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ABSTRACT

In this paper we propose two efficient
secret sharing schemes with cheater
identification based on the sequential
model. Our schemes greatly reduce the
amount of data kept by the participants as
well as the data transmitted by the dealer.
In our schemes, the dealer only has to send
O(n) data instead of O(n’m) for the existing
schemes in the literature, where n is the
number of participants and m is the number
of rounds of the sequential model.
Moreover, only one shadow is kept by each
participant in our schemes without the need
of any checking parameters while O(m)
shadows and O(nm) checking parameters
are needed for each participant in the
previous schemes.

1. INTRODUCTION

A secret sharing scheme is a method of
hiding a secret by a dealer among several
shadows such that the secret can be
reconstructed by some subsets, called
access structure, of these shadows. Secret
sharing schemes are mainly used to protect
a secret from being lost, destroyed or
abused. In 1979, Shamir [11] first proposed
a (r,n)-threshold scheme which is an
algorithm to divide secret into n shadows,
such that the secret can be recovered by
any group of r or more participants.

Shamir’s (t,n)-threshold scheme uses a
polynomial, whose degree is ¢-I, to share
the secret. The dealer sets the constant
term of the polynomial to be the true secret
and then he computes n distinct points
which are all on the polynomial. Each
participant receives only one point of the
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polynomial from the dealer. Surely the
participants hold different points. If any ¢
participants want to derive the secret, they
can use their shadows to derive the
polynomial, for its degree is ¢-7.

Since a cheater may derive the true secret
and preclude others from reconstructing the
secret, cheater detection and identification
are of crucial importance in secret sharing
schemes. In 1989, Rabin and Ben-Or* [9]
proposed a method of checking vector for
secret sharing. Their method requires that
all participants keep a lot of data to
achieve cheater identification. Although a
cheater can be identified with high
probability, the cheater has already
obtained the secret while the honest
participants did not. This is unfair, so
Tompa and Woll [14] proposed a sequential
model in 1986. Lin and Harn [8] improved
this sequential scheme in 1995. In [8], the
dealer hides the secret S in a sequence, D,
D,,..., D;, D;,, ..., Dy, where D;=§ for
some j chosen randomly and privately.
D;,;=P, P is public information, and D, is a
dummy secret for all i#j and i#j+1.
Each D, is a secret in the ith round, and
they will be recovered in order. They use
Rabin’s checking vector to verify the
validity of each shadow in each round. If
all shadows are correct in the ith round,
then the derived D, is valid and all the
cooperative participants continue to derive
the next secret D,.,. If any shadow is
invalid, the reconstruction stops. When the
derived secret D; equals the public
information P, the true secret is the one
derived in the previous round, i.e., S= D, ;.

In a k-round sequential model, cheaters
only have probability about //k to be



successful, because they do not know in
which round the true secret is hidden.

In 1997, Laih and Lee proposed a new
sequential model that can compensate all
honest participants when the number of
cheaters is less than #/2 [6].

In 1991, Lin and Harn proposed a secret
sharing scheme for general access
structures [7]. In a general access structure
scheme, the secret can only be recovered
by some groups of specified participants
(access structure). Unlike the threshold
scheme, the access structure scheme is not
depend on the number of participants.

In this paper, we present two efficient
cheater identification schemes based on the
sequential model. In our schemes, the data
kept by the participants and delivered by
the dealer are greatly reduced, and the
checking vectors are eliminated.

The remainder of this paper is organized as
follows. In section 2, we review the
Rabin’s checking vector scheme and the
sequential model scheme proposed by Laih
and Lee. In section 3, we present our
efficient cheater identification schemes.
The analysis of our proposed schemes is
given in section 4. Finally, a concluding
remark is given in section 5.

2. PRELIMINARY
2.1 Rabin’s Checking Vector Scheme

Cheater identification is an important issue
in a secret sharing scheme. If there is no
cheater identification feature in a secret
sharing scheme, then the cheater can cheat

the other participants without being nabbed.

We will discuss the checking vector scheme
proposed by Rabin and Ben-Or* [9].

