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Abstract

We consider the routing and wavelength assignment
(RWA) problem on WDM ring networks without wave-
length conversion. When the physical network and re-
quired connections are given, RWA is the problem to
select a suitable path and wavelength among the many
possible choices for each connection such that not any
paths using the same wavelength pass through the same
link. This problem has been proven to be the NP-hard
problem. In the paper, a genetic algorithm (GA) is
proposed to solve it. Experimental results indicate that
GA is robust for this problem.

Keyword: genetic algorithm, routing and wavelength
assignment, integer programming, WDM ring.

1 Introduction

All Optical network based on wavelength division mul-
tiplexing (WDM) using the wavelength routing tech-

nique is considered as a very promising approach for
the realization of future large bandwidth networks [15],
[17]. WDM technology is used to accommodate sev-
eral wavelength channels on a �ber. This technology
could enhance the line capacity of networks. More-
over, since the large bandwidth network requires not
only transmission line capacity enhancement but also
cross-connect node processing capability enhancement,
WDM should be used in combination with wavelength
routing [10][9].

In wavelength routing, data signals are carried on
a unique wavelength from a source node to a desti-
nation node passing through nodes where the signals
are optically routed and switched without regeneration
in the electrical domain. When a physical network is
given and connections among the nodes in the net-
work are required, we must establish an optical path

(light path) with a dedicated wavelength for each re-
quired connection. The routing and wavelength as-
signment (RWA) problem is to select suitable paths
and wavelengths among the many possible choices for
the required connections. To avoid collision, no two
paths using the same wavelength pass through the same
link. Generally, the tra�c pattern can be considered
in two categories. One is static tra�c the other is
dynamic tra�c. In the case of static tra�c, all the
connection requirements are given and the objective is
typically to minimize the number of used wavelengths
[3][7][11][16][17][9].

In the case of dynamic tra�c, connection require-
ments arrive and depart one by one in a random man-
ner and the objective is typically to minimize the call
blocking probability [3][5][15]. By practical limitations
on the transmission technology, the number of available

wavelengths on a �ber is restricted. So, a good solution
to RWA problem is important to increase the e�ciency
of WDM networks. Many studies related to the prob-
lem RWA have been performed. On the topological
aspects, many studies concentrated on mesh network
[1][2][3][8][10][12][13][16]. The key advantage of mesh
network is the ability to utilize network resources in
the most e�cient manner. The ring networks may not
be as e�cient, but they may have many other advan-
tages: simple routing policy, simple control and man-
agement of network resources, simple hardware system,
and simple protection from network failures. Moreover,

ring networks are the predominant topology for current
MAN/intero�ce networks, and are expected to be the
�rst topology to be used for WDM networks in real
world. Recently, several studies on ring networks have
been performed [5][7][11][15][17]. But the researchers
have concentrated on the development of heuristic algo-
rithms. Wavelength conversion is the ability to convert
the data on one wavelength to another wavelength.



Moreover, optical wavelength converters are still lab-
oratory curiosities [14]. In ring networks, RWA without
wavelength conversion is known to be NP-hard [4]. In
this paper, we consider RWA on ring networks without
wavelength conversion and with static tra�c. Follow-
ing the integer-programming formulation proposed by
[9], a genetic algorithm is proposed to solve this prob-
lem.

Since �nding an optimal solution to this problem
is NP-hard [4], and that an exact search for optimal
solutions is impractical due to exponential growth in
execution time. Moreover, traditional heuristic meth-
ods and greedy approaches should trap in local optima.
Genetic algorithms (GA) have been trusted as a class
of general-purpose search strategies that strike a rea-
sonable balance between exploration and exploitation.
Genetic algorithm proposed by John Holland [6] has
been constructed as robust stochastic search algorithms
for various optimization problems. GA searches by ex-
ploiting information sampled from di�erent regions of
the solution space. The combination of crossover and
mutations helps GA escape from local optima. These
properties of GA provide a good global search method-
ology for the RWA problem. In this paper, we propose a
genetic algorithm for optimal �nding the minimal num-
ber of required wavelengths on ring network without
wavelength conversion.

