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Abstract

A novel threshold-based admission control algorithm
with negotiation for two priority classes of requests is
proposed in this study. The server capacity is divided into
three partitions based on the threshold values: one for each
class of requests and one common pool shared by two
classes of requests. Given the characteristics of the system
workload, the proposed algorithm finds the best partitions,
optimizing the system performance based on the objective
function of the total reward minus the total penalty. The
negotiation mechanism will reduce the QoS requirements
of several low-priority clients, by cutting out a small
fraction of the assigned server capacity, to accept a new
high-priority client and to achieve a higher net earning
value. Stochastic Petri-Net model is used to find the
optimal threshold values and two approximation
approaches are developed to find sub-optimal settings. The
experiment results show that the proposed algorithm
performs better than one without negotiation mechanism,
and that the sub-optimal solutions found by the proposed
approximation approaches are very close to optimal ones.
The approximation approaches enable the algorithm to
dynamically adjust the threshold values, based on the
characteristics of the system workload, to achieve higher
system performance.

1 INTRODUCTION

Delivering multimedia streams with QoS
requirements to viewers is one crucial issue in designing a
multimedia system. In literature, various admission control
algorithms have been proposed. The deterministic
approach derives a formula of the maximum number of
admitted requests under the worst-case load [1]. The later
approach is based on the prediction from the
measurements of the resource usage status [2-5, 7, 10, 12,
13] and provides predictive service guarantee to clients,
not absolute guarantee.

The above research does not consider different
priorities of client requests. We observe that, in some
systems, clients might offer high value of reward and
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should be given to priority services. Similarly, the system
pays high penalty if it rejects a high-priority request. The
admission control policy for such a system attempts to
maximize the net earning (the total reward minus the total
penalty) in order to optimize the system performance.

A class of threshold-based admission control
algorithms, based on the above cost model, is proposed in
our previous study [6]. The server capacity is partitioned
into several partitions based on the threshold values: one
for each class of requests and possibly one common pool
shared by all classes. Requests of a specific priority are
granted as long as the current load for the priority class is
below the corresponding threshold. The server capacity
from the common pool can only be used if-the priority
class requests have used up all the corresponding reserved
partition of the server capacity.

We further observe that the system could reach a
higher objective value by lowering the service quality of
admitted low-priority clients, so as to make room for new
arrival of high-priority clients. In this paper, we propose
the dynamic threshold-based algorithm with negotiation
mechanism that will reduce the QoS of several low-
priority clients, by cutting out a small fraction of the
assigned server capacity, to accept a new high-priority
client and to achieve a higher net earning value.

2 SYSTEM MODEL

The server prioritizes client requests into different
priority classes according to their importance to the system.
Upon the arrival of a new client, the server checks the
remaining capacity for the specific priority class of clients.
If the remaining capacity is enough to serve a new request,
it will be accepted; otherwise, a negotiation process may
take place to determine if it can be accepted.

We consider a system with two priority classes of
requests. Each class of requests is characterized by its
arrival/departure rates and its reward/penalty values.
Requests provide high reward and penalty [14,15] are
considered as high-priority ones. Let the inter-arrival times
of the high-priority and low-priority clients be
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exponentially distributed with the. average times of 1/4,
and 1/4;, respectively. The inter-departure times of the
high-priority and low-priority clients are exponentially
distributed with the same service time of 1/u. The
proposed method is capable of handling different service
times. However, we use the same service time for
simplicity. Let the reward rate of high-priority and low-
priority clients be v, and v, , respectively, with v, > v, and
the penalties be g, and g,, respectively, with g, 2 g,.

A server contains n capacity slots divided into three
partitions: n,, n, and n,,, where n,, = N — n, — n,. Capacity of
n, slots (referred as the high partition hereafter) is reserved
for high-priority clients; », slots (referred as the low
partition hereafter) for low-priority clients; while ,, slots
(referred as the common pool partition hereafter) are
shared by all priority classes. We assume that all classes of
clients have the same QoS requirements and hence each
capacity slot serves one client request. When a new client
enters the system, the server checks the remaining capacity
for the specific priority class. A new client can be assigned
to the common pool only if the corresponding partition of
the server capacity has no vacancy. A negotiation process
starts if all slots in the common pool are occupied and the
new coming request is a high-priority one.