There are n participants P, P,, ..., P,in this
scheme, and a dealer uses a secret sharing
scheme to construct the shadows f{P,),
flP,), ..., fiP,) for the participants.

The initialization phase

1. For each shadow f{P) the dealer
chooses 2(n-/) random numbers b,
c;ip 1S jsn; j#i, secretly.
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2. For each i the dealer computes n-/J
numbers y;,1< j<n; j#i, such that
AP)+bjiyi= cji-

3. The dealer delivers  f{P) and
yv;in1l€j<n; j#i, to P; through a
secure channel.

4. The dealer delivers b, ¢;,1<j<n;

j#i, to P; through a secure channel.

The recovering phase

1. All cooperative participants pool their
shadows to recover the secret.
Participant P, reveals his shadow f{P)
and publishes his own checking vector
Yji-

2. P]articipant P; uses his checking
vectors b; and c¢; to verify P;s
shadow f{P). They must satisfy
equation f{P)+b;y;=c;. Otherwise, P,
is cheating.

3. If all shadows are valid, the secret can
be derived. |

In this protocol, all participants need to
keep a large amount of checking vectors,
and the dealer has to send them through a
secure channel. It is intractable for a
cheater to make a fake shadow which can
successfully pass through all the checking-
vector validation processes without being
caught.

2.2 Laih and Lee’s Sequential Model

A secret sharing scheme is said to be V-fair
provided that the honest participants can
also reconstruct the secret when the
cheaters can derive the secret.

In 1997, Laih and Lee proposed a V-
fairness (r, n) secret sharing scheme [6],
where the number of cheaters V is less than
that of the honest participants. In this
scheme, participants are not required to
release their shadows simultaneously while
reconstructing a secret.

The initialization phase

1. The dealer wuses Shamir’'s (2,3)-
threshold scheme to encode the true
secret K into three subsecrets &, 4.,
and k;.

2. The dealer randomly chooses and
publishes a number P.

3. The dealer determines a number m
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such that there are m rounds in the
scheme.

4. The dealer randomly selects a number
r secretly, 1Sr<m-2. Let S, =k, ~
S,=k,~ S,,,=P and S,,,=k;.

5. S, S5 S, .82 and S5 Sevss s Sm
are random numbers selected by the
dealer secretly and are used as dummy

secrets for their corresponding
rounds.
6. The dealer wuses Shamir’s (t,n)-

threshold scheme to divide S;
1< j<m; j#r+2, into n shadows
and delivers them to all participants
through a secure channel.

7. The dealer uses Shamir’s (z-V,n)-
threshold scheme to divide S,,, into n
shadows and delivers them to all
participants through a secure channel.

The recovering phase

1. All cooperative participants pool their

shadows to recover the secret of the

jth round, S;, sequentially. If there is

no cheater, S; can be derived.

If §;=P, then §;.,=k;, and §;.,=k,. The

true secret K can be recovered by the

subsecrets k, and k, using Shamir’s

(2,3)-threshold scheme.

3. If there is any cheater, stop the whole
recovering phase right now. O

(8]

This protocol is fair when the number of
cheaters is less than the number of honest

participants. If the cheaters release their -

fake shadows. in the rth round, then the
cheaters are able to derive the subsecret %,
while the honest ones can not. In other
words, the cheaters can derive the true
secret using k, and k, while the honest
participants can not derive it at this time.
However the honest participants can go on
to derive the subsecret k; hidden in the
(r+2)th round, and then recover the true
secret K using k, and k;. Recall that the
(r+2)th round is a (¢-V, n)-threshold
scheme.

3. THE EFFICIENT CHEATER
IDENTIFICATION SCHEMES

In this section, we present two efficient
cheater identification schemes. The cheater
identification in our schemes is based on a
one-way hash function. In our schemes,
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each participant keeps only one shadow
without the need of any checking vectors.
One of our schemes is a pure threshold
scheme and the other allows the
combination of both threshold and general
access structures.

3.1 The Threshold Scheme

In this section we present a scheme based
on Shamir’s (¢,n)-threshold scheme. There
are n participants sharing a secret K and if
any group of ¢ or more participants
cooperate together, they can derive the
secret. In this scheme, we assume that there
are at most V cheaters, where V can be any .
nonnegative integer less than /2.

