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ABSTRACT

The initial set of weights to be used in supervised
learning for multilayer neural networks has a strong
influence in the learning speed and in the quality of the
solution obtained after convergence. An inadequate
initial choice for the weight values may cause the
training process to get stuck in a poor local minimum or
to face abnormal numerical problems. Nowadays, there
are several proposed techniques that try to avoid both
local minima and numerical instability, only by means of
a proper definition of the initial set of weights. However,
the problem of the majority of these approaches is that
they persist on ignoring useful properties of the training
set when presented to the neural network. An alternative
hybrid paradigm for weight initialization in feedforward
neural networks is proposed here, and applied to several
benchmark problems. The results are then compared
with that produced by other approaches found in the
literature.

1. INTRODUCTION

The efficacy and efficiency of supervised learning in
multilayer neural networks strongly depends on:

the network topology;

the neurons’ activation function;
the learning rule;

the initial values of the weights.

Optimal instances for these itemns are usually
unknown a priori because they depend mainly on the
particular training set to be considered and on the nature
of the solution [16].

Here we assume that the network topology, the
neurons’ activation function and the learning rule have
already been determined in a proper manner, though not

necessarily the optimal one. Under these conditions, a
successful training process turns to depend solely on a
good instantiation of the set of weights, that is, one that
guides the training process to a high-quality solution, out
of poor local minima and abnormal numerical problems.

At this point, it is well known that supervised
learning can be viewed as an optimization problem, with
the cost function being a function of the set of weights,
also known as the parameters of the neural network [5].

The importance of a good choice for the initial set of
weights is stressed by Kolen and Pollak [8]. They
showed that it is not feasible to perform a global search
for obtaining the optimal set of weights. So, for practical
purposes, the learning rule should be based on
optirnization techniques that employ local search to find
the optimal solution [14]. But local search implies that
the solution has a strong relation to the initial condition,
because each initial condition belongs to the basis of
attraction of a particular local minimum, which will
attract the solution [6].

Consequently, only local minima can be produced in
practice as the result of a well-succeeded training
process. If such a minimum happens to be the global
minimum or a good local minimum of the cost function,
the result is a properly trained neural network.
Otherwise, an inferior result will be achieved, so that the
poorer the local minimum, the worse the performance of
the trained neural network.

2. TWO ALTERNATIVE PARADIGMS
FOR WEIGHT INITIALIZATION

Several weight initialization techniques for
multilayer networks have already been suggested. The
simplest methods among them are based on uniform
random distribution [8], representing the complete
absence of knowledge about the training data set.
Concerning more refined approaches, there are basically

_30..



two alternative paradigms to search for good initial
weights’ set in supervised learning, i.e., good initial
condition for the optimization process:

e easiest-path paradigm: is not so common in
literature. The main idea is to find an initial

condition not necessarily close to the optimal
solution, but such that the learning process can
evolve faster in average, and more efficiently, from
the initial condition. The simplest strategy is to
automatically define a proper initial interval for the
weights and to use a uniform distribution over this
interval. .

» shortest-path paradigm: is the approach generally
employed in the literature. The basic idea is to search
for an initial condition as close as possible to the
optimal solution, still unknown. The intuitive idea
behind this approach is that the closer the initial
condition to the optimal solution, the less probable is
the appearance of a poor local minirmum in the path
between, and the more efficient becomes the training
process. Two strategies can be considered: knowledge
extraction from the training set to discover
peculiarities of the optimization surface (based op
theoretical aspects), or sampling exploration of the
optimization surface to improve the chance to find a
promising region to search for the optimum (based on
empirical aspects).

The easiest-path paradigm generally neglects the
training set in the attempt to define a good range of
values for the weights. As a consequence, the path
between the initial condition and the optimal solution,
tough easy to go through, can be very long.

On the other hand, the shortest-path paradigm takes
into account the whole training set, but generally
neglects the consequences of the combination (input-
output data) + {weights) in the neural network signal
processing. As a consequence, the path between the
initial condition and the optimal solution, tough short,
can be very hard to go through.

In section 5 we will propose a hybrid paradigm that
represents a compromise between the shortest and the
easiest paths in the hope of achieving a more robust and
efficient initialization technique.

3. AN EXAMPLE OF THE
EASIEST-PATH PARADIGM

Fahlman [5] performed studies about random weight
initialization techniques for multilayer neural networks.
He proposed the use of a uniform distribution over the
interval [-1.0, 1.0], but experimental results showed that
the best initialization interval to the problems he dealt
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with varied in
{—4.0,4.0].
Some researchers tried to determine the best
initialization interval using other neural network
parameters,
Define a as a small real value and d;, the neuron fan-
in. Boers and Kuiper [2] initialize the weights using a

ranges between ([-0.5,0.5] and

uniform distribution over the interval
-3 3 , without any  mathematical

|i/vdiu ’/V dlu }

Justification.