The negotiation process reduces the QoS level of the
low-priority requests in the common pool so as to make
room for new arrival of high-priority requests. Each time
a low-priority clients are chosen for degradation. Each
such client is degraded by 1/ and contributes 1/a
capacity slot. As a result, they make one slot in total. The
total reward value of these degraded clients is (a—1)* v,
which is v, less than the original total reward value
contributed by them (i.e. a*v)) before degradation. For the
sake of service quality, a low-priority client is only
degraded once. The degraded clients can be resumed to the
normal QoS level upon the departure of a high-priority
client. Note that no performance gain can be obtained if
the negotiation process makes room for a new low-priority
request. As stated above, the system gains extra value of v,
- v, from the negotiation process, for each newly admitted
high-priority request.

Our objective function is the same as our
performance index — the total pay-off rate, which is
defined as the average amount of net earning received by
the server per time unit. Let the system on average serve,
per time unit, N, high-priority clients, N, low-priority ones,
and D, degraded low-priority ones, and reject M, high-
priority ones and M, low-priority ones per time unit. The
total pay-off rate can be obtained by the reward rate minus
the penalty rate as shown in (1). The proposed problem is
formalized as finding an optimal set of threshold values
under which the above objective function is maximized.
Table 1 summarizes the notations used in the paper.

Nyv, + Ny, + Dy*(a-1) a-Mg,— M, q, ¢))
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A, |Arrival rate of high-priority clients

A, |Arrival rate of low-priority clients
p  |Departure rate of clients

v, |Reward of a high-priority client if the client is serviced
successfully

v, |Reward of a low-priority client if the client is serviced
successfully i )

q, |Penalty of a high-priority client if the client is rejected
on admission

g, |Penalty of a low-priority client if the client is rejected
on admission.

N |Total number of server capacity slots for servicing
clients

n, |Number of slots reserved for high-priority clients only,
0sn,<N

n; |Number of slots reserved for low-priority clients only,
O0<m<Nandalson,+n >0

Number of slots that can be used to service either types |
of clients, '
n,=N-—n,—n

' N, |Number of high-priority clients served in the system
per time unit

N, |Number of low-priority clients served in the system per
time unit

M, |Number of high-priority clients rejected by the system‘
per time unit :

M, |Number of low-priority clients rejected by the system
per time unit

D, |Number of degraded low-priority clients per time unit

a |Number of low-priority clients to be degraded to

accommodate a new high-priority client

Table 1. Notation

3 STOCHASTIC PETRI NET MODELS

The value of the pay-off rate for a system can be
obtained by the Stochastic Petri Net Package (SPNP) [8],
given a set of input parameters. The SPNP is a modeling
tool developed in the Duke University for solving the
Stochastic Petri Net (SPN) models. The SPN model of a
system can be described in the C-based SPN Language
(CSPL) of the SPNP. The steady-state solution of the SPN
model can be solved by writing the SPNP output functions.
Interested readers are suggested to study the SPNP manual
[8] for further details.

The SPN model of the dynamic-threshold scheme
without negotiation (NoNEG) is plotted in Figure 1. The
places RH, RL, and RS indicate the available capacity
slots in the three partitions, the high, low, and common
pool partitions, and have initially »,, », , and n,, tokens,
respectively. In this model, one token represents one
capacity slot and there are N tokens in the system. H and L
represent the number of the high- and low-priority clients
served by the high and low partition, respectively. SH and
SL denote the number of the high- and low-priority clients
served by the common pool partition, respectively. H, L,
SH, and SL is set to zero initially.

The SPN model of the dynamic-threshold scheme



with negotiation (NEG) is shown in Figure 2. The
notations and their initial values are the same as those in
Figure 1, except that RS is initialized to a * n,,. The new
place, SLL, indicates the number of degraded low-priority
clients and is initialized to 0. One token in the high and
low partitions represents one capacity slot in the system,
while a tokens in the common pool partition represents
one slot. Therefore, a client served by the common pool
partition consumes ¢« tokens by the transition T1 or T2,
and returns « tokens to RS by T3 or T4 when leaving.
When a negotiation process occurs, a low-priority clients
(totally o tokens) from SL are degraded. Each loses a
token and they contribute a tokens in total. A new high-
priority client is then able to be admitted and enters the
place SH by the transition T6. The degraded low-priority
clients (with total @ * (a — 1) tokens) enter the place SLL
by T6. A degraded client may leave the system and returns
its tokens by T5. Degraded clients are resumed to the
normal service level by T7, if RS contains free resource
(i.e., tokens released by other clients).
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Figure 1. The SPN model of the NoNEG
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Figure 2. The SPN model of the NEG
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3.1 Experimental Results

To evaluate the performance of the two algorithms,
we define two comparison measurements: the best-case
and average-case gain ratio. The best-case gain ratio is
defined as

