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ABSTRACT

We propose the use of a neural-fuzzy scheme for a
rate-based feedback controller in ATM (Asynchronous
Transfer Mode) networks. ABR (Available Bit Rate)
traffic is not guaranteed quality of service (QoS) in
the setup connection, and it can dynamically share the
available bandwidth. Therefore, congestion can be con-
trolled by regulating the source rate to a certain de-
gree depending on the current traffic flow. Traditional
methods perform congestion control by monitoring the
queue length. The source rate is decreased by a fixed
rate when the queue length is greater than a prespeci-
fied threshold. However, it is difficult to get a suitable
rate according to the degree of traffic congestion. We
employ a neural-fuzzy mechanism to control the source
rate. Through learning, membership values can be gen-
erated and cell loss can be predicted from the current
queue length. Then an explicit rate is calculated and
the source rate is controlled appropriately. Simulation
results have shown that our method provides a bet-
ter adaptive capability and a higher throughput than
traditional methods.

Keywords: traffic control, cell loss, ATM, neural-fuzzy
networks, fuzzy logic, cell rate

1. INTRODUCTION

Asynchronous transfer mode (ATM) is a modern tech-
nology enabling the integration of different traffic types
within a single communication network. ATM net-
works are being widely developed to carry voice, video
and data traffics. Various service classes have been de-
fined in ATM for the support of traffic with different
quality-of-service (QoS) requirements. These classes
consist of constant bit rate (CBR), real-time variable
rate (rt-VBR), non-real time variable bit rate (nrt-
VBR), available bit rate (ABR), and unspecified bit
rate (UBR). Available bit-rate (ABR) allows applica-
tions to fully utilize the available bandwidth in the
network by adjusting their instantaneous transmission
rates to the available capacity. The quality (QoS) of
transmission cannot be determined in the connection
setup time for ABR. Therefore, there is a need of a
congestion management scheme to adaptively control
the rate of transmission by closed-loop. A congestion
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control scheme is essential for the support of ABR traf-
fic to utilize the available network bandwidth without
causing congestion. Among various control schemes,
the rate-based congestion -control framework is widely
used.

A rate-based flow-control scheme is an end-to-end
feedback mechanism. The scheme consists of one source
end system and one destination end system for each
feedback loop. The source starts to send data cells
with the rate of ICR (initial cell rate), and subsequent
traffic flow is regulated by resource management (RM)
cells. Each RM cell is allowed to flow all the way to the
destination end system, and travels in the reverse direc-
tion. Intermediate switches mark down the rate in the
reverse RM cells. The smallest allocation is therefore
the value in the cell when it reaches the source. The
source may then use this rate for subsequent transmis-
sion until a new resource management cell is received.

Many rate-based control schemes [1, 2, 3, 4, 5, 6, 7,
8] have been proposed. In the EFCI marking scheme,
when a data cell from the source reaches a switch which
is under congestion, the EFCI field of the cell header is
set to one. If the destination checks that the EFCI field
is one, it will send an RM cell back to the source. When
the source receives an RM cell, it reduces the cell rate;
otherwise the cell rate is increased. However, difficul-
ties may arise if RM cells are lost or delayed. To solve
this disadvantage, Branhart proposes the PRCA (pro-
portional rate control algorithm) scheme. The source
sends a data cell, in a constant rate, in which EFCI is
set to zero. When the destination checks that EFCI is
zero, it sends an RM cell back to the source and the
source is informed that the cell rate can be increased.
The source will decrease the cell rate when RM cells
are not received in the expected period. Therefore,
the source continues to decrease the cell rate if RM
cells are lost or delayed. However, a long path VC
has a large probability of EFCI bit being set; a switch
under congestion sets EFCI on all VCs. Roberts [9]
proposed EPRCA (enhanced proportional rate control
algorithm). Congestion is detected at switches based
on the queue length. When the queue length is greater
than a prespecified threshold, the source is asked to
reduce the cell rate by a fixed rate. However, it is dif-
ficult to get a suitable rate according to the degree of



traffic congestion. Furthermore, this scheme may cause
a high cell loss rate.