Nguyen and Widrow [12] proposed a simple
modification of the random initialization .process. Their
approach is based on a geometrical analysis of the
hidden units’ response to a single input. This analysis
can be extended to multiple input using Fourier
transform. The weights connecting the output units to
the hidden units are initialized with small random values
over the interval [-0.5, 0.5]. The initial weights at the
first layer are designed to improve the learning
capabilities of the hidden units. Using a scale factor, B =
0.7(9)"*, where q is the number of hidden units and p is
the number of inputs, the weights are randomly

initialized and then scaled by v._.B].v_u, where v is the
\

first layer weight vector.

Kim and Ra [7] calculated a lower bound for the
initial length of the weight vector of a neuron to be

% , where o is the learning rate.
in

4. AN EXAMPLE OF THE
SHORTEST-PATH PARADIGM

Lehtokangas er. al. [9] proposed a method based
upon the orthogonal least squares (OLS) algorithm. The
OLS algorithm is being widely and successfully used in
the training of radial basis function network (RBF) [4].

4.1. The OLS algorithm

A multilayer neural network architecture can be
considered as a regression model where the hidden units
are the regressors. In the weight initialization process,
the problem is to determine which are the best regressors
available. An efficient algorithm to determine the
optirnal regressor is the OLS algorithm [9].

Define p and ¢ as the number of input and hidden
units respectively. Let s be the desired output of the net.
A regression model for this output can be given, in
matrix notation, by:
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s=RO +¢ 1¢))
where s7 =[',s2,..s" } R is the regression matrix
(fixed functions of the inputs), §7 =[0,.8,,....0,, ] are

the parameters of the model, £” = k‘,sz,...,e"] are the
sampling noise vector, and M is the number of
regressors. The regression matrix R

1 RIE‘I] RM[XI

R=|--- ’ 2)
1 RlE‘"] RML‘”]
can be decomposed into
R=HU, 3)

where the above equation represents an orthogonal
decomposition, with UM + 1)X(M + 1) upper triangular
with 1’s on its diagonal.

1 ap o3 Oy 1)
0 1 oxn Qam+1) .
U= 0 0 1 a3(M+1) i ( )

0o 0 0 O 1
and H is a n x (M + 1) matrix with orthogonal columns
h; such that:
HH=B )
The matriix B is diagonal and its elements are:
b, =h7h, =l§:_}(hj)’, j=2..M+1.  ©

When the condition U = g is satisfied, -equation (1)
can be written:

s=Hg+e¢. @)

The least squares estimate for the new parameter vector
g can be calculated by the expression:

g=HH)'H's=B"H's. ®

Now, the orthogonal decomposition of equation (3)
can be obtained using the Grahm-Schimidt procedure

h =1
Wr i=12,..(=1)
G (=204 =D ©
4By J = ydyeesy
s
hi =r,= 1=1allh’

The regressors h; and h; are orthogonal for i # j, and
the squared sum is given by:

M+l
s"s=) gihTh +¢'e- (10)
j=L
If s is the desired output vector after its mean has
been removed, then its variance is estimated as:

var(s) =L57s. an
n

The term summing equation (1) is the desired output
variance part that can be explained by the regressors hy.
However, each regressor has its own contribution to the
total sum and the problem is to determine the g greatest
contribution regressors. An error reduction ratio can be
defined as:

351’51‘1

", =———
1 s's

i=12,..,(M+]) 12)

The practical procedure can be loosely described as
follows:

e calculate the error reduction ratio for each of the
original regressors (h; = r;) and select the one with
the largest ratio. The regressor selected becomes h;
and is taken from the r; set;

¢ use the r; remaining regressors as the candidates for
obtaining hy;

¢ repeat the previous steps until the g best regressors
have been selected.

4.2. Initializing weights with the OLS
algorithm '

Consider a linear output net, and the hyperbolic
tangent (tanh) as the hidden units’ activation function.
Let X be the data matrix and v the first layer weight
vector. The regression matrix is given by

R =tanh(v1X), or

(13)
RJ = tanh[i vi}-xi}

i=1

It must be observed that, during the initialization
process, the number of hidden units is M, and must be
significantly larger than the desired number ¢ (for
example, M = 10g).

Equation (13) shows that each of the M hidden units
corresponds to a regressor, then we must use the OLS
algorithm to select the g best. Before using the OLS
algorithm, the M regressor candidates must be generated.
One simple way of initializing the candidate weights is
using a uniform distribution over an interval [-ga, a]. If a
regressor is chosen by the OLS algorithm, then the
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initial values of the selected regressors are the initial
values of the neural network weights. Each regressor has
p + 1 connections. The number of inputs determines the
dimension of the weight space formed by the regressors.
The smaller the dimension of the weight space, the fewer
degrees of freedom exist 10 initialize the regressors.