This paper is organized as follows. In Section 2, we
describe the integer programming formulation of the
RWA problem. The background of Genetic Algorithm
is discussed in Section 3. In Sections 4 and 5, we de-
scribe our genetic algorithm for the optimal solution
of the RWA problem. In Section 6, we give our ex-
perimental results. Finally, conclusions are given in
Section.

2 Problem Formulation

Consider a ring network G, which has n nodes, indexed
from 1 to n in the clockwise direction. Two nodes
may require some connections between them, and the
connections are established by paths (lightpaths) using
speci�c wavelengths. When all the required connec-
tions are given, RWA is the problem to select paths on
G for all required connections with the wavelength as-
signment such that no two paths using the same wave-
length pass through the same link. The objective is to
minimize the number of required wavelengths.

First, we introduce some notations. Let V
be the set of nodes, V= f1; 2;...; ng; E be the
set of undirected links, E = f(1; 2); (2; 3);...; (n �
1; n); (n; 1)g; W be the set of available wavelengths;
and M be the set of selected pairs of nodes, M =

f(s1; d1); (s2; d2); :::; (sjMj ; djMj)g. The connection be-
tween two nodes (sk and dk in V ) of a selected pair is
denoted as ck = (sk; dk), where ck in M and sk < dk.

The number of connections required between sk and dk
for ck in M is denoted as rk, assumed to be a positive
integer. In the ring network, the routing path of a con-
nection (sk; dk) from source node sk to dk has exactly
two paths: the one is the clockwise and the other is the
counter-clockwise. Let pck be the path for connection
ck = (sk; dk) having clockwise-direction and prk be the
path for connection ck = (sk; dk) having counterclock-
wise direction. The set of possible paths for all ck in
M is denoted by P = [ck2Mfprk; p

c
kg. Then, the set of

connections whose clockwise and counterclockwise di-
rection paths pass edge e 2 E are denoted by M c

e and
M r

e [9].

With the above notation, the RWA problem can be
formulated as the following integer program [9]:

Objective : min
X
w2W

yw (1)

s.t.

X
w2W

(xkwc + xkwr) = rk; for all ck 2 K (2)

X
w2Mc

e

xkwc +
X

w2Mr
e

xkwr � yw; for all w 2 W; e 2 E (3)

xkwc; x
k
wr 2 f0; 1g; for all ck 2 M (4)

yw 2 f0; 1g; for all w 2 W (5)

The binary decision variable xkwc = 1 if pck using
wavelength w is selected to establish clockwise connec-
tion k, xkwc = 0 otherwise. Similar, the binary decision
variable xkwr = 1 if prk using wavelength w is selected
to establish counterclockwise connection ck, x

k
wr = 0

otherwise. The binary decision variable yw = 1 if wave-
length is used, yw = 0 otherwise. The objective is to
minimize the number of wavelengths used. Constraints
(2) mean that every required connections must be es-
tablished. Constraints (3) ensure that the paths using
wavelength can be selected only when wavelength is
used and at most one path using wavelength passes
edge. We assume that the number of available wave-
lengths is large enough to establish all the required con-
nections.
Example 1. Consider the graph shown in Fig. 1.
There are �ve nodes and links in ring network G; each
�ber between two nodes can provides 8 wavelengths,
i.e., W=8. Twelve pairs of nodes are requested to be
established (jM j = 12). A possible assignment of Fig. 1
for rk = 1 is shown in Fig. 2. Observation form Fig. 2
shown that six wavelengths are used to assign connec-
tions.



Figure 1: Ring network with �ve nodes and twelve con-
nections.

Figure 2: A possible assignment of Example 1 for rk=1.

3 Concept of GA

The search space in GA is composed of possible solu-
tions to the problem. A solution in the search space is
represented by a sequence of 0s and 1s. This solution
string is referred as a chromosome in the search space.
Each chromosome has an associated objective function

called the �tness. A good chromosome is the one that
has a high/low �tness value, depending upon the na-
ture of the problem (maximization/minimization). The
strength of a chromosome is represented by its �tness

value. Fitness values indicate which chromosomes are
to be carried to the next generation. A set of chromo-
somes and associated �tness values is called the popula-

tion. This population at a given stage of GA is referred
to as a generation. The general GA proceeds as follows:
Genetic Algorithm()

Begin

Initialize population;

while (not terminal condition) do

Begin

choose parents from population; /* Selec-
tion */

construct o�spring by combining parents;
/* Crossover */

optimize (o�spring); /* Mutation */

if suited (o�spring) then

replace worst �t (population) with better
o�spring;

/*Survival of the �ttest */

End;

End.