‘We propose a neural-fuzzy rate-based feedback con-
troller. We employee a neural-fuzzy mechanism to con-
trol the source rate. By monitoring the current queue
state and the rate of change of the queue length, the
future queue behavior is predicted. This closed-loop
control scheme can maximize the traffic low and avoid
congestion. Simulation results have shown that our
method provides a better adaptive capability and a
higher throughput than EPRCA.

The rest of the paper is organized as follows. Sec-
tion 2 provides a brief introduction to neural-fuzzy net-
works. An overview of the system is given in Sec-
tion 3. Section 4 describes the prediction of cell loss
by a neural-fuzzy network. Section 5 presents a self-
tuning fuzzy inference engine. Simulation results are
given in Section 6. Finally, conclusions are summarized
in Section 7.

2. NEURAL-FUZZY NETWORKS

Neural-fuzzy networks borrow the ideas from fuzzy logic
and neural networks. They have many advantages,
such as learning abilities, optimization abilities, human-
like IF-THEN rule thinking, and ease of incorporating
expert knowledge. It is being used widely for various
applications.

Neural-fuzzy networks can be divided into two kinds.
One can construct the structure from a set of input-
output training data pairs through learning. The other
consists of a predefined architecture determined previ-
ously by some other means. Of course, the first kind is
more desirable. However, it is not easy to get proper
fuzzy partitioning from the input-output data.

Lin & Lin [10] proposed a fuzzy adaptive learning
control network (FALCON) which can automatically
construct fuzzy partitioning by learning from train-
ing examples. The FALCON is a five-layer structure.
Layer one is the input layer, containing input nodes
(input linguistic variables). The output of layer one
is linked directly to layer two which is called the term
layer and acts as membership functions representing
the terms of the respective linguistic variables. Layer
three contains rule nodes which represent fuzzy rules.
Layer-three links present the preconditions of the rule
nodes. Nodes at layer four are called output-term nodes,
representing membership functions. Each layer-4 node
represents a term of an output-linguistic variable. Layer
five is the output layer. Each node in this layer is
called an output-linguistic node and corresponds to one
output-linguistic variable. FALCON does not allow the
slope of trapezoidal functions to be adjustable. This
may affect the speed of learning. Also, the max layer
of layer-4 is not suitable to rule extraction.
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Figure 1: Congestion control in ATM networks.
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Figure 2: The block diagram of our neural-fuzzy con-
troller.

3. SYSTEM OVERVIEW

The goal of congestion control is to smooth down the
burstiness of the input traffic to avoid congestion. As
shown in Figure 1, data cells are sent from the source
to the destination through a series of switches. For the
sake of simplicity, we only show one switch in Figure 1.
Congestion controllers monitor the status of switches
and notify the source to increase or decrease the rate
of transmission, in order to maximize the throughput
and avoid congestion.

Our congestion controller consists of two parts, a
neural-fuzzy network and a fuzzy inference engine, as
shown in Figure 2. The neural-fuzzy network provides
the prediction of the future cell loss, while the fuzzy
inference engine calculates an explicit rate to regu-
late the cell rate of the source. The neural-fuzzy net-
work predicts cell loss by monitoring the current nor-
malized queue length g,(t), normalized queue growth
dgn(t)/dt, and the previous normalized queue growth
dgn(t — 1)/dt. Fuzzy rules and membership values are
obtained by learning. These rules and membership
functions are passed to the fuzzy inference engine, shown
by the symbol w;. Another parameter, cell loss n(t+1),
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Figure 3: The architecture of our neural-fuzzy network.

is also predicted and passed to the fuzzy inference en-
gine. A performance function is used to maintain the
queue length. If the future cell loss is greater than one,
the switch sets CI (congestion indicator) and notifies
the previous switch in an RM cell that passes through
the switch. Also, the switch calculates an explicit rate
r(t+1) to adjust the local source. Therefore, the system
is a closed-loop scheme between sources and switches.

4. CELL LOSS PREDICTION

As mentioned, we use a neural-fuzzy network to pre-
dict cell loss based on the current normalized queue
length gn(t), the current normalized queue change rate
dqn(t)/dt, and the previous normalized queue change
rate dg,(t—1)/dt. Learning of the neural-fuzzy network
can be divided into two phases. In the first phase, rule
nodes are constructed. Fuzzy ART is used to obtain the
structure of the network. In the second phase, param-
eters are adjusted by a back-propagation algorithm.