NEG(x)-NoNEG(x)
NoNEGG 2 VX )

max(
where x is one of the possible partitioning (i.e. the
combinations of the threshold values)of the server capacity,
and NEG(x) and NoNEG(x) indicate the pay-off rates,
given the partition configuration x, obtained by the NEG
and NoNEG algorithms, respectively. The average-case
gain ratio is defined as

5 NEG (x)-NoNEG (x)
NoNEG (x)

C(N+2,2)

The input parameters to the SPN models of the NEG
and NoNEG algorithms are the arrival and departure rates,
A, A, and g the reward and penalty parameters v, v, g,
and g,. The pay-off rate with the threshold values (n,, n,, n,,)
can be obtained by the following steps. (1) Model the
system based on the SPN model; (2) calculate the values
of N,, N, M,, M, by the SPNP; and (3) compute the pay-off
rate by equation 1.

Figures 3 and 4 show the comparison results for N =
16 and 32 under various workload conditions. Two curves
are plotted: one for the best-case gain ratio and the other
for the average-case one. A system is nearly saturated
when the utilization value is round 15/16, and is over-
saturated when it is greater than 1. The average-case and
best-case gain ratios rise as the workload increases, as
shown in each set. It illustrates that (1) the negotiation
mechanism allows a system to achieve a higher pay-off

rate under heavy and over-loaded situations and (2) it is

beneficial to apply negotiation in heavy and over-loaded
systems, especially when the arrival rate of high-priority
clients is large.

Optimal threshold value setting of (n,, n, n,,) for the
NoNEG and NEG algorithms can be exploited to
maximize the pay-off rate for a system, given the
workload characteristics. The NoNEG and NEG
algorithms find out the optimal setting by enumerating all
possible combinations of the threshold value settings,
calculating the pay-off rate for each combination, and
selecting the combination with the maximum pay-off rate.
Tables 2 and 3 illustrate the optimal settings for the
NoNEG and NEG algorithms under various workloads.
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System Parameters| No-Negotiation | Negotiation
(for N = 16) { by SPNP) ( by SPNP)
(A4, 4,%,,Y1,9,,9,,) | Optimal | Pay-off | Optimal | Pay-off
(ny,n,,n) rate (n,.n..n) rate
A=(10,20,1,2,1,2,1,2) 5.27,0 3241 0,32,0 34.67
B=(20,20,1,2,1,2,1,2) 19,13,0 32.00 0,32,0 40.26
C=(30,20,1,2,1,2,1,2) 31,1,0 28.46 0,32,0 34.17
D=(10,20,1,5,1,2,1,2) 10,22,0 60.58 15,13,4 73.46
E=(20,20,1,5,1,2,1,2) 24,8,0 87.42 17,15,0 111.14
F=(30,20,1,5,1,2,1,2) 32,00 109.78 24,80 112.34
G=(10,20,1,10,1,2,1,2) | 12,20,0 | 108.69 0,32,0 114.67
H=(20,20,1,10,12,1,2) | 27,5,0 183.86 0,32,0 197.30
1=(30,20,1,10,1,2,1,2) 32,00 245.34 32,0,0, 245.34

System Parameters (/1,, ,l,,y,vh,v,,q,,,q, ,a)

Table 3. Optimal pay-off rates and threshold values for N =32

A=(5,10,1,2,1,2,1,2) |D=(5,10,1,5,1,2,1,2)

G=(5,10,1,10,12,1,2)

B=(10,10,1,2,1,2,1,2)

E=(10,10,1,5,1,2,1,2)

H=(10,10,1,10,1,2,1,2)

C=(15,10,1,2,1,2,1,2)

F=(15,10,1,5,1,2,1,2)

1=(15,10,1,10,1,2,1,2)

Figure 3 Performance comparison for N=16
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A=(10,20,1,2,1,2,1,2)

D=(10,20,1,5,1,2,1,2)

G=(10,20,1,10,1,2,1,2)

B=(20,20,1,2,1,2,1,2)

E=(20,20,1,5,1,2,1,2)

H=(20,20,1,10,1,2,1,2)

C=(30,20,1,2,1,2,1,2)

F=(30,20,1,5,12,1,2)

1=(30,20,1,10,1,2,1,2)

Figure 4. Performance comparison for N =32

As shown below, optimal threshold values can be
found based on the proposed SPN model. However,
analyzing a SPN model is very time-consuming. Therefore,
we propose two approximation methods based on queuing
analysis. The goal of the approximation methods is to
enable the server adaptively configure the resource
capacity according to the run-time workload.