The initialization phase can be summarized as
follows:

» linearize the activation function of the output neuron.
Define M regressors such as M >> q. Initialize the
regressors, i.e., the first layer weight vector v with
uniformly distributed values. Select the g best
regressors using the OLS algorithm and let the initial
values of the selected regressors be the initial values
for the network.

¢ calculate the outputs of the g previously selected
hidden units for each training pattern. Form a linear
regression for the linear part of the network and let
the obtained regression coefficients be the initial
values for the weight vector w of the last (second)
layer.

5. A HYBRID PARADIGM

We now propose a simple and efficient paradigm tha5
can be interpreted as something in between the easiest
and the shortest-path paradigm. This hybrid paradigm
explores the information contained in the training data
set at the same time that it tries to consider the signal
processing aspects throughout the neural network.

It is well-known that, once saturated, every neural
network node cannot easily escape from this operation
point, because its gradient' of error is so small that the
magnitude of the search direction for its weights is
almost zero, and the corresponding weights will not
significantly change in future iterations. Stiger and
Agarwal [15] developed an algorithm for detecting
“saturated” hidden nodes and somehow re-activating
them while transferring their contribution onto the bias
node at the same layer.

In our approach, we try to avoid hidden node
saturation at the moment of weight initialization, by
means of properly defining the initial weight values. To
do that, we consider both the training data set and its
effect over the layer-by-layer processing.

The goal is to guarantee that, for the input data under
consideration, the hidden nodes will be initially active
exclusively in the approximately linear part of the
activation function. This idea makes the algorithm more

! Depending on the precision of the digital computer used, the
gradient eventually evaluates to zero.
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flexible to run faster into the direction of the optimal
solution, just as the policy of the easiest-path paradigm,
and the range for weight definition is obtained here as a
function of the learning data set, just as the policy of the
shortest-path paradigm, and with a low computational
cost.

To develop our method, let’s consider that the data
has a uniform or gaussian distribution around a mean.
Other distributions could be considered instead, without
loss of generality. In Figure 1, we depict our goal by
plotting the data distribution around the approximately
linear part of the activation function. Figures 2 and 3
depict cases we try to avoid. We do not want the initial
weights to be set out of the approximately linear part of
the activation function, as shown in Figure 2 for some
subset of the training data, and in Figure 3 for all data
set. It is clear that if we initialize the weights such that
the internal response of one or more nodes turn to be out
of the linear part of the neural network, the derivative of
the activation function will be approximately zero,
making the training process much slower and subject to
numerical problems.

Let v be the input to hidden layer weight vector, X
the training data set and z the output of the hidden nodes
when X is presented to the neural net.

In matrix notation, the output z of the hidden nodes
can be calculated by the expression

z = tanh(v'X). (14)

If the hidden nodes are supposed to respond in the

linear part of their activation functions, then equation
(14) can be rewritten by the approximate form:

- z=VX. (15)

Now the following question can be raised: “Given

any multiple input distribution, which is the best linear

combination of these inputs such that the output

combination z is a normal distribution of zero mean and
small variance?”

e N

_

Figure 1: Hyperbolic tangent activation function, with
data distribution (uniform or gaussian) within the
approximately linear part of the function.
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Figure 2: Hyperbolic tangent activation function, with
data distribution (uniform or gaussian) partially out of
the approximately linear part of the function.

A
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Figure 3: Hyperbolic tangent activation function, with
data distribution (uniform or gaussian) completely out of
the approximately linear part of the function.

]
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The answer to this question is the solution to the
following minimization problem:
infv? X —2j|- 16
r:]i{)l“v X z{l (16)
The restriction imposed on the minimization problem
of equation (16) is due to the fact that we are obviously
not interested in the trivial solution, i.e., v=10. We can
avoid the trivial solution by adopting a uniform
distribution with zero mean and fixed variance for z, say
Z.

A solution to the problem presented in equation (16)
is obtained by means of pseudo-inversion:

v= (X X7 an)

In this approach, we must guarantee that X is a full
rank matrix, what can be easily achieved by simply
manipulating the training data to avoid redundancy.

As the last step of our proposed algorithm, we need to
initialize the weights at the subsequent layers. We
initialize them all with the same small value, instead of
using a normal or uniform random distribution, because
the output of the first hidden layer is already
characterized by uniform or gaussian distribution around
zero, that we have to preserve until the output layer.

6. ALGORITHMS AND BENCHMARKS

We compare our algorithmm performance with four
other methods applied to seven benchmark problems.
The methods compared were BOERS [2], WIDROW
[12], KIM [7], OLS [9], and INIT, where INIT is the
method we propose and the others were described in
Sections3and 4.