The architecture of the neural-fuzzy network con-
tains four layers, as shown in Figure 3, in contrast to
five layers of FALCON. described in Section 2. Note
that there are three input nodes in Layer 1. The in-
puts to Layer 1 are z1, 2, and z3, representing g,(t),
dgn(t)/dt, and dg,(t—1)/dt, respectively. The function
of each layer is described below.

1. Layer 1. Nodes in this layer just transmit input
signals and their complements to the next layer
directly. The output function uses complement
coding of fuzzy ART:

F (s, 28) = (20,1 - 2. (1)

Note that each input node has two output values,
z; and 1-z;.
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Figure 4: The membership function.

2. Layer 2. Each node of this layer represents a term
of an input-linguistic variable. The membership
function is a trapezoidal function, as shown in
Figure 4, and can be expressed as follows

R
o+l wj—ag <z S

2 _ ) 1 uij < Ti < v 9
fi - Vij—Ti ( )
—-"-—-al +1 <z < vi; +a)
0. otherwise

Note that in contrast to FALCON, we allow the
slopes of the two sides, i.e., ag and a;, of a trape-
zoidal function to be trainable.

3. Layer 3. This layer is called the rule layer and
each node in this layer represents one fuzzy logic
rule. The output of a rule node is calculated by
the product operation as follows

ﬁ”=nﬁ” 3)
11

4. Layer 4. This layer is called output-linguistic
layer and contains two kinds of nodes, training
nodes and output nodes. Training nodes feed
training data downward to the network. Their
activation function is similar to that of layer 1,
namely,

9=, 1- vi) (4)

where y; is the desired output. OQOutput nodes
present output values to the outside world. They
act as defuzzifier. The activation function is de-
fined to be the center of area:

E' !u.'-;-u.-!f.(S)
5 £

where u; and v; are the end points of a range
within which values are allowed to exist.

Your = [V = (5)

As described earlier, the first learning phase concerns
the construction of the network structure. We employ
the ideas of fuzzy ART to do this job. Training patterns



are fed into the input layer. Let X be the output vector
of Layer 1 corresponding to a training pattern. That
is, X contains the training pattern and its complement.
We compute the following value

| X AW

T;(X) = 6
J( ) a+|WGI ()

where W; is defined as
VV}' = {u,-j,l—v;j}. (7)

The value denotes the similarity between the input pat-
tern and W;. Let

TJ = maz'-{leT%' . )TN} (8)
Then, T is the winner and we do vigilance test
| X AWs|
BAZ S, 9
IX] 9)

for category node J. If vigilance test fails, then mis-
match reset occurs. The category will be disabled and
the process restarts to search for the next category un-
til a match is obtained. If no such node is found, a
new input-linguistic node and a corresponding train-
ing node are created. When a category node passes
vigilance test, we have to perform vigilance test for the
desired output. If the desired output fails, a new input-
linguistic node and a corresponding training node are
created at the same time. Otherwise, we modify the
weights by taking the AND operation between weights
and input patterns.

When the structure of the network is set, we pro-
ceed to do the second phase of learning. In this phase,
we intend to minimize errors with the gradient descent
method, by adjusting the parameters associated with
membership functions. The error function is defined to
be

E= (- w)? (10)
where yg is the desired output value and y, is the ac-
tual output value. Obviously, only Layer 2 and Layer 4
have parameters associated with them. These param-
eters control the shape of a trapezoidal membership
function. Therefore, no tuning is needed for Layer 1.
However, we have to consider Layer 3 since we use back-
propagation to transmit error signals from Layer 4 to
Layer 2. We describe the learning process for layers 4,
3, and 2 as follows.

e Layer 4. In this layer, values are allowed to ex-
ist between u; and v;. Therefore, we only adjust
these two parameters. Take the following gradi-

ent:
OF _ 98 87 -yt )
Gui ~ of® dui 0 gy fA)
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Hence, u; is updated by

f(a)
ui(t + 1) = wi(t) + (¥ — Yo) =5 25 7O (12)

where 7 is the learning rate. Similarly, vx is up-
dated by

(3)

Zf 0

vt +1) = v(t) + Ya — Yo)