There are three main processes in the while loop for
GA:
(1) The process of selecting good strings from the

current generation to be carried to the next generation.
This process is called selection/reproduction.
(2) The process of shu�ing two randomly selected

strings to generate new o�spring is called crossover.
Sometimes, one or more bits of a chromosome are com-
plemented to generate a new o�spring. This process of
complementation is called mutation.
(3) The process of replacing the worst performing

chromosomes based on the �tness value.
The population size is �nite in each generation of

GA, which implies that only relatively �t chromosomes
in generation (i) will be carried to the next generation
(i+ 1). The power of GA comes from the fact that the
algorithm terminates rapidly to an optimal or near op-
timal solution. The iterative process terminates when
the solution reaches the optimum value. The three ge-
netic operators, namely, selection, crossover and muta-
tion, are discussed in the next section.

3.1 Selection / Reproduction

Since the population size in each generation is lim-

ited, only a �nite number of good chromosomes will
be copied in the mating pool depending on the �tness
value. Chromosomes with higher �tness values con-
tribute more copies to the mating pool than do those
with lower �tness values. This can be achieved by as-

signing proportionately a higher probability of copying
a chromosome that has a higher �tness value[?]. Selec-
tion/reproduction uses the �tness values of the chro-
mosome obtained after evaluating the objective func-
tion. It uses a biased roulette wheel[?] to select chro-
mosomes, which are to be taken in the mating pool.
It ensures that highly �t chromosomes (with high �t-
ness value) will have a higher number of o�spring in
the mating pool. Each chromosome (i) in the current
generation is allotted a roulette wheel slot sized in pro-
portion (pi) to its �tness value. This proportion pi can
be de�ned as follows. Let Ofi be the actual �tness
value of a chromosome (i) in generation (j) of g chro-
mosomes, Sumj =

Pg

i=1
Ofi be the sum of the �tness

values of all the chromosomes in generation j, and let
pi = Ofi=Sumj .
When the roulette wheel is spun, there is a greater

chance that a better chromosome will be copied into
the mating pool because a good chromosome occupies
a larger area on the roulette wheel.



3.2 Crossover

This phase involves two steps: �rst, from the mating
pool, two chromosomes are selected at random for mat-
ing, and second, crossover site c is selected uniformly at
random in the interval [1; n]. Two new chromosomes,
called o�spring, are then obtained by swapping all the
characters between positions c+ 1 and n. This can be
shown using two chromosomes, say P and Q. each of
length n = 6 bit positions

chromosome P: 111j000;
chromosome Q: 000j111.
Let the crossover site be 3. Two substrings between

4 and 6 are swapped, and two substrings between 1
and 3 remain unchanged; then, the two o�spring can
be obtained as follows:

chromosome R: 111j111;
chromosome S: 000j000.

3.3 Mutation

Combining the reproduction and crossover operations
may sometimes result in losing potentially useful infor-
mation in the chromosome. To overcome this problem,
mutation is introduced. It is implemented by com-

plementing a bit (0 to 1 and vice versa) at random.
This ensures that good chromosomes will not be per-
manently lost.

4 Genetic Algorithm for RWA

Problem with rk = 1

In this section, we discuss the details of genetic algo-
rithm developed to solve the RWA problem on ring net-
work without wavelength conversion. First, we design

the genetic algorithm for the special case with rk = 1;
then the algorithm will be extended to solve the case
with rk � 1 in Section 5. The development of genetic

algorithm requires: (1) an encoding scheme, (2) ge-
netic crossover operators, (3) mutation operators, (4)
a �tness function de�nition, (5) a replacement strategy,
and (6) termination rules.