Our scheme consists of two phases: (1)
initialization, (2) recovering. In the
initialization phase, the dealer hides the
secret and generates the shadows. The
dealer also computes the corrective
parameters and publishes the necessary
information. In the recovering phase, all
the cooperative participants derive the
secret and identify cheaters if necessary.

The initialization phase

1. The dealer uses Shamir’'s (2,3)-
threshold scheme to encode the true
secret K into three subsecrets k,, k,,
and k;.

2. The dealer randomly selects numbers
di, ¢, ¢€i; and ¢,y Wwhere
0<i<t,l€j<t, 1€k <t-V, secretly.
Then the dealer constructs the
following polynomials

filx)=c, . x" "+ + ¢, x+k,
fox)= cppx" + o H ey xtky
falx)=cav i x" w4y xtk,
g(x)=d, ,x""+..+ d,;x+d,

3. The dealer chooses a number m where
m is the number of rounds in this
scheme. The dealer also selects and
publishes a one-way hash function
h(x). We define h'"(x)=h(h'*"(x)) for
k21 and h'%(x)=x.

4. The dealer randomly chooses =n
different numbers R, 1<i<n, and

computes K,; = h'"/(R;), 0< j<m,

such that all the K;;’s are distinct.
The dealer delivers the shadow R, to
P, through a secure channel. P, knows



K., 0<j<m, which can be
computed from R; using the hash
function.

5. The dealer randomly selects a number

r from {1, 2, ..., m-2} secretly, and
« for each i, 1<i<n, computes and
publishes.

D‘i“)z fl(Pi)'Ki.r~l ’
D‘:"‘Z)= fZ(Pi)'Ki.r »
ng= fJ(Pi)‘Ki,r+2 , and
f"”= g(P;)-K; .
Also, the dealer publishes h(g({0)) and
K, ,=h"(R;), 1<i<n.

The recovering phase

Suppose there is a group of ¢ participants
who are going to recover the secret.
Without loss of generality, we can assume
that these ¢ cooperative participants are P,
through P,. In the recovering phase, P;’s,
1<i<t, pool their corresponding shadows
in each round sequentially. P, reveals his
shadow K, ; in the jth round.

l. In the jth round, if A(K,;)#K,; ,, then
P, is a cheater and the cooperative
participants stop the whole recovering
phase immediately. If A(K, ;)=K,;,, P,
is regarded as honest.

If there is no cheater in the jth round,

a -1 degree polynomial g;(x) is

derived by the ¢ points ( P, K, ;+ D!’ ),

I<i<rt.

3. If h(g;(0))=h(g(0)), then we believe
j=r+! and compute the polynomial
fi(x) using the ¢ points (P, K, ,+ D{*" )
and polynomial f,(x) using the r points
(P, Kij.,+ D™ ), 1<i<t.

4. The true secret K can be derived by
subsecrets k,=f,(0) and k,=f,(0) using
Shamir’s (2,3)-threshold scheme. [

o

We use a one-way hash function A(x) in our
scheme. It can reduce the amount of secret
data kept by each participant. The dealer
also delivers fewer data, only a random
number R;, than the existing schemes in the
literature.

Although we use h(x) to generate all
shadows, the corrective parameters D" can
help us to go back to Shamir’s scheme. So
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this is also a threshold scheme.

We use the function g(x) to determine the
position of the three subsecrets k,, k,, and
k;. In the jth round, all the cooperative
participants only need to compute one
polynomial g;,(x) whose constant term is
used to check if the round that hides the
subsecret has reached.

Our cheater identification scheme is quite
efficient, because the one-way hash
function A(x) can be used to identify
cheaters quickly without the need for the
participants to hold any checking vectors.

If there are V cheaters release their fake
shadows in the rth round, then the cheaters
are able to derive the subsecret k, while the
honest ones can not. However the honest
participants can compute the polynomial
f3(x) using the -V points ( P, K, ;.,+ D\ ).
The subsecret k;=f;(0) will be derived and
the true secret K can be recovered by using
k, and k;. Since the (r+2)th round is a (z-V,
n)-threshold scheme.

