
1

An Object Space Approach for Outermost Silhouettes Extraction

Workshop on Multimedia Technologies

Ren-Long Lee and Wen-Kai Tai*

Computer Science and Information Engineering

National Dong Hwa University, Taiwan

1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien, Taiwan, Republic of China

E-mail:wkdai@mail.ndhu.edu.tw

Abstract

Conspicuous outermost silhouette edges reveal the peculiar portrayal of model, and it is

useful for applications, such as motion blur, morphing, simplification, skeletonization, etc.

We propose a practical and effective approach to approximately extract the outermost

silhouette edges from polygonal models under arbitrarily perspective views. All

facet-normals and edges are encapsulated into a hierarchical tree in the preprocessing phase

to facilitate the extraction of outermost silhouette edges. A two-stage extraction procedure is

used at run-time. The first stage prunes edges, hardly to be recognized as the outermost

silhouette edges using the inclusion relationship. The remaining edges are then used to

approximate the outermost silhouette edges with respect to the intersection tests in the second

stage. Experimental results show that our approach is effective and sufficient to most

applications.

Keywords: silhouettes, outermost silhouettes, motion blur

1. Introduction

 Silhouette is salient perceptible cues that humans use to estimate and recognize objects.

For years, a number of graphics and visualization applications have been utilized them to

assist further processing, such as model simplification [4, 5, 16], image-based rendering [14],

2

non-photorealistic rendering [2, 8, 10], calibration [13], model registration [11], shadow

computation [11], skeletonization [17], motion blur [2], etc.

Much attention has been devoted to silhouette edges extraction [1, 3, 7, 12, 15].

Benichou and Elber [1] deal with this problem under orthogonal projection. The authors

mapped the normals of all polygons onto the Gaussian sphere as associated arcs with polygon

edges and furthermore projected the sphere onto a unit cube. Then, the silhouette edges

extraction problem has been reduced into finding the intersection of line segment on the plane.

This approach only works on orthographic view; however, most applications require the use

of perspective view.

Buchanan and Sousa [2] propose a fairly compact data structure, edge buffer, for

silhouettes rendering. The edge buffer stores flags of vertex, front-facing, and back-facing.

Initially, the flags of vertex are established according to the dependence of vertex with edges

and the flags of front-facing and back-facing, FB flags, are set to zero. At each frame, the FB

flags for the edges are updated, XOR a 1 value, depending on whether the polygon is

front-facing or back-facing. The rendering of silhouette edges can be done by checking the

FB flags. Although the edge buffer is easy to implement, explicitly examining all edges can

not be avoided.

Barequet et al. [12] solve this problem based on a point-plane duality in three

dimensions. Their approach applied dual transform to a viewpoint and edges. In this case the

silhouette edge occurs when the point dual of edge intersects the plane dual of viewpoint.

Finding the silhouettes edges is then equivalent to finding which segments are intersected by

a query plane. For reducing silhouette edges computations, they stress the silhouettes update

between consecutive frames. That is, segments cross the wedge plane defined by the two

positions of the viewplane, and silhouette edges occur when exactly one of whose endpoints

is in the wedge. Thus their algorithm obtains silhouettes from a sequence of view points

under perspective projection. Obviously, answering the query for the first time requires a

3

brute-force computation of all the edges on the silhouette.

Johnson and Cohen [7] develop a data structure, the spatialized normal cone hierarchy

and apply it for model silhouette edges extraction, local minimum distance computations, and

area light source shadow boundary determination. An edge is said to be a silhouette edge if

the span of the two neighboring facet-normals over an edge contains a vector orthogonal to

the view vector. Hereby, the silhouette edge can be determined by computing the angle

between the normal cone and view cone axis. This data structure emphasize that it

interactively solve seemingly disparate problem, so the silhouettes extraction is not quite fast.

Sander et al. [15] extract the silhouette edges from an anchored cone of normals in a

search tree. Anchored cones provide conservative bounds on the front-facing and back-facing

regions of a set of faces. By locating a viewpoint, they can cull the faces involved in the node

which are completely front-facing or back-facing. The extracted silhouette edges are further

formed exterior silhouette in the stencil buffer and then used for clipping coarse mesh which

is larger than the original one. The exterior silhouette is similar to outermost silhouettes, but

in the image space. Hence, they have no information about which silhouette edges are

exterior.