To specify the benchmark problems used, let N be the
number of samples, SSE the desired sum squared error
(stopping criterion) and net the net architecture
represented by [ni-ny-n,). Where n; is the number of
inputs, ny, is the number of hidden units and n, is the
number of outputs of the network

The benchmarks used for comparison were:

e parity 2 problem (XOR): N = 4, net: [2-2-1], SSE =
0.01; -

o  parity 3 problem: N = 8, net: [3-3-1}, SSE = 0.01;
e sin(x).cos(Zx): N =25, net: [1-10-1}, SSE=0.1;

e ESP: real world problem used by Barreiros et. al.
[1}; N =175, net: [3-10-5}, SSE=0.1;

e SOYA: another real world problem used by Castro
et. al. [3], N = 116, ner: [36-10-1}, SSE=0.1;

¢ IRIS: this benchmark is part of the machine learning
database and is available in [11); N =150, ner: [4-
10-3}, SSE =0.15; and

¢ ENC/DEC: the family of encoder/decoder problem is
very popular and is described in [5]. N = 10, ner
[10-7-101. :

The training algorithm used was the Moller scaled
conjugate gradient [10}, with the exact calculation of the
second order information [13]. The vector Z was
initialized with a uniform distribution over the interval [-
1.0, 1.0} and w = 0.1 (vector containing only terms with
the value 0.1).

For the encoder/decoder problem, the algorithms
were not able to converge for all runs. In order to report
these results, we performed 20 runs in this case and
present the number of successes (convergence) achieved
by each algorithm.

7. SIMULATION RESULTS

For each algorithm and each benchmark problem we
performed 10 runs. The results to be presented will be
the minimum, maximum, mean and standard deviation
of the number of epochs necessary for convergence.

It can be seen, in Tables 1 and 2 (see Appendix), that
the method proposed presents a superior performance in
the majority of the cases tested.
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Figure 4 (see Appendix) makes a comparison of the
performance behavior of the algorithms tested. One
algorithm is considered to be superior to another when
its maximum, minimum, mean and standard deviation
number of epochs for convergence is the smallest.

8. CONCLUSIONS

The results showed that the proposed hybrid
paradigm for weight initialization is superior on average
to the other pure paradigms when tested in artificial and
real-world problems.

In Table 1, we can see that OLS algorithm only
presents the smallest number of epochs for convergence
when applied to some artificial problems. On the other
hand, its behavior is very poor in the majority of real
world applications tested (SOYA and IRIS).

After the method proposed in this paper, the one that
presented the second best general performance was the
OLS strategy. It is also important to notice that the OLS
algorithm has the disadvantage of being very time
consuming, due to the search among candidates, the
application of OLS algorithm and the linear regression
in the output layer.
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APPENDIX

Table 1: Simulation results for the benchmarks considered and methods tested. Max, min and medn are the maximum,
minimum and mean number of epochs, respectively. 8 is the standard deviation of the number of epochs.

129 6 4290 | 48.32
93 8 20.50 | 25.92
84 | 6 3250 | 2591
166 5 46.70 | 46.50
47 | 8 18.60 | 12.76
62 10 25.10 | 16.01
.25 10 19.60 5.17
46 10 1890 | 1041
148 | 29 65.70 | 36.16
24 8 16.00 4.97
187 | 79 135.10 | 35.39
243 | 123 | 178.60 | 41.27
231 95 164.50 | 44.89
133 39 91.40 | 33.06
449 | 181 | 254.80 | 80.69
1618 | 340 | 883.40 | 467.52
2280 | 236 | 825.40 | 639.74
1763 | 425 | 715.40 | 397.82
2052 | 35 545.42 | 586.62
762 | 383 | 479.20 | 118.19
174 | 136 | 158.60 | 13.14
464 | 176 | 266.30 | 79.27
280 | 177 | 219.40 | 28.34
5000 | 4303 | 4922.40 | 219.05
236 | 136 | 188.00 | 29.30
1568 | 735 | 1102.40 | 281.33
1240 | 676 | 918.60 | 183.72
2063 | 767 | 1294.80 | 438.34
5000 | 2075 | 4140.20 | 1384.74
1407 | 662 | 869.80 | 216.73

Table 2: Encoder/decoder (ENC/DEC) problem, convergence capabilities.
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Figure 4: Performance comparison of the methods. (a) In 57.1% of the cases, INIT needs the smallest maximum
number of epochs for convergence and has the smallcst standard deviation. (b) In 50.3% of the cases, INIT needs the
smallest number of epochs for convergence. (c) In 71 49 of the cascs, INIT method presents the smallest mean number
of epochs for convergence. 1 |
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