3.2 The General Secret Sharing Scheme

In this section, we present a secret sharing
scheme to deal with general access
structures. We assume that the secret value
is K and there are n participants.

Our scheme consists of two phases: (1)
initialization, (2) recovering. In the
initialization phase, the dealer hides the
secret, generates the shadows, computes
and publishes the corrective parameters. In
the recovering phase, all the cooperative
participants identify cheaters and derive
the secret.

The initialization phase

1. The dealer chooses a number m where
m is the number of rounds in this
scheme. The dealer also selects and
publishes a one-way hash function /Afx).
Let T be the set of all access
structures. The set of minimal access
structures, denoted by T, . 1s defined

as T,,={A|AeTandVBeT,Bz A}

2. The dealer
different

randomly chooses n
numbers R, l<i<n, and
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computes K;;=h"7(R;), 0< j<m,
such that all the K;; are distinct. The
dealer delivers R; to P; through a
secure channel. P; knows the shadows
K:;, 0< j<m , which can be computed
from R; using the hash function h(x).

3. The dealer randomly selects a number
r from {1, 2, ..., m-1} secretly.

4. For each access structure A;€ [
the dealer computes and publishes
two corrective parameters

d.r): K—h( szﬁAi Kj',), and
§4v4lJ=/1( ZVP,EA,- Kj.r+l)'

5. The dealer
1<ign.

publishes K, ,=h""(R,),

The recovering phase

Suppose the members of a minimal access
structure A€, are going to recover the

secret. The members P,eA pool their
corresponding shadows in each round
sequentially. P; reveals his shadow K;; in
the jth round.

1. In the jth round, if A(K;;)#2K;;,, then
P, is a cheater and the cooperative
participants stop the whole recovering
phase right away. If A(K,;)=K,;,, we
believe P, is honest.

2. If there is no cheater in the jth round,
they can compute h(X,p., Ki;). And

if h(Typ., Kij)=Ci"", the true secret

can be recovered by the formula X =

( ZVP,EA Ki,j—l)+CY)' [

In this scheme, we use a one-way hash
function h(x) to generate all shadows. Each
participant only has to keep a random

number R,. The corrective parameters ()"

are used to rectify the shadows so that the
true secret can be derived. Employing the
same compensable method as the previous
section, honest participants can also
compute the secret when the cheaters
deceive them and derive the secret.

Most of the existing schemes in the
literatures have the property that if there
are N access structures and m rounds, each
participant needs to store O(Nm) shadows.
‘Although there are some schemes needing
only O(m) shadows for each participant,
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they demand much more computation time
instead. In our scheme, each participant
only has to keep one shadow and requires
less computation time due to the relative
efficiency of hashing functions.

3.3 The Partial Threshold Scheme 4

In the real world, secret sharing schemes
are not always pure threshold. For example,
consider a company with 5 departments and
1000 employees (including the president
and the 5 department managers). The
company would like to use a secret sharing
scheme such that the president and
managers have higher authority than other
staffs. Their blueprint is that all staffs,
including the president and managers,
employ a (500,1000)-threshold scheme, but
the president and the managers can also
derive the secret without other employees.

Our scheme in section 3.1 can not deal with
this situation since it is not a pure
threshold scheme. Direct application of the
scheme of section 3.2 is possible, but it
will result in too many access structures. In
the above case, it will result in about (1:):3]
access structures, which is impractical.
Fortunately, we can combine the schemes
in section 3.1 and 3.2 to solve this problem
efficiently. We call the combined scheme a
Partial Threshold Secret Sharing Scheme.

First, the initialization phase is the same as
that of section 3.1 to treat the threshold
part. For the particular access structures,
the combination of president and/or
managers, can be dealt with the
initialization phase described in section 3.2.
We must emphasize that only one hash
function is required and all participants
only hold a random number because the
shadow generation can be merged. The
single shadow held by the president and
managers has two functionalities.

