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ABSTRACT

This paper presents an efficient implementation of
conceptual structures to build a practical knowledge-
based natural language processing system. For
efficiency, we represent conceptual structures with
trees, which are called conceptual trees in this paper.
The motive of the representation is to implement
conceptual structures with frames, which are well
known as a powerful tool for organizing our
knowledge inside computer. In addition, conceptual
structures are so extended and restricted that they
have the consistency and the simplicity of the
representation.  For the consistency, we extend set
referents and redefine the operation set join to
manipulate them. For the simplicity, we put some
restrictions on  conceptual  structures, including
preorder expression - they put the head concept first.
By experiment, we show that computing time in
performing operations for conceptual trees is
significantly reduced.

1. INTRODUCTION

Sowa's conceptual graphs are a generalization of
other semantic networks. He provides properties
useful for representing and handling the
meanings of natural language sentences{l].
These properties include canonical graphs, actors,
a type hierarchy, type definitions, schemata, and
prototypes. In addition, He precisely defines the
representation, reasoning operations, semantics in
his theory[2]. He argues that conceptual
structures can serve as an intermediate language
for translating computer-oriented formalisms to
and from natural languages[3]. This role is
important for knowledge-based natural language
processing system because it is impossible to
directly generate a logical structure which
represent the exact meaning of a natural
language sentence[4, 5]. To build a practical
system, the intermediate language should be

simply represented and efficiently handled inside
computer.

Conceptual structures have been represented
with graphs, which are called conceptual graphs.
However, it is complex to represent and handle
graphs inside computer. The complexity makes
it difficult to implement a practical system. This
example can be shown in the system
representing feature structures with trees instead
of graphs[6]. So we develop conceptual trees
that are conceptual structures represented with
trees. This tree representation aims at a natural
representation  of conceptual structures  with
frames inside computer. Frames provide a
natural way to represent schemata, prototypes,
inheritances, and default values. In addition,
they make it easier to implement an actor, a
type hierarchy, and other operations{7].

It is important to keep the consistency of
the representation because it simplifies the
handling of conceptual structures inside computer.
Here, consistency means that sentences which
have same syntactic or semantic structure must
have the same formalism. By examples, we
show that conceptual graphs cannot keep the
consistency. To overcome it, we so extend set
referents that an element in a set referent is a
conceptual tree. In addition, we redefine the
operation set join, which unifies two concepts
with set referents[1].

Traversing conceptual structures is usually
complex. It causes to drop the performance of
a system. To simplify it, we use preorder
expression in conceptual structures. So they put
verbal concepts first and put nominal concepts
before adjective concepts[l]. It enables to
traverse a conceptual structure in only one

direction. ~ We also put some restrictions on
conceptual structures to represent and handle
them efficiently. This paper show these

restrictions make more efficient to implement
conceptual structures, keeping the expressive
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PERSON: John

CITY: Boston

Figure 1 John is going to Boston by bus

power for natural language sentences.

We first describe the tree representation of
conceptual structures.  Next, we present the
notation and the operation set join in conceptual
trees. We then discuss about implementation of
conceptual trees based on frames. Finally, We
show that computing time in performing
operations for conceptual trees is significantly
reduced.

2. TREE REPRESENTATION OF
CONCEPTUAL GRAPHS

2.1 Tree Translation of Conceptual
Graphs

A conceptual graph is a bipartite graph
representing the meanings of sentences with
concept nodes and relation nodes.  For an

instance, the conceptual graph in Figure 1
represents the sentence John is going to Boston
by bus[3]. The representation of conceptual
trees is similar to the linear notation of
conceptual graphs with some restrictions.  For
example, (2-1) and (2-2) shows a conceptual
graph and a conceptual tree representing the
sentence respectively:

(DEST) - [CITY: Boston]
(INST) - [BUS].

The difference of the notations is trivial.
However, conceptual trees are restricted by the
preorder expression unlike. conceptual graphs.
For example, let us consider the conceptual
graph in Figure 2. Depending on the choice of
the first traversed concept node, we can get two

conceptual graphs represented with the linear
notation[3]:
[MONEY]~- (PTNT)- [EARN] - (2-3)

(AGNT)~ [ELEPHANT: v}~ (AGNT)- [PERFORM] -
(INy~ [CIRCUS].

[CIRCUS]- (IN)~ {PERFORM] - (2-4)
(AGNT)~ [ELEPHANT: V]~ (AGNT)~ [EARN] -
(PTNT)—{MONEY)].