4.1 Encoding

Since our problem involves representing of relations be-
tween connections and wavelengths, we employ a cod-
ing scheme that uses integer numbers. Two chromo-
somes which are one-dimension arrays are introduced
to represent the usage of wavelengths and the assign-
ments of connections. They are wavelength chromo-
some Y and connection chromosome C. In the wave-
length chromosome Y, yi, i=1,2,...,W , the chromosome
structure is shown in Fig. 3(a); where yi = 1 if the ith

wavelength is used; yi = 0, otherwise. For example,

Figure 3: Wavelength chromosome.

Figure 4: Connection chromosome.

the chromosome of the possible assignment of the Ex-
ample 1 with rk=1 in Fig. 2 is shown in Fig. 3(b).

In the connection chromosome C, cj, j=1,2,...,jM j,
the chromosome structure is shown in Fig. 4(a); if
cj = l (1 � l � W ), the jth connection is assigned
to wavelength l in clockwise direction; if cj = �l
(1 � l � W ), the jth connection is assigned to wave-
length l in counter-clockwise direction. For example,
the connection chromosome of the possible assignment
of the Example 1 in Fig. 2 is shown in Fig. 4(b).

It is worth noting that if there exist a connection ci
in C such jcij = j, then yj = 1, for i = 1; 2; :::;M .
For example, the relationships of wavelength and con-
nection chromosomes of the possible assignment with
rk = 1 of the Example 1 in Fig. 2 is shown in Fig. 5.

Figure 5: Relationships between wavelength and con-
nection chromosomes.



4.2 Fitness function de�nition

Generally, genetic algorithms use �tness functions to
map objectives to costs to achieve the goal of �nd-
ing optimally assignments. Assume connection i is as-
signed to wavelength l (l=1, 2, ...,W ), if the route is
in clockwise direction, then ci in the connection chro-
mosome is set to l; otherwise, ci is set to �l. Accord-
ing to the content of the connection chromosome, the
value of wavelength chromosome can be determined.
The goal is to minimize the number of required wave-
lengths. Thus the �tness function is

PW

j=1 yj . A �tness
function value is associated with each wavelength chro-
mosome, which is the same as the measure mentioned
above. We use the following objective function:

minimize

WX
w=1

yw: (6)

Note that if constraints (2) and (3) in Section 2 are
considered with this objective function, we have a com-
plete problem formulation. While breeding chromo-
somes, the genetic algorithm does not require the chro-
mosome to reect a feasible solution. Thus, we need
to attach a penalty to the �tness function in the event
the solution is not constraint-satis�ed. For a pair of
connections (ci; cj) in connection chromosome C, let
conflict(ci; cj) = 1, if ci and cj are assigned to the
same wavelength and the routing paths of two connec-
tions are overlapped. Then, we can rewrite the formu-
lation above in an unconstrained form:

minimize :

cost =

WX
w=1

yw + �

MX
i=1

MX
j=1

conflict(ci; cj);(7)

where � is the penalty weight. It is worth noting that
the value of � should be greater than W . Since the
best-�t chromosomes should have a probability of be-

ing selected as parents that is proportional to their �t-
ness, they need to be expressed in a maximization form.
This is done by subtracting the objective from a large
number Cmax. Hence, the �tness function becomes:

maximum :

Cmax �

0
@

WX
w=1

yw + �

MX
i=1

MX
j=1

conflict(ci; cj)

1
A ;(8)

where Cmax denotes the maximum value observed, so
far, of the cost function in the population. Let cost
be the value of the cost function for the chromosome;
Cmax can be calculated by the following iterative equa-
tion:

Cmax = maxfCmax; costg; (9)

where Cmax is initialized to zero.