Qur Partial Threshold Secret Sharing
Scheme still possesses the efficiency
advantages of both schemes in 3.1 and 3.2.
The dealer only has to send a random
number to each participant and no checking
vectors are required for the participant. We
illustrate this scheme by the following
example
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Kio K, K. K, ; K4 K;s Kis K,
P, 52 18 36 8 72 58 51 2
P, 13 74 73 4 22 42 62 48
P, 31 76 32 16 44 14 69 45
P, 26 46 24 65 30 77 11 70
P 66 35 53 7 19 10 6 43

Table 1. Shadows for each participant.

DI““=fI(Pi)'Ki.3 DI“Z)'—‘fZ(Pl)’KIA D1(53)=f3(Pi)'Ki.6 Dl(']’=g(P.')‘K,:5
P, 52 67 13 28
P, 68 46 10 43
P, 72 34 11 ' 3
P, 43 60 77 27
Ps 46 6 11 25

Table 2. Corrective parameters.

Example: Suppose a dealer intend to share
a secret K=50 among five participants, P,
P,, P,;, P,, and Ps, such that P, and P, or
any group of 3 or more participants can
derive the secret K.

For simplicity, we assume that the hash
function h(x)= 29" (mod 79) is a secure hash
function. Our scheme proceeds as follows:

The initialization phase

1. The dealer wuses Shamir’s (2,3)-
threshold scheme to encode the true
secret 50 into three subsecrets, they
are 52, 54, and 56.

. The dealer selects four polynomials,
they are

fi(x)=2x'+6x+52
Folx)=x*+5x+54
filx)=8x+56
g(x)=x2+x+5.

3. The dealer chooses m=7, there are 7
round, and publishes the hash function
h(x)= 29" (mod 79) and h(g(0))=h(5)=63.

4. The dealer chooses R,=2, R,=48§,
R,=45, R,=70, and R;=43 and sends R,
to P, through a secure channel. The
dealer publishes K,;. We list the
shadows in Table 1

5. The dealer computes and publishes

Di“I):fl(Pi)'Ki.J‘
Di““:fz(Pi)'Ki.‘l
D;"v"(’=f3(Pi)‘Ki.6

[§S]
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D/"=g(P;)-K, s

Where the value P,=i.
parameters in Table 2.

6. The dealer computes the corrective
parameters of P, and P,, that is
C*'=50 - h(72+22) = 50-12 = 38 and
publishes C,"*'=38.

7. The dealer computes and publishes
ClU*V=h(58+42)=h(21)=41. ]

The recovering phase

We list these

We will show how to recover the secret on
the (3,5)-threshold condition first, and then
show how P, and P, recover the secret
together.

(Threshold Parz)

Without loss of generality, we assume P,,
P,, and P; cooperate to recover the secret.

1. They pool their shadows K, , (i=3,4.5)
and check if h(K, ;)= K, ,. If there is no
cheater, pool their shadows K,, and
identify cheaters again.

2. They use three points (3,K,,+D,"") =
(3,35), (4, K,,+D,/") = (4.51), and
(5,Ks ,+D5'""H)=(5,78) to derive the
polynomial g,(x) = 45x*+/7x+53. h(53)
= 35%# 63, so they must pool their X, ;
(i=3,4,5).

3. In the 3rd round, if there is no cheater,
they use three points (3,K;,;+D,"") =
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(3,19), (4,K.;+D,) = (4,13), and
(5,K; ;+Ds'?y = (5,32) to derive the
polynomial g;(x) = 52x?+25x+29. h(29)
= 54 £63, so they must pool their K,
(i=3,4,5).

4. 1In the 4th round, if there is no cheater,
they use three points (3,K;,+D;"*) =
(3,47), (4,K..+D/")y = (4,57), and
(5,K; ,+Ds""y = (5,44) to derive the
polynomial g,(x) = 28x*+51x+37. h(37)
= 48 #63, so they must pool their K,
(i=3,4,5).

5. In the 5th round, if there is no cheater,
they use three points (3,K;;+D,*) =
(3,17), (4,K,s+D,”) = (4,25), and
(5,K; s+D;'"y = (5,35) to derive the
polynomial g,(x)= x*+x+5. h(5)=63, so
the secret can be derived.