¢ Layer 3. The error signal can be computed by

—E 8f®

af(4) 3f(3) (14)

and can be expressed as

6 = (ya—19o)x

guk+v~2 % Z f(3) Z !uk+vk! x f(s)}
[ e AP

(15)
This signal will be used in Layer 2.

e Layer 2. In this layer, four parameters u;;, vij,

ay, and ag of each membership function have to
be trained. Take the following gradient:

9E __ 9B 08 of? (16)
Ouij 5f_,§3) 3f,-(2) Ouij
where
(2) =1 . y
OK7 _ [ 55 wii—ao <z Suy (17)
Ousj 0  otherwise
Hence, u;j is updated by
f( ) )
wi(t+ 1) =uwy) +ng 6 [[ £7.  (18)
ki
Similarly, we have
'Uz] (t + 1) = ‘U;] t) + 77 5 H (3) (19)
k#i
ao(t +1) = ag(t) + n 2Fi_ a 6Hf(3’ (20)

k#i

ay(t+1) = ay( t)+n H S ¢ 3))

k#i

and

6f‘,(2) ={ Bl_, v;j<z,-§v,-]-+a1

Ovi;j 0 otherwise (22)
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a5 _

aag

otherwise

{ :—:x(z;—u;j) ujj — ap < Z; < Ui

(23)

af® ;17 X (i —vij) vij <zi Svij+a
a' =<¢ 0 otherwise
ay

(29)

5. FUZZY INFERENCE ENGINE

The purpose of control is to influence the behavior of
a system by changing inputs to that system according
to a set of rules that model how the system operates.
Classic control theory uses a mathematical model to
define a relationship that transforms the desired state
(requested) and observed state (measured) of the sys-
tem into inputs that will alter the future state of that
system. The major drawback of this approach is that it
usually assumes that the system being modeled is lin-
ear or at least behaves in some fashion like a monotonic
function. As the complexity of the system increases it
becomes more difficult to formulate that mathematical
model. Fuzzy control replaces the role of the mathe-
matical model and replaces it with another that is built
from a number of smaller rules that in general only de-
scribe a small section of the whole system. The process
of inference binding them together to produce the de-
sired outputs. That is, a fuzzy model has replaced the
mathematical one. The inputs and outputs of the sys-
tem have remained unchanged.

We use a self-tuning fuzzy inference engine for the
congestion controller, to control the traffic flow and
make the network’s available bandwidth maximally uti-
lized. This model was proposed in [11]. Our method is
to minimize the difference between the current buffer
length and the desired buffer length. Therefore, the de-
sired buffer length can be maintained and buffer over-
flow can be avoided.

Fuzzy inference is based on a number of fuzzy IF-
THEN rules. These rules are created automatically
from our neural-fuzzy network by learning. Each rule
R; is expressed as

IF ga(t) is Vi; and dga(t)/dt is V2; and dga(t — 1)/dt
is Va: THEN Yi(r(2), 1(t))

where, as before, g,(t) is the current normalized queue
length, dg,(t)/dt is the current normalized queue change,

and dg,(t — 1)/dt is the previous queue change. I(t)
is the vector consisting of g, (t), dgn(t)/dt, and dgn(t —-
1)/dt. Note that Y;(r(t), I(t)) is the action function
and is defined as

Yi(r(t)I()) = r(t)+ Ai(qa—9(t))
—Bi(dga(t)/dt - 0.5)
—Ci(dga(t — 1)/dt — 0.5)
-Di(n(t +1)). (25)
Finally, the system can calculate the rate of cell trans-
mission by the following equation:

YiYixwi _ 3 Yixw
Suwio w
where (¢ + 1) is the explicit rate that will be sent back

to the source to adjust the transmutation rate, and w;
is the weight of the ith rule and is defined as