Silhouette edges are attractive features, but the outermost silhouette edges are even more

representative than it in sketching models. The appearance of the outermost silhouette edges

of an object is one of the strongest visual cues regarding the shape and the main feature of the

model. For a given light source, the shadow of a given model is formed with darkened area

where polygons sheltered from streams of light. Between the obscure and bright area, that

will form an outline of model corresponding to the light source. Turning the light source into

a view point, the outermost silhouette edges consist of projected silhouette edges contributing

to the outline of model. Although many studies have been published concerning all silhouette

edges extraction, little information is available on delineating a given model using the least

amount of silhouette edges while retaining the features of the model.

4

In this paper, we propose an approach to extract outermost silhouette edges for a given

model. In the preprocessing phase, given a polygonal mode, we construct an OBBTree of the

model and record necessary information for each node. In the run-time phase, for a given

viewpoint and some constrained parameters, we determine candidate silhouette edges from

the OBBTree according to the inclusion relationship, and then extract outermost silhouette

edges from these candidate silhouette edges with respect to the inclusion test efficiently and

effectively.

In this paper, we have a number of contributions as follows:

 Propose an idea of extracting outermost silhouette edges, a sharp feature of polygonal

models under arbitrary perspective views.

 Propose an approach for outermost silhouette edges extraction based on the pruning

strategy first and then incrementally approximating outermost silhouette edges.

 A demonstration that the outermost silhouette edges produce glamorous motion blur of

a given model in an interactive environment.

The organization of this paper is as follows. In section 2, our approach is specified. In

section 3, we demonstrate experimental results that show the effectiveness of the proposed

approach. Furthermore, one practical application is exhibited. Finally, the conclusion of this

work and some possible improvements in the future are stated in section 4.

2. Approach

 Our approach consists of two phase: a preprocessing phase and run-time interaction

phase. In the preprocessing phase, we construct an OBBTree and compute parameters stored

in each node. In the run-time interaction phase, we set proper conditions and use OBBTree to

facilitate the outermost silhouettes extraction. Notice that our work is based on the

assumption that all facet-normals face outward from the model, every edge is bordered by

exactly two faces, and breaks in the mesh are not allowed.

5

2.1 OBBTree

 The OBBTree was introduced by S. Gottschalk et al. [6], and used for efficient and exact

interference detection among complex models undergoing rigid motion. An oriented

bounding box, OBB for short, is a box whose faces have normals or axes that are all mutually

orthogonal. For a given polygon soup, the OBBTree is constructed from top to down by

fitting a box to a group of triangles and partitioning them into two subgroups. Applying the

process recursively creates a tree with leaf nodes containing a triangle. The boxes will tend to

align with the geometry of a flat surface patch. Furthermore, the interference of two OBBs is

determined by 15 potential separating axes test. Although the original purpose of the

OBBTree was to assist collision detection, we will show that it was also useful for outermost

silhouettes extraction.

2.2 Run-time

 Intuitively, the outermost silhouettes extraction can be achieved by finding all silhouette

edges and eliminating inner silhouette edges which are completely covered by other objects

in a projected plane, but this method has some drawbacks. Too many silhouette edges need to

be examined; moreover, the cost of determining whether a silhouette edge is an outermost

silhouette is high. Instead, our approach is to reduce silhouette edges, and we decrease the

cost of outermost silhouettes extraction. The run-time algorithm consists of two stages: a

candidate silhouettes extraction stage and an outermost silhouettes extraction stage.

2.2.1 Polygon Inclusion

 Before we discuss the actual approach, we first define an inclusion relationship between

polygons of a sub-mesh. Consider a two-manifold polygonal object in which each polygon

accompanies some adjacent polygons. For a given polygon and view point,V , the inclusion

occurs when the polygon and the adjacencies are all front-facing or back-facing. More

formally, let a geometric polygon P with normal N
v and the adjacent polygons,

6

,,...,,, 321 nPPPP with facet-normals, ,,...,,, 321 nNNNN respectively. A polygon P is

inclusion if the following holds.

niforVNVN

orniforVNVN

i

i

≤≤>••∀

≤≤<••∀

10))((

,10))((

where V the vector from any vertex lying on the polygon to the viewpoint.

