,
Addison - Wesley, 1995

[3] Ivar Jacobson etal; Software Re-use : Architecture
Process and Organisation for Business Success, 1997

86

	
	79
	80
	81
	82
	83
	84
	85
	86