System Parameters| No-Negotiation Negotiation
(for N = 16) ( by SPNP) (by SPNP)
(s A 14V, V1,044, 0) Optimal | Pay-off | Optimal | Pay-off
(”m".- n,) rate ("ln n,, "I) rate
A=(5,10,1,2,1,2,1,2) 2,14,0 14.25 0,16,0 16.07
B=(10,10,1,2,1,2,1,2) 9,7,0 13.59 0,16,0 18.14
C=(15,10,1,2,1,2,1,2) 16,0,0 11.32 0,16,0 14.34
D=(5,10,1,5,1,2,1,2) 5,11,0 27.77 8,8,0 34.32
E=(10,10,1,5,1,2,1,2) 13,30 40.26 8,80 49.64
F=(15,10,1,5,1,2,1,2) 16,0,0 49.82 10,6,0 50.68
G=(5,10,1,10,1,2,1,2) 79,0 51.28 0,16,0 56.01
H=(10,10,1,10,1,2,1,2) | 15,10 87.67 0,16,0 92.90
1=(15,10,1,10,1,2,1,2) 16,0,0 113.97 16,0,0 113.97

Table 2. Optimal pay-off rates and threshold values for N =16

4. APPROXIMATION METHODS

Consider a system with the threshold values (n,, 7,
n;,). The arrival-departure process of high-priority clients
served by the high partition of the », slots can be modeled
as a M/M/n,/n, queuing system. Similarly, The process of
low-priority clients using the low partition of the #, slots
can be modeled as a M/M/n/n, queuning system. Therefore,
the reward rates of the high- and low-priority clients
served by the high and low partition are :

i
Ny l (i".'.)
. o\

’Zl:l,uvhx ’% n /7-_,, vi (2)
j=0 /' [#j
2 i
' ) 3

Clients enter the common pool partition, only when
there is no vacant slot in the corresponding partition.
Therefore, the arrival rate of high- (low-) priority clients
entering the common pool partition can be approximated

as ¢, (@)- Namely,

@, = A, x probabiliy of havingn, clients= 4, x n; v ()
1[4
Jj=0 ; 7
L (i K

@, = A x probabilitof havingn, clients= 4, x :"”" 1”11 -. (5)
I31)

Let the probability that there are i high-priority
clients and j low-priority clients served by the common
pool partition be P(i, j) as shown in equation (6), the
reward rate of the common pool partition is approximated
as equation (7).
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Consider a state (/, j) in which i + j = n,. Upon
arrival of a new high-priority client, the negotiation
process takes place to degrade the j low-priority clients to
make room for the new high-priority arrival. It can be seen
that at most Q(i) (= L(n,—i)/a] ) slots can be squeezed out
for the new high-priority clients. Two methods are
developed in the following to approximate the pay-off rate
obtained by negotiation.

Method I

The arrival-departure process of high-priority clients,
under a negotiation process, can be modeled as a
M/M/Q(i)/Q(i) queuing system. The arrival rate is A(i) =
@, * P(i, n,— i), where i is the number of high-priority
clients in the common pool partition before negotiation is
performed. Each time a new high-priority client is
admitted, « low-priority clients are degraded and the
penalty for the degradation is v,. The penalty rates of high-
priority and low-priority clients are

1 A(i))"“’
nm 7! (T

T A()xqg, x— (8)and
i=0 1lae
j=0"
> P(i,nm—i)x @, xq, )
i=0
The reward rate of negotiation is
1 (A(i) '
hm | Qi) k
2| 2k b —v)——t | (0)

i=0 | k=0

M2 |
|i—‘
TN
>

~~

=
-

The overall pay-off rate can be approximated as (2)+(3)+
(M) + (10)-(8)-(9).

Method 11

Another approach to modeling the negotiation
process is to calculate the pay-off rate for each P(i, n,— ).
The negotiation process is modeled as a M/M/Q(iy/Q(i)
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queuing system with the arrival rate of ¢,. The penalty rate
of high-priority clients can be expressed by equation 8§,
where A(J) is replaced with ¢,. Similarly, the reward rate
of high-priority clients can be expressed by equation 10,
where A(i) is replaced with @,. The pay-off rate of high-
priority clients in the system with negotiation is

_L(ﬂ]k L[ﬂ)@

= X K !