The major strategy of candidate silhouettes extraction is to reduce silhouette edges,

while containing outermost silhouettes. When we apply the inclusion test to all polygons in

an exhausted manner, we can find all silhouette edges. This result contains the outermost

silhouettes, at the expense of high computation cost, especially for models with too many

silhouette edges. Our idea was from the polygon inclusion relationship which could preserve

the outermost silhouettes, and pruning interior polygons. Furthermore, we want to reduce

inner silhouette edges as much as possible; hence, we extend the inclusion relationship to a

polygon cluster or bounding volume. When we approximate the collection of polygons with a

bounding volume of similar dimensions and orientations, the candidate silhouettes would be

more accurate. As S. Gottschalk et al. [6] mentioned that an OBB is a tight-fitting bounding

volume and aligns itself with the geometry. Hence, we take advantage of OBBs for clustering,

and entering the polygons into a hierarchical clustering tree, or more precisely, an OBBTree.

2.2.2 Neighboring OBBs

The neighboring OBBs play the same role of adjacent polygons in the inclusion

relationship. To choose appropriate neighboring OBBs is important, since they dominate the

result of inclusion test. Now we assume that an OBBTree is a complete binary tree, the

sibling nodes would represent almost equal dimensions of polygons. The sibling nodes are

candidates of neighboring OBBs, since they could be close to the circumstance of a sub-mesh.

In other words, the result of inclusion test would not easily to be affected by a fraction of

polygons. We use the interference method, as mentioned in OBBTree, to quickly determine

7

neighboring OBBs of an OBB.

 In practice, an OBBTree is not always a complete binary tree. When the places of sibling

nodes in the complete binary tree corresponding to the OBBTree are empty, then their parents

become candidates. This will ensure that an OBB is surrounded by neighboring OBBs, in

other words, no breaks on the boundary of OBB. Figure 1 illustrates the spatial relationship

between an OBB and its neighboring OBBs.

A B

Figure 1: A: an OBB of sub-meshes placed at center with its neighboring OBBs. B: an

OBB and its neighboring OBBs located on the portion of model.

2.2.3 Candidate Silhouettes Extraction

Now we describe our candidate silhouettes extraction method using an OBBTree. Since

our approach is similar to silhouettes detection, we will determine a normal and a view

direction for each OBB. The normal of an OBB should correspondingly represent the

orientation of underlying geometric polygons. This is done by finding an average normal, the

representative normal, from facet-normals contained in the node. Since the center of OBB is

the centroid of polygons, the view direction is determined by the view point and center of

OBB.

 For a given view point and an OBBTree, we traverse the tree from top to bottom, while

applying inclusion test to nodes. The polygons attached to edges contained in a node and in

all of its descendants. If we determine that a node is entirely inclusion, then none of edges

contained in the node’s subtree could be the outermost silhouettes, and thus depth-first

traversal skips subtree below the node.

8

 In order to choose the suitable nodes, the orientation of normal vectors contained in an

OBB should not be drastically varied; in other words, we must at least avoid opposite normal

vectors. Let the maximal variation angle, MVA, be the maximal angle between the

representative normal, RN , and 1,2,...,ni,Ni = be the normal vectors corresponding to

polygons contained in a node, MVA is defined as

)(min
...1 ini

NRNMVA •=
=

,

The maximal variation angle limits the variation of normal vectors, but it can not restrict

the topology of polygons of sub-meshes. High curvature of polygons still causes inaccuracy,

so we measure the flatness of each polygon cluster. The flatness is considered as.

EEflatness max/min= ,

where the minE is the minimal extent and the maxE is the maximal extent of an OBB.