6. They use three points (3,D,;""+Kj;;),
(4,D,“"+K,;), and (5,D;""+K;;) to
derive f,(x)=2x*+6x+52 and use three
points (37D3“2)+K3.4), (4,D4(:2)+K4,4)’
and (5,D5"?+K;s,) to derive fy(x) =
x’+5x+54 . Then they can use two
points (1,52) and (2,54) to recover the
true secret 50.

(Access Structure Part)

1. P, and P, cooperate to recover the
secret. In the first two rounds, they
pool their shadows and identify cheat.
Then they compute h(K,,+ K,,) =
h(30) = 65%41, so they must pool their
shadows K, ; and K, ;.

In the 3rd round, if there is no cheater,

they compute h(K,;+ K, ;) = h(12) =

21#4], so they must pool their

shadows K, , and X, ,.

3. In the 4th round, if there is no cheater,
they compute A(K, .+ K, ,) = h(15) =
12#41, so they must pool their
shadows K, s and K, ;.

4. In the 5th round, if there is no cheater,
they compute h(K, s+ K, 5) = h(58+42)
=h(21)=41= C”*", so the secret can
be derived.

5. The true secretis C,'”+ h(K, .+ K, .) =
38+12 = 50.

(8]

4. ANALYSIS

Our proposed scheme employs a one-way
hash function to identify cheaters. All
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participants no longer need to hold any
checking vector or parameters. The risk of
data loss is reduced because the dealer only
has to send a random number to each
participant.

If a cheater intends to cheat in our scheme,
the only chance he can succeed is to guess
the right position where the true secret is
hidden. Thus, the probability of cheating
successfully in our scheme is //m which is
the same as the schemes in [6, 8, 14].

Table 3 summarizes the comparisons of
some complexity measures between our
schemes and the schemes in [6, 14]. Where
n is the number of participants, m is the
number of rounds for the sequential model
and N is the number of minimal access
structures.

The first column of Table 3 shows the
number of shadows kept by each
participant. In [6, 14], each participant has
to keep a different shadow for each round,
therefore O(m) shadows are needed. While
in our schemes, only a single shadow is
required and other checking parameters can
be derived from the shadow by a hash
function.

The second column of Table 3 shows the number of
checking vectors kept by each participant. In [6, 14],
each participant has to keep n different checking
vectors for each round, therefore Ofmm) checking
vectors are needed. While in our schemes, no
checking vectors are required.

The third column of Table 3 shows the
amount of the data sent by the dealer to
participants. In [6, 14}, the dealer has to
send O(n?) different checking vectors for
each round, and O(n’m) checking vectors
are needed. While in our schemes, the
dealer only has to send a random number to
each participant through a secure channel.
Because there are n participants. the dealer
only sends O(n) shadows.

The fourth column of Table 3 shows the
amount of data published by the dealer. In
{6, 14], the dealer has to publish O(/)
information that is used to find the position
of the subsecrets. While in our schemes,
the dealer need to publish O(n) corrective
parameters.
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The shadows The checking {The data sent by The data
held by one vectors held by the dealer to  |published by the
participant one participant participants dealer

Previous scheme
" (Threshold) O(m) O(nm) O(n*m) o(1)
Our scheme
(Threshold) 1 O(n) O(n)
Our scheme (Partial
Thresho(ld) 1 O(n) O(n)+0O(N)

n is the number of participants.
m is the number of rounds.

N is the number of minimal access structures.

Table 3 Comparisons of storage and communication complexities

5. CONCLUSIONS

Cheater identification is an important issue
in secret sharing schemes. In this paper, we
have proposed two efficient cheater
identification schemes. One is a threshold
scheme, and the other is a general secret
sharing scheme, which can handle the
combination of general access structures
and threshold schemes efficiently.

Our schemes are based on the
sequential model and greatly reduce the
amount of data kept by the participants.
Moreover, only O(1) shadows are kept by
each participant in our schemes without the
need of any checking parameters while O(m)
shadows and O(nm) checking parameters
are needed for each participant in the
previous schemes.
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