4.3 Conict-detect algorithm

Consider the following example, assume two connec-
tions c1 = (1; 2) and c2 = (1; 4) are assigned to wave-
length 1 with clockwise direction, then conict oc-
curred. For each pair of connections, if conict oc-
curred then a penalty should be attached into the �t-
ness function. Now, the problem is: How to detect the
number of conicts in a connection chromosome? To
do this, a conict-detection algorithm should be devel-
oped. It is worth noting that there are M2 pairs of
connections in a connection chromosome; every time
a new chromosome is generated, the conict-detection
algorithm should be performed to detect the conict.
If the time spent by the conict-detection algorithm is
high, the whole time spent by genetic algorithm will
be high. Thus, our goal is to develop an algorithm
such that the conict of each pair of connections can
be detected in constant time. To do this, four bipartite
graphs (termed conict graph) AA, AB, BA, and BB
are constructed. The terms A and B meaning that
the routing paths of the connections are in clockwise
and counter-clockwise directions, respectively. The po-
sitions of A and B are the corresponding connections.
Therefore, AB meanings that the �rst connection is
in clockwise and the second connection is in counter-
clockwise directions. BA meanings that the �rst con-
nection is in counter-clockwise and the second connec-
tion is in clockwise directions. In these conict graphs,
for each connection ci, construct nodes ci in the ver-
tex set U and V . Edges of graphs are constructed as
follow:

(1) AA(U; V;EAA): Assume two connections ci and
cj use the same wavelength and route in clockwise di-
rection. If two routing paths are overlapped then an
edge which connects ci and cj is added in EAA.

(2) AB(U; V;EAB ): Assume two connections ci and

cj use the same wavelength, and ci is routing in clock-
wise direction and cj is routing in counter-clockwise
direction. If two routing paths are overlapped then an

edge which connects ci and cj is added in EAB .

(3) BA(U; V;EBA ): Assume two connections ci and
cj use the same wavelength, and ci is routing in
counter-clockwise direction and cj is routing in clock-
wise direction. If two routing paths are overlapped then
an edge which connects ci and cj is added in EBA.

(4) BB(U; V;EBB ): Assume two connections ci and
cj use the same wavelength, and route in the counter-
clockwise direction. If two routing paths are overlapped
then an edge which connects ci and cj is added in E

BB .

Example 2. Assume four connections c1 = (1; 4),
c2 = (2; 4), c3 = (1; 2), and c4 = (5; 2) should be as-
signed to a �ve nodes ring network as shown in Fig. 6.
Four conict graphs can be constructed and shown in
Fig. 7.

Each graph is represented by a 0-1M�M adjacency
matrix and the element of matrix AA is denoted by



Figure 6: Ring network and connections of Example 2.

Figure 7: Conict graphs of Example 2 (a) AA, (b)
AB, (c)BA, and (d)BB.

AA(ci; cj), and so on. It is easy to �nd that four con-
ict graphs can be constructed in O(M2) time. Once
conict graphs are constructed, the test of whether two
connections are conict or not can be achieved in con-
stant time.

Let test(ci; cj)=f

AA(ci; cj) if ci > 0 and cj > 0
AB(ci; cj) if ci > 0 and cj < 0
BA(ci; cj) if ci < 0 and cj > 0
BB(ci; cj) if ci < 0 and cj < 0

and

conflict(ci; cj)=f
1 if jcij = jcjj and test(ci; cj) = 1
0 otherwise:

Thus, if AA, AB, BA, and BB are given, the conict
of two connections can be known in O(1) time.

4.4 Genetic crossover operator

Five types of crossover operators were used to develop
this algorithm: (1) single point crossover (SPC); (2)
multiple points crossover (MPC); (3) globally reverse
routing operator (GRRO) (4) partially reverse rout-
ing operator (PRRO) (5) wavelength exchange opera-
tor (WEO)
These operators only operated on the connec-

tion chromosome, and the single and multiple point
crossovers are the traditional ones described in Section
3.
In globally reverse routing operator (GRRO), ran-

domly selected one chromosome for operation from pre-
vious generations and then each value of ci in C is
changed to ci � (�1), for i=1, 2, ..., M . Assume

parent P1 is

5 -3 4 3 2 4 -1 -3 2 4 2 -1 .

After operating, parent P1 is changed to

-5 3 -4 -3 -2 -4 1 3 -2 -4 -2 1 .

In partially reverse routing operator (PRRO), �rst,
randomly selected one chromosome for operation from
previous generations, then randomly selected z(1 �
z � M ) connections, each value of ci in these con-
nections is changed to ci � (�1). Assume
parent P1 is

5 -3 4 3 2 4 -1 -3 2 4 2 -1 ,

z=4, and connections c2, c5, c8, and c12 are selected.