Here, we summarize the data structure of an OBB node and the procedure of inclusion test as

follows:

Struct node {
vector OrthogonalBasis // normalized eigenvectors of covariance matrix
point OBBCenter // the centroid of polygons of OBB
vector RepresentativeNormal //average normal of OBB
float MVA
float flatness
NeighborhoodList Neighbors //neighboring OBBs

}

9

Function Inclusion(Node n, Viewpoint p)
if ((n.flatness, n.neighbors.flatness)＞flatness_threshold) &&
((n.MVA, n.neighbors.MVA)＜MVA_threshold)

return false //not a suitable node
if (p∈ front-facing(n) && p∈ front-facing(n.neighbors)) || (p∈ back-facing(n) &&
p∈back-facing(n.neighbors)) //inclusion test

return true //skip this subtree
else

return false //not inclusion

The candidate silhouettes extraction will produce a silhouette edge list, and that are less

than the actual silhouettes, but containing the outermost silhouettes. The framework of the

candidate silhouettes extraction is summarized below:

Procedure CSE(Node n, Viewpoint p)
if !Leaf(n) //check if n is leaf node

if(!Inclusion(n, p)) //inclusion test
CSE(n.LeftChild, p)
CSE(n.RightChild, p)

else
FindSilhouetteEdges(n, p) //Find silhouette edges of the triangle with

//respect to viewpoint p, that is,
//candidate silhouette edges

2.2.4 Outermost Silhouettes Extraction

To extract the outermost silhouette edges of a polygonal object in a scene from a given

viewpoint, we must solve the partial visibility problem so that only those parts of silhouette

edges are extracted.

Consider a polygonal object, O , composed of polygons, OTi ∈ . Every edge, ij TE ∈ ,

is shared by exactly two polygons)(1 jET and)(2 jET with facet-normals, NT1 and NT2 .An

edge is a silhouette edge if one of its adjacent polygons is front-facing and the other is

back-facing with respect to viewpoint, V .

10

Definition 1 An edge, jE , is a silhouette edge if 0))((2211 <•• VPNTVPNT TT ,

in which 1TP is any vertex of 1T and 2TP is any vertex of 2T

Every vertex, jk EP ∈ , is shared by polygons,)(kadj PT , that denoted the adjacent

polygons of kP .

Definition 2 A vertex, kP , is considered as an outermost vertex if the ray kVP is

non-intersecting with iT except)(kadj PT .

The set of all silhouette edges of O will be denoted)(OS . Let ε be the set of

outermost vertices of jE . Every edge, jE was the union of points,)(jEP ,

Definition 3 jE is an outermost silhouette edge if)(OSE j ∈ and ε∈∃)(jEP .

In object space, to decide an outermost silhouette edge is difficult and time consuming,

since an edge is a series of continuous vertices. For speed up, we just sample one vertex of

edge to verify whether it is an outermost silhouette edge. The extreme vertices of edge may

share by a number of polygons; hence, they are excluded from sampling vertices. The

remaining vertices of edge are bordered by two polygons; hence, they are all suitable. In our

current implementation, the center of edge is the sampling vertex. We utilize the ray-casting

technique to validate whether an edge is outermost silhouette edge.

From the stage of candidate silhouettes extraction, we had obtained a set of edges and

identified some nodes as inclusion case. For accelerating the state of an edge is quickly

determined, the inclusion nodes, OBBs, are treated as polygons of model. Every candidate

silhouette edge will associate a ray which is formed with viewpoint and the center of edge.

For a given OBBTree and ray, we traverse the OBBTree in a level-order fashion. If the ray is

non-intersecting with any inclusion node or polygon [10] except adjacent polygons, the edge

is an outermost silhouette edge. In practice, the inclusion node or bounding volume is always

larger than the underlying geometry polygons. That will cause missed outermost silhouette

11

edges, since the bounding volume is intersected by the ray easily. Therefore, we adopt its

descendants as inclusion instances which are practical intersected objects as shown below:

Procedure InclusionDownLevel(node n, downlevel L)
if L is zero
 mark the node n as inclusion instance
else
 L=L-1
 if !Leaf(n) //check if n is leaf node
 InclusionDownLevel(n.LeftChild, L)
 InclusionDownLevel(n.RightChild, L)
 else
 mark the node n as inclusion instance

The state of inclusion instance should be resolved before the stage of outermost

silhouette extraction; hence, the pseudo code of candidate silhouette extraction is modified as

follows:

int level //global variable
Procedure CSE(node n, viewpoint p)
 mark the node n as not inclusion instance
 if !Leaf(n) //check if n is leaf node
 if(!Inclusion(n, p)) //inclusion test
 CSE(n.LeftChild)
 CSE(n.RightChild)
 else
 InclusionDownLevel(n, level)
 else