The following sentences can be generated from
the above two conceptual graphs respectively [1]:

Every elephant which performs in a (2-5)
circus earns money.
Every elephant which eamns money (2-6)
performs in circus.
Sentences (2-5) and (2-6) have different
meanings.  This shows us that a conceptual

graph can be interpreted differently depending on

) the order of traverse in the graph. Therefore,
(G0l - @1 tual graphs don't keep the uni f
(AGNT) — [PERSON: John] conceptual graphs don't keep the uniqueness o
(DEST) — [CITY: Boston] the representation because they may have
(INST) — [BUS]. semantic ambiguity.
Because conceptual trees are restricted by
) the preorder expression, they put first a head
[GO] - (2-2) hich i . £
(AGNT) - [PERSON: John] concept which is a main concept of sentences,
clauses, or phrases.  Therefore, the sentences
éMONE;;-—\ PINT <—,F?ARN > AGNT '—» ELEPHANT: v {
SO S —— ] ~— !

e,

CIRCUS «— IN & PERFORM

_AGNT )
. . .

~——

Figure 2 a conceptual graph
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MONEY 4—( PTNT ﬂ—D \AEET/——b ELEPHANT: v

13 CIRCUS ’4-—/

PERFORM AG NT ELEPHANT

Figure 3 Using nested context

(2-5) and (2-6) can be represented with two

different conceptual trees (2-7) and (2-8)
respectively:
[EARN] - (2-7)

(AGNT) - [ELEPHANT: V] -
(AGNT) - [PERFORM] - (IN) - [CIRCUS],
(PTNT) - [MONEY].

[PERFORM] - (2-8)
(AGNT) - [ELEPHANT: V] -
(AGNT) - [EARN] - (PTNT) - [MONEY],
(IN) - [CIRCUS].

The conceptual trees (2-7) and (2-8) don't match
fully. Therefore, they are interpreted as different
meanings. It means that conceptual trees are
able to keep the uniqueness of the representation.

Nested contexts can be used for
distinguishing between sentences (2-5) and (2-6)
in conceptual graphs[3]. For an instance, Figure
3 shows a conceptual graph using nested context.
However, neither usage of nested contexts is
natural in the representation of natural language
sentences nor it is easy to handle the scope of
nested contexts during operations. Use of the
preorder expression in conceptual trees is similar
to one of nested contexts in conceptual graphs.
While conceptual graphs with nested contexts
have a higher-order structure, conceptual trees
always have the first-order structure, as shown in
(2-7) and (2-8).

2.2 Restrictions on Relation Node

We represent a relation node with a label in
concept node. The label representation of
relation node does not reduce the expressive
power for natural language sentences because a
relation node represents only conceptual relation
between concepts.  In addition, it simplifies
representation of conceptual trees inside computer
and makes a frame representation possible
ultimately. However, conceptual trees must have
some restrictions 1o represent a relation node
with a label.

Conceptual trees have only monadic and
dyadic relations. To represent triadic relation or
more, we use set referents. For example, the
sentence 4 person is between John and Sue is
represented with the conceptual graph (2-9) and
the conceptual tree (2-10) respectively:

[PERSON] « (BETW) - (2-9)
1= [PERSON: John]
2~ [PERSON: Sue].

[PERSON] - (2-10)
(BETW) - [PERSON: {John, Sue}].

By representing triadic relation or more with set
referents, conceptual trees can keep the
consistency of representation. For example, let
us consider representation for the sentence Jane
is between two persons. If we keep the
consistency, the conceptual graph and conceptual
tree for the sentence must be (2-11) and (2-12)
respectively:

[PERSON: Jane] <« (BETW) - 2-11)
1= [PERSON]
2~ [PERSON].

[PERSON: Jane] - (2-12)

(BETW) - [PERSON: {*}@2].

However, the conceptual graph (2-11) is absurd
because the number of concept node will be
increased in  proportion to the cardinality.
Therefore, it is reasonable that triadic relation or
more are represented with set referents. We
also don't permit the duplication of relations.
Instead, it is represented with set referents.
Conceptual trees don't have a directed arc.
Instead, we use the hyphen(-) that only serves
as the delimiter. The directed arc is unnecessary
because conceptual trees always read in one
direction by using the preorder expression. For
example, the conceptual tree (2-12) always reads
there is a person Jane who Is between two
persons.  Conceptual trees are more efficient
because they neither represent an arc inside
computer nor consider the direction of an arc in
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(a) Finding joinable concepts in two conceptual graphs

Figure 4 Finding joinable concepts

performing operations.

2.3 Extension of Set Referents

In conceptual graphs, the plural terms are
represented with set referents{3]. In [8] and [2],
they extended set referents and developed rules
of inference for conceptual graphs with set
referents. A set referent consists of a scope list,
domain, and cardinality. All concepts in a
domain must have a same type. For example,
the sentence (2-13) can be represented with the
conceptual graph (2-14) if all concepts for Jokn,
Mary, and Tom have the type PERSON:

At least two of John, Mary, and Tom own (2-13)
a house.
[OWN: (p, b) o {*}@I] - (2-14)

(STAT) ~ [PERSON: ()p{#John,#Mary,#Tom}@2-=]
(PTNT) ~ [HOUSE: (p) h {*}@I-].