After operating, parent P1 is changed to

5 3 4 3 -2 4 -1 3 2 4 2 1 .

In wavelength exchange operator (WEO), randomly
selected one chromosome for operation from previous
generations. Then, randomly selected 2 connections
ci and cj, and the assigned wavelengths of these two
connections are exchanged. Assume
parent P1 is

5 -3 4 3 2 4 -1 -3 2 4 2 -1 ,

and connections c2 and c12 are selected.
After operating,
parent P1 is changed to

5 -1 4 3 2 4 -1 -3 2 4 2 -3 .

4.5 Mutation

Four types of mutations are used to develop the genetic
algorithm:
(1) Single connection mutation (SCM): randomly se-

lected a connection, the single connection mutation
(SCM) changes the value of the connection to a random
integral number l, which is in [1;W ] [ [�1;�W ].
(2) Multiple connection mutation (MCM): randomly

selected z (1 � z �M ) connections, the MCM changes
the values of these connections to random integral in-
tegers, which are in [1;W ] [ [�1;�W ].
(3) Conict-free mutation (CFM): It is worth noting

that if two connections ci and cj (i 6= j) are assigned

to the same wavelength and the routing paths of these
connections are not overlapped, then these connections
can be assigned to the same wavelength such that the
number of required wavelengths can be reduced. This
pair of connections are denoted as a conict-free pair.
Let CF be the set of pairs (i; j), i 2 [1;W ] [ [�1;�W ]
and (cjij; cjjj) is conict-free pair in AA, AB, BA, or
BB. Moreover, CFAA, CFAB, CFBA, and CFBB, be



the set of conict-free pair in AA, AB, BA, BB, re-
spectively. Then CF = CFAA[CFAB[CFBA[CFBB
can be constructed by following rules:
Initially, CFAA=CFAB=CFBA=CFBB=0.

� If (ci; cj) (i 6= j) is a conict-free pair in AA then
CFAA = CFAA [ (i; j);

� If (ci; cj) (i 6= j) is a conict-free pair in AB then
CFAB = CFAB [ (i;�j),

� If (ci; cj) (i 6= j) is a conict-free pair in BA then
CFBA = CFBA [ (�i; j),

� If (ci; cj) (i 6= j) is a conict-free pair in BB then
CCBB = CFBB [ (�i;�j).

Consider the conict graphs shown in Fig. 7, we
can easily �nd that CFAA=f(2,3), (2,4), (3,2), (4,2)g,
CFAB=f(2,-1), (2,-3), (3,-1), (3,-4)g, CFBA=f(-1,2),
(-1,3), (-3,2), (-4,3)g, and CFAA=f(2,3), (2,4), (3,2),
(4,2)g. Thus, CF=f(2,3), (2,4), (3,2), (4,2), (2,-1),
(2,-3), (3,-1), (3,-4), (-1,2), (-1,3), (-3,2), (-4,3), (2,3),
(2,4), (3,2), (4,2)g.
To perform the conict-free mutation, several steps

should be performed. First, each conict-free pair in
CF is assigned a distinct integer number from 1 to
jCF j. Second, randomly selected a number between
1 to jCF j and let (i; j) be the corresponding pair of
connections. Four cases of mutation are as follows:

� If i > 0 and j > 0 then mutate (ci to jcj j and cj
to jcj j) or (cj to jcij and ci to jcij).

� If i > 0 and j < 0 then mutate (ci to jcij and cj
to �jcij) or (ci to jcj j and cj to �jcj j).

� If i < 0 and j > 0 then mutate (ci to �jcij and cj
to jcij) or (ci to �jcj j and cj to jcj j).

� If i < 0 and j < 0 then mutate (ci to �jcij and cj
to �jcij) or (ci to �jcj j and cj to �jcj j).

For the simple example with four connection de-
scribed in Example 2, a possible connection chromo-
some is

5 -3 4 3 .