 FindSilhouetteEdges(n, p)

 The state of outermost silhouette edge is determined as shown in below:

Function IsOMSEdge(Ray OMSRay)
Queue<TreeNode *> q;
TreeNode* CurrentNode=root
while(CurrentNode)
 if OMSRay intersect CurrentNode
 //the default setting of polygons is inclusion instance
 if CurrentNode is Inclusion Instance and not adjacent polygon

12

 return false //not outermost silhouette edge
 else
 q.Add(CurrentNode->LeftChild)
 q.Add(CurrentNode->RightChild)

 CurrentNode=*q.Delete(CurrentNode) //retrieve next node

Return true //outermost silhouette edge

3. Results and Discussion

We have applied the proposed approach implemented in C++ to five polygonal models.

Figure 2 illustrates the models with which we experimented. Table 1 shows the model

complexity. All experiments were preformed on a PC with one 667MHz PentiumIII, 512 Mb

of memory, using an Elsa Geoforce2GTS graphic card, and running the Windows 2000

operating system.

 Preprocessing a model consists of building an OBBTree, neighboring OBBs, flatness of

OBBs, maximal variation angle of OBBs, and representative normals. This takes between one

and fifteen minutes depending on the model complexity.

 The exactly outermost silhouettes extraction algorithm was not presented to date. Hence

the measurement of efficiency and accuracy was based on the fine primitive, triangle, with

OBBTree. In other words, the intersection of OBBs are being substituted for triangles, and

thus producing the optimal outermost silhouettes. We will call this a brute-force approach in

the following discussions.

 The run-time method was divided into two stages, the candidate and outermost

silhouettes extraction. At the stage of candidate silhouette extraction, the parameters,

maximal variation angle and flatness, will cause our approach to miss edges of outermost

silhouettes. The choosing of descendants of inclusion node at the outermost silhouette

extraction stage also causes missed edges. Hence, we compare acquired edges of each stage

13

with outermost silhouettes, obtained from brute-force approach, to measure the error ratio.

For each model we ran the same experiments set up as follows. The viewpoint position

was moved between 2.0 and 4.0 along z axis while x and y coordination were fixed to 0. The

model was placed at the origin and rotated around three axes in equal momentum. In other

words, almost all parts of a given model were examined in different viewpoints. We then

recorded the number of edges and elapsed time at each frame. We first explain the meaning of

abbreviation in tables here:

#SE: silhouette edges

#CE: candidate silhouette edges

#BOMS: outermost silhouette edges of brute-force approach

#OMS: outermost silhouette edges of our approach

#eOMS: missed outermost silhouette edges

error %: error ratio of missed edges to outermost silhouettes

culling %: culling ratio of silhouette edges

BOMST, OMST: outermost silhouettes extraction time of brute-force approach, and

outermost silhouettes extraction time of our approach. The unit of measurement is in

millisecond.

DL: the level of descendant of inclusion node

 Table 2 summarizes the differences between the brute-force and our approach. The

culling ratio depends on the flatness of sub-meshes and variation of geometric shape of model.

The errors of the stage of candidate silhouettes extraction were caused by the center of OBBs,

representative normls, and the location of viewpoint. Figure 3 illustrate the optimal outermost

silhouettes of models. The speedup factors of all tested models at stage of outermost

silhouettes extraction are faster than the brute-force approach. In addition to errors of

candidate silhouettes extraction, the other errors were caused by the OBBs, since they are

larger than the underlying geometry polygons. But the appearance of outermost silhouette

14

edges is still obvious. Experimental results of the testing models are shown from Figure 4 to

Figure 8 respectively.

In all cases, our outermost silhouettes extraction time is lower than the brute-force

approach. Figure 10 show the comparison of outermost silhouettes complexity for several

simplified bunny meshes. The graph indicates that the time for our approach increases

sub-linearly with respect to the number of silhouette edges in the model, whereas the

brute-force approach increases linearly.

The complexity of extracted outermost silhouette edges should be adapted to

applications. That’s unnecessary to extract exactly outermost silhouette edges such as motion

blur as shown in Figure 9, since the approximating outermost silhouette edges also retain the

principal feature of a given model.