We have so extended set referents that an
element in the domain is a conceptual tree. The
type of concept with a set referent must be one
of common subtypes of types in the domain and
its initial type is the universal type T. The
conceptual tree (2-15) shows us our extended set
referents explicitly:

(STAT) - [T: {[BOY: John], [GIRL: Mary],
[BOY: Tom]}@2-] -
(PTNT) - [HOUSE: *].

The motive of extension of set referents is to
give the consistency of the representation to
conceptual trees. For example, let us consider
the conceptual tree (2-10). Though John and
Sue may conform to the different types, we can
represent it with the same form: )

[PERSON] - (2-16)
(BETW) - [PERSON: {[BOY: John], [GIRL: Sue}}].

3. CONCEPTUAL TREES

3.1 Basic Notation

Representation of conceptual trees is similar to
frame representation: a relation label has role of
a slot in a frame and the value of a slot is an
individual marker of another concept node linked
to the relation label. A concept node s
represented with a frame inside computer and we
call it conceptual frame. However, the notation
of conceptual trees has the similar form with the

linear notation of conceptual graphs. The reason

. is that conceptual trees are based on the

[[OWN: *] - (2-15) semantics of conceptual graphs. Therefore,
Table 1 BNF representation for conceptual trees

conceptual-tree ::= ~concept {- modifier-sequence}. [end-marker]

modifier-sequence = modifier | modifier modifier-sequence

modifier ::= property | slot

end-marker = . |,

property == (monadic-relation)

monadic-relation
dyadic-relation

slot ::= (dyadic-relation) - conceptual-tree
2= NOT | PSBL | PAST | ---
= AGNT | DEST | BETW | - --
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conceptual graphs can be viewed as an integrated
formalism based on frames for internal
representation and on conceptual graphs for
semantics. Table 1 shows us BNF notation of
conceptual trees. BNF notation for a concept is
similar to one in [2].

Use of the preorder expression does not
reduce the expressive power for natural language
sentences. We can find that feature structures
are represented with trees, which are similar to
preorder expression[4, 6, 9]. For instance, Table
2 shows feature structures and conceptual trees
for the sentence John sold the book to Mary.
We can map feature structures to conceptual
trees directly and easily. It makes conceptual
trees have preorder expression naturally.

To keep the preorder expression during
operating, all the operations of conceptual trees
are performed on the basis of head concept.

This is similar to head-driven unification
approach[9).  Figure 4 shows this restriction
graphically.  As shown in Figure 4, it can

decrease the complexity of the operations.

3.2 The Operation Set Join

In this section, we define set join to handle our
extended set referents. We assume that If two
set referents have different cardinality, then the
resulting set referent has nmore restricted
cardinality. For example, set join of the concept
[PERSON: {*}@2] for the phrase two persons
and the concept [BOY: {*}@5] for the phrase
five boys may generate the concept [BOY:
{*}@2]. The algorithm of set join follows:

Algorithm set join of two concept nodes that
have a set referent ’
operator set-join(nodel, node2: concept nodes
which have a set referent)
var
cnode: concept node;
ctl, ct2: conceptual trees;
new-domain: a domain;
t a type;
begin
make a concept node cnode of which type
is the maximal common subtype of types
of nodel and node2;
add scope of nodel to cnode's set referent;
get more restricted cardinality from nodel
and node2 and add it to cnode;
if both nodel and node2 are generic set
then
return cnode;
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if either nodel or node2 is generic set
then begin
if node2 is genetic set then
swap nodel with node2;
if type of node!l < type of node2 then
foreach type ¢ in the domain of node2
do begin
if ¢ is not subtype of type of
nodel then
return failed;
end do
add the domain of node2 to ¢node;
end
else begin
initialize new-domain to a empty set;
foreach conceptual tree ct/ in the
domain of nodel do
begin
foreach conceptual tree c¢£2 in the
domain of node2 do
if success in join of ¢t/ and ct2
then
begin
append the result of maximal
join of ct! and c£2 to
new-domain,
remove ct2 at the domain of
node2;
continue the outer foreach
statement;
end
append ct! and c¢t2 to new-domain;
end
add new-domain to cnode;
if new-domain does not match the
cardinality of cnode then
return failed;
end
return cnode;
end.