V1i(gn(2)) X Vai(dan(t)/dt)
x Vai (dan(t — 1)/dt) @7

rt+1)=

(26)

wy =

where Vi (X) denotes the membership degree of X on
Vini-

In order to avoid congestion, the system is designed
to minimize a performance function based on the gra-

dient descent method. The performance function is
defined as:

where g4 is the desired queue length. The current queue
length, ¢(t), can be expressed as:

g+ (MCR+ a(t) x r(t+ 1)~ O(t))
xT (29)

g(t+1) =

where O(t) is the output rate, T is the interval time,
MCR is the other VC’s mean cell rate and a(t) denotes
the transmission demand, defined as:
aft) = CMR
r(t)
where CM R is the current measured rate and r(t) is
the previous feedback rate. The system calculates the
difference between the current queue length and the
desired queue length. From the calculated difference,
the parameters A;, B;, Ci, and D; used in Eq.(25) can
be calculated. For example, A; can be obtained as
follows:

(30)

OP(t+1)

At + 1) = A (t) + OAi(t)

(31)

and

OP(t+1)
0A;:(1)

dq(t+1)

= (gt +1)—qa) x ETPOR

(32)
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Figure 5: Cell loss rate vs. buffer size.
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+E X (qd - q(t)). (34)

Note that the initial conditions are defined as:

or(l) _ . 8a(l)
Ba;(0) ~ ' Ba;(0)

B;, C;, and D; can be calculated in the same way.

=0. (35)

6. EXPERIMENTAL RESULTS

In this section, we show some experimental results. A
comparison with EPRCA is also made.

First of all, we run an experiment to show the power
of our controller in reducing the cell loss rate. In this
experiment, one switch and two attached sources are
simulated. The result is shown in Figure 5. We can see
that without the controller, the cell loss rate is high.
However, using the controller cell loss is nearly zero.

In the second experiment, we use a model shown in
Figure 6 in which four ATM switches are cascaded [12].
Two sources, S1 and S2, are connected to Switch 1; One
source, S3, and one destination, D1, are connected to
Switch 2; One source, S4, is connected to Switch 3;
Three destinations, D2, D3, and D4, are connected to
Switch 4. Values for related parameters about sources
are listed in Table 1. In this table, ICR stands for
“initial cell rate”, PCR for “peak cell rate”, MCR for
“mean cell rate”, and AIR for “additive increase rate”.
Values for related parameters about switches are listed
in Table 2. In this table, QT stands for “queue thresh-
old”, DQT for “queue very congested threshold”, MRF
for “major reduction factor”, and ERF for “explicit re-
duction factor”. We use the interrupted Bernoulli Pro-
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Figure 6: A network model.

~Table 1: Parameter values for sources.

S1 52 S3 S4
ICR | 3Mbps | 3Mbps | 5Mbps | 5Mbps
PCR 150Mbps
MCR 3Mbps
AIR 10Mbps

cess (IBP) as the traffic type for sources. The IBP state
diagram is shown in Figure 7 in which P1, P2, P3, and
P4 are transfer probabilities. The states, 0 and 1, rep-
resent the idle state and the burst state, respectively.
Figure 8 shows the allowed cell rate (ACR) for EPRCA.
This figure shows that ACR oscillates, meaning that
EPRCA fails to have an adaptive capability in traffic
control. Figure 9 shows the allowed cell rate (ACR) ob-
tained from our method. This figure shows a very much
smoother curve, meaning that our method has a strong
adaptive capability in traffic control. Figure 10 com-
pares the throughput of each switch. Obviously, our
method results in a higher throughput at each switch.

In the third experiment, we use different P; values
to compare the throughput of our method and that of
EPRCA for each switch. The simulation result is shown
in Figure 11 which demonstrates that our method has a
higher throughput, especially when the system is busy,
i.e., P1is high.

7. CONCLUSION

An ATM congestion controller based on a neural-fuzzy
network and a fuzzy inference engine has been pre-
sented. The neural-fuzzy network predicts cell loss and

Table 2: Parameter values for switches.
Swl | Sw2 | Sw3 | Sw4

(QT, DQT) | 40,45 | 80,90 | 80,90 | 80,90
MRF 0.725 | 0.825 | 0.825 | 0.825
ERF 0.325 | 0.625 | 0.625 | 0.625

Buffer size 50 100 100 100
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derives fuzzy rules for the fuzzy inference engine. The
fuzzy inference engine then calculates an explicit rate
which can be used to control the cell rate of the sources.
This closed-loop control scheme can maximize the traf-
fic flow and avoid congestion. Simulation results have
shown that our method increases throughput and re-
duces cell loss rate.
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