4. Conclusions and Future Works

We have presented a simple approach to interactively extract the approximating

outermost silhouettes of polygonal models under perspective projection. All polygons of the

input model are put into an OBBTree, and several necessary parameters are maintained in

each node. At run-time, the approximating outermost silhouette edges are quickly extracted

according to constrained conditions. The results reported here should be beneficial to

researchers attempting to portray more fantastic visual effect of polygonal models.

 In this work, we have selected an OBB for occlusion simplicity. Yet, one could expect a

somewhat more accurate if a k-DOPs [8] will be used. Besides, the number of neighboring

OBBs of OBB is fixed and almost equal size. This will limit the culling ratio of silhouettes.

One could adopt adaptive neighboring OBBs. When the testing OBB is more front-facing or

back-facing, the probability of becoming outermost silhouettes is to decrease. We can choose

small size neighboring OBBs, since larger one could cause the representative normal tends

towards opposite orientation with respect to testing OBB. Thus that would lead inclusion test

15

into failure, in other words, no culling occurs.

We present a practical application, motion blur, which uses our approach to further

processing and make pretty visual effect. We are continuing further research in these

application areas to make the best use of outermost silhouettes.

5. References

[1] F. Benichou and G. Elber, “Output sensitive extraction of silhouettes from

polygonal geometry,” Proc. 7th Pacific Graphics Conference, 60-69, 1999.

[2] G. J. Brostow and I. Essa, “Image-based motion blur for stop motion animation,”

Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, August 2001.

[3] J. W. Buchanan and M. C. Sousa, “The edge buffer: A data structure for easy

silhouette rendering,” Proc. 1st Int. Symp. on Non Photorealistic Animation and

Rendering, 39-42, 2000.

[4] J. Cohen, M. Olano, and D. Manocha, “Appearance preserving simplification,”

Proc. ACM SIGGRAPH, 115-122, 1998.

[5] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno, “A general method for

preserving attribute values on simplified meshes,” Proc. IEEE Trans. Visual.

Comput. Graphics, 59-66, 1998.

[6] S. Gottschalk, M. Lin, and D. Manocha, “OBBTree: A hierarchical structure for

rapid interference diction,” Proc. ACM SIGGRAPH, 171-180, 1996.

[7] D. E. Johnson and E. Cohen, “Spatialized normal cone hierarchies,” Proc. Symp.

on Interactive 3D Graphics, 129-134, 2001.

[8] James T. Klosowski, Martin Held, Joseph S.B. Mitchell, Henry Sowizral, and Karel

Zikan, “Efficient collision detection using bounding volume hierarchies of

k-DOPs,” Proc. IEEE Trans. Visual. Comput. Graphics, 21-36, 1998.

[9] M. Kaplan, B. Gooch, and E. Choen, “Interactive artistic rendering,” Proc. 1st Int.

16

Symp. on Non Photorealistic Animation and Rendering, 67-74, 2000.

[10] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle intersection,”

Journal of graphics tools, Vol. 2, No. 1, 21-28, 1997.

[11] J. D. Northrup and Lee Markosian, ”Artistic silhouettes: A hybrid approach,” Proc.

1st Int. Symp. on Non Photorealistic Animation and Rendering, 31-38, 2000.

[12] M. Pop, G. Barequet, C. A. Ducan, M. T. Goodrich, W. Hung, and S. Kumar,

“Efficient Perspective-Accurate Silhouette Computation and Applications,” Proc.

17th International Annual Symposium on Computational Geometry, 60-68, 2001.

[13] P. Ramanathan, E. Steinbach, and B. Girod, “Silhouette-based multiple-view

camera calibration,” Proc. Vision, Modeling and Visualization, 3-10, 2000.

[14] R. RASKAR and M. Cohen, “Image precision silhouette edges,” Proc. Symp. on

Interactive 3D Graphics, 135-140, 1999.

[15] P. V. Sander, X. Gu, S. J. Gortler, H. Hoope, and J. Snyder, “Silhouette clipping,”

Proc. ACM SIGGRAPH, 327-334, 2000.

[16] J. C. Xia, J. El-Sana, and A. Varshney, “Adaptive real-time level-of-detail-based

rendering for polygonal models,” Proc. IEEE Trans. Visual. Comput. Graphics,

171 – 183, 1997.

[17] Y. Zhou and A. Toga, “