Consider the set CF of conict-free pairs, if the
conict-free pair (2,3) is selected then there are two
possible mutations: The one is that the values of c2
and c3 and mutated to 4. The other is that the values
of c2 and c3 are mutated to j -3 j=3. Since c2 and c3
are conict-free in the conict graph AA, the mutation
described above may reduce the number of required
wavelength. Similarly, the example of the other cases
of mutations is shown on Fig. 8.
(4) Maximal Path Overlapped Mutation (MPOM ):

It is worth noting that if two connections use the same
wavelength and the routing paths are overlapped then

Figure 8: Examples of the conict-free mutation.

conict occurred. To avoid conict, for the pair of con-
nections with maximal path overlap, the assigned wave-
length of one of these two connections should be reas-
signed (or mutated) to another wavelength. This can
be achieve by tacking little modi�cation on the conict
graphs AA, AB, BA, and BB. A weight is associ-
ated with the edge in two nodes in the conict graphs
AA, AB, BA, and BB. The weight wij is de�ned
by the length of the overlapped path. For example, if
c1 = (1; 3) and c2 = (1; 4) are assigned to the same
wavelength and in the same clockwise direction in �ve
nodes ring network, then the length of overlapped path
is 2. Two connections with higher weight wij should
have a higher probability of being assigned to the dif-
ferent wavelength.

4.6 Replacement strategy

Initially, assume Nparent connection chromosomes are
randomly constructed and Npopulation be the number
chromosomes to be generated. In the process of selec-
tion, Npopulation=2 pairs of connections are randomly
selected for crossover to generated the new genera-
tion of chromosomes. After crossover, chromosomes

are sorted according to the �tness function in increas-
ing order, Nparent chromosomes with smaller �tness is
selected to construct the new generation. The values
of Npopulation and Nparent will be determined through
experiment.

4.7 Termination rules

Execution of GA can be terminated when the number
of generations exceeds an upper bound (ng) speci�ed
by the user.

5 Genetic Algorithm for RWA

Problem with rk � 1

In this section, we extend the genetic algorithm for
RWA problem with rk = 1 presented in previous sec-
tion to solve the generalized one with rk � 1. The con-
nection chromosome must be extended to tackle multi-



Figure 9: Connection chromosome for multiple requests
rk � 1.

ple connections requirements. It is easy to �nd that the
wavelength chromosome need not be changed, only the
connection chromosome should be changed. The con-
nection chromosome for RWA with multiple connection
requests is shown in Fig. 9. The zth (z � rk) request

of connection i is mapped to connection
Pi�1

j=1 rj + z
connection of new connection chromosome Cnew.

The �tness function can be extended to

minimize :

cost =

WX
w=1

yw + �

M
0X

i=1

M
0X

j=1

conflict(cl(i) ; cl(j)); (10)

whereM 0 =
PM

k=1 rk and l(i) is a function that maps
new index in Cnew to the original index in C.
Four conict graphs (AA, AB, BA, BB) should be

modi�ed by adding links between nodes ci 2 U and
ci 2 V ; since in the case of RWA problem with rk �
1, conict may be occurred in the same connections
(ci; ci). If two requests of same connection are assigned
to the same wavelength in the same directions. It is
worth noting that the crossover and mutation operation
in previous section can be used in the case with rk � 1.

6 Experimental Results

In order to evaluate the performance of the proposed
genetic algorithm, we have implemented the algorithm
and applied it to solve problems that were randomly
generated. The results of these experiments are re-
ported below. In all the experiments, the implementa-
tion was conducted in C, and all the experiments were
run on a personal computer (PC) with a Pentium III
1GHZ CPU and 256MB RAM.
We tested our algorithm on two ring networks which

have di�erent numbers of nodes (10, 30). For the test,
we generated connection requirements between all pairs
of two nodes in the networks. The number of required
connections for each pair of nodes is one, two, or three
with the same probability.

In the following, we will discuss the e�ects of the var-
ious parameters of the genetic algorithm. Let n=10,
M=58, crossover probability=1.0, mutation probabil-
ity=0.3, population size Npopulation =1200, parent size
Nparent = 200, W=1000, �= W , and maximum num-
ber of generations =1000.