ZP(I,nn—l Zkyx(vh—v,)—‘fl——j—glthxm——]— (11

i TR

=S\ K A\ H
Combining equations 2, 3, 7, 9, and 11, the overall

pay-off rate of a system using the dynamic-threshold -

admission control with negotiation can be approximated as

@+G)+(M+(AD)=-(9).
S. NUMERICAL EXPERIMENTS

Admission control with negotiation (NEG) can be
implemented in a multimedia system. One challenge
facing the NEG algorithm is dynamic partitioning of the
system resource as workload changes. An optimal setting
of the threshold values for any workload conditions shall
be found so as to maximize the system pay-off rate. One
way to dynamic partitioning is to identify the possible
workload conditions before the system is up for service.
Time complexity is the main concern of solving the SPN
model by the SPNP. The experiments are run on a SUN
Ultra-1 model 140 machine equipped with a 143MHz
UltraSPARC processor, 32MB memory, and 2.1GB FAST
SCSI-2 hard disk. On average, it takes 94 and 6678
seconds (i.e. approximately one hour and 50 minutes) to
find out the optimal settings, for N = 16 and N = 32
respectively. For such a reason, the optimal threshold
values are obtained from the SPNP tool before run time,

for each identified workload. The optimal settings are

maintained in a table such that the QoS manager is capable
of looking up the table to accordingly re-configure the
resource partition at run time, upon a workload change.
The limitation of such an approach is the contents of the
look-up table. In an event of a sudden change that was not
identified before hand, the SPNP-approach is unable to
respond in real time. Consequently, the SPNP-approach
falls apart.

On the other hand, the approximation approaches are
capable of finding sub-optimal solutions in real time, as
workload changes. The optimal threshold values found by
Methods 1 and II could be different from those by the
SPNP. Let the optimal settings found by the SPNP,
Methods I and II be x,, x,, and x, respectively, given a
workload condition. Note that x, (or x;) being the optimal
setting of Method I (or II) means that the pay-off value of
X, (or x;) calculated by the method is the maximum.
However, it is not true in the real case. The true pay-off
rate of X, should be the one obtained by solving the SPN
model when the partition is specified according to the
values in" X,. Therefore, the maximum pay-off values by
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Methods I and I are calculated by mapping their optimal
threshold values to the SPNP.

Experiment results are illustrated in Figures 5 and 6.
They demonstrate that the system performance (pay-off
rate) by the approximation methods is very close to that by
the SPNP. Method II (short for M2 in the figures) performs
slightly better than Method I (short for M1 in the figures).
For N =16, the average performance difference between
the SPNP and M1 is 3.88%, while that between the SPNP
and M2 is 2.83%. For N =32, the difference between the
SPNP and M1 is 4.53% on average, while that between the
SPNP and M2 is 2.48%. The performance differences
between the SPNP and the approximation methods are
within a reasonable range.
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System Parameters of (/1,,,/1, YLV Y, ,q,,,q,,a)

A=(5,10,12,12,1,2) ID=(5,10,1,51212) [G=(5,10,1,10,1212)
B=(10,10,12,1,2,1,2) [E=(10,10,1,5,1,2,1,2) [H=(10,10,1,10,1,2,1,2)
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Figure 5. Approximation results for N =16.
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D=(10,20,1,5,1,2,1,2)
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G=(10,20,1,10,1,2,1,2)

B=(20,20,1,2,1,2,1,2)

E=(20,20,1,5,1,2,1,2)

H=(20,20,1,10,1,2,1,2)

C=(30,20,1,2,1,2,1,2)

F =(30,20,1,5,1,2,1,2)

1=(30,20,1,10,1,2,1,2)

Figure 6. Approximation results for N =32.

6. CONCLUSION

In this paper, we have investigated the admission

control problem for the systems with two classes of client
requests and the cost model. In the cost model, each class
of request has its reward and penalty to the system. High-
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priority requests are associated with high reward and

penalty values. We have proposed an admission control
algorithm with negotiation mechanism and investigate its
performance. Negotiation attempts to accept high-priority
requests under heavy and over loaded systems, lowering
the service requirements of some low-priority requests,
The experimental results demonstrate that the negotiation
mechanism can significantly improve the system
performance. The Stochastic Petri-Net model is used to
find optimal solutions and the approximation approaches
are developed to find sub-optimal ones. The results show
that the sub-optimal solutions found by the proposed
approximation methods are very close to optimal ones.
Therefore, a multimedia server can exploit the
approximation methods to dynamically adjust threshold
values based on the characteristics of the workload in
order to achieve high system performance.

Some future research areas include (2) extending
negotiation to a system with multiple priority classes, and
(b) changing the mandatory negotiation mechanism to a
voluntary degradation one, in which the low-priority
clients have options either to keep their QoS levels or to
accept the degradation in an altruism fashion.
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