As shown in the above Algorithm, an failure in
set join can occur when the type of the resulting
concept is not common subtype of types in its
domain.  For example, let us consider the
following concepts:

[DOG: {*}@2]. (3-H
[PET: {*}@2]. (3-2)
[ANIMAL: [BEAGLE: Snoopy], [CAT: Tom]]- (3-3)

The join of (3-1) and (3-3) will be failed
because CAT is not subtype of DOG, while the
join of (3-2) and (3-3) will generate the concept
[PET: [BEAGLE: Snoopy], [CAT: Tom]] with
Success.

As both the domains of two concepts to be
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Table 2 John sold the book to Mary

(3) feature structure

(b) a conceptual tree

(S SUBJ (NP NAME John)
NUM {3s})
MAIN-V sold
TENSE {PAST}
VOICE {ACTIVE}
OBJ (NP DET the
HEAD book
NUM {3s})
MODS (PP PREP to
POBJ (NP NAME Mary
NUM {3s})))

[SELL] -
(PAST) .
(AGNT) - [PERSON: John]
(PTNT) - [PERSON: Mary]
(OBJ) - [BOOK: #].

joined are not generic domains, the resulting
domain is the union set of the domains. If two
concepts in the resulting domain are joinable,
they will be maximally joined. For example, let
us consider the following sentences:

Jane owns a black cat and a white dog. (3-4)

She owns two pets - Tom and Snoopy.  (3-5)

The sentences (3-4) and (3-5) can be represented

with the conceptual trees (3-6) and (3-7)
respectively:
[OWN] - (3-6)

(STAT) - [PERSON: Jane]
(PTNT) - [T: {[CAT] - (ATTR) - [COLOR: Black],
[DOG] - (ATTR) - [COLOR: White]}].

[OWN] - 3-7)
(STAT) - [GIRL]
(PTNT) - [PET: {[CAT: Tom],

[BEAGLE: Snoopy]}@2].

If the concept [CAT] is joinable with the
concept [CAT: Tom] and the concept [DOG]
with [BEAGEL: Snoopy] simultaneously, then the
resulting conceptual tree follows:

[OWN] - (3-8)
(STAT) - [PERSON: Jane}
(PTNT) - [PET: {[CAT: Tom] -
(ATTR) - [COLOR: Black],
[BEAGLE: Snoopy] -
(ATTR) - [COLOR: White]}@2].

If one or both of the above couples of concepts
are not joinable, then the resulting domain does
not match the cardinality of the resulting
concept. This shows us another case that set
join is failed. '

4. IMPLEMENTATION AND
EXPERIMENT

A concept node in conceptual trees is
represented with a frame, which is called
conceptual frame in this paper. The basic unit
of a conceptual frame is an index node, which
is a vector table. It uses a hash table to allow
fast access of structures. Figure 5 illustrates the
memory map of the index node. This map is
based on one of HYPERFRAME system, which
is a practical frame system[10]. In Figure 5, the
field LABEL contains the individual marker for
a concept node. The marker plays the role of
an identifier for accessing a knowledge base.
The fields TYPE and REFERENT correspond the
type and referent fields in a concept node
respectively. The field COREFERENCE is for
representing a coreference link. The field
PROPERTY stores monadic relations attached to
the concept node, while the field SLOT stores
dyadic relations. The value attached a slot is an
individual marker for the head concept node in a

LABEL | TYPE REFERENT

COREFERENCE

' PROPERTY | SLOT | Aux

SYMBOL

( LIST OF SYMBOL ]

HASH TABLE

Figure 5 Memory map of a conceptual frame
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Table 3 computing time for unify operation

(a) (b) (©
Conceptual Graphs | Restricted Conceptual Graphs | Conceptual Trees
First Result 13.24 sec. 10.43 sec. 7.24 sec.
Second Result 24.66 sec. 18.84 sec. 12.71 sec.
conceptual tree. Finally, the field AUX is a Reasoning  Operations” in  Conceptual

reserved space for storing informations required
to resolve various linguistic problems such as
ambiguities.

Finally, we present an experiment which
shows that conceptual trees significantly can
reduce computing time compared with conceptual
graphs.  Table 3 shows computing times in
performing the operation unify, which generates a
maximally joined conceptual tree, appling four
formation rules(copy, restrict, join, and simplify)
to two conceptual trees. For the experiment, we
build thirty conceptual graphs and conceptual
trees respectively and we perform the operation
one hundred times. In the case (a) we have
unified pure conceptual graphs. In the case (b)
we have unified conceptual graphs restricted by
preorder expression. In the case (c), finally, we
have unified conceptual trees. In the first
" experiment, conceptual structures have concept
nodes between two and five. In the second,
they have only four or five ones.

5. CONCLUSION

Conceptual trees can be regarded as an
integration of conceptual structures for semantics
and frames for implementation. We give
extensions and restrictions to conceptual trees to

represent them with frames efficiently and
simply. = We also show conceptual trees are
significantly reduce = computing time in their
operations.
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