In Fig. 10, we present the e�ect of the di�erent types
of crossovers, �ve crossover operators and a randomly
selected scheme which is randomly selected these op-
erators, are used in this experiment. We observe that
the randomly selected scheme is the best one, and the
GPPRO and PRRO is the worst.

In Fig. 11, we present the e�ect of the di�erent types
of mutations, four mutations and a randomly selected
scheme which is randomly selected from these opera-
tors, are used in this experiment. We observe that the
CFM and the randomly selected scheme is the best one,
and the MPOM is the worst one.

In Fig. 12, we present the e�ect of the di�erent num-
ber of chromosome in populations (Npopulation), where
Npopulation is in f200, 400, 600, 800, 1000, 1200g.
Crossover and mutation operators are the randomly
selected schemes. We found that Npopulation =1000

and 1200 get the best results, and Npopulation= 200
(=Nparent) is the worst. The CPU time in seconds of
di�erent values of Npopulation is shown in Fig.13 and is
proportional to the Npopulation.

In Fig. 14, we present the e�ect of the di�erent num-
ber of chromosomes in parent (Nparent), where Nparent

is in f200, 400, 600, 800, 1000, 1200g. Crossover and
mutation operators are the randomly selected schemes.
We found that Nparent =200 and 400 get the best re-
sults, and Nparent=1200 is the worst. The CPU time in
seconds of di�erent values of Nparent is shown in Fig.15
and is proportional to the 1=Nparent.

In Fig. 16, we present the e�ect of the mutation
probability on the evolution of the required wave-
lengths in GA. In this experiment, let n=30, M=938,
crossover probability=1.0, population size Npopulation

=1200, parent size Nparent = 200, W=1000, �= W ,
and maximum number of generations =1000.

We found that when the mutation probability is large
(0.60, 0.55), the algorithm leads to both fast conver-
gence and to the global optimal. The CPU time in
seconds of di�erent values of mutation probability is
shown in Fig.17.

To evaluate the e�ect of the heuristic mutations and
the crossover operators described in Section 4, we sim-
ple constructed a simple genetic algorithm called SGA.
The mutation operation of SGA is the single connec-
tion mutation (SCM) and the crossover operator is the
single point crossover (SPC). Fig. 18 shows the result of
the algorithms (SGA and our EGA). let n=30, M=938,
crossover probability=1.0, population size Npopulation

=1200, parent size Nparent = 200, W=1000, �= W ,
and maximum number of generations =2000. Observe
the results shown in Fig. 18, the required wavelengths
of EGA is smaller than that of SGA. Moreover, the time
spent by our GA (EGA) is less that of SGA. That is, us-

ing these crossover and mutation operators in EGA can
rapidly decrease the number of required wavelengths
and kept it from getting trapped in a local minimum.



7 Conclusions

In this paper, we consider the RWA problem on
ring networks without wavelength conversion and with
static tra�c. Since the problem is formulated as an
integer-programming proposed by [9], and the optimal

solution of this problem has been found to be NP-hard.
A genetic algorithm is proposed to solve this problem
and simulation results show that the proposed genetic
algorithm is robust for this problem.

In our method, connection and wavelength chromo-
somes are used to represent the assignment of connec-
tion and the usage of wavelength. In the GA method,
three general genetic operators - selection, crossover,
and mutation - are employed. Five types of operators
(SPC, MPC, GRRO, PRRO, andWEO) and four types
of mutations (SCM, MCM, CFM, and MPOM) are em-
ployed in our genetic algorithm. Experimental results
indicate that GA runs e�ciently.
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Figure 10: E�ect of the di�erent types of crossover
operators.

Figure 11: E�ect of the di�erent types of mutation
operators.

Figure 12: E�ect of the di�erent number of chromo-
somes in population.

Figure 13: The time spent by the di�erent number of
chromosomes in population.



Figure 14: E�ect of the di�erent number of chromo-
somes in parent generations.

Figure 15: The time spent by the di�erent number of
chromosomes in parent generations.

Figure 16: E�ect of the di�erent values of mutation
probabilities.

Figure 17: The time spent by the di�erent values of
mutation probabilities.



Figure 18: Comparison of SGA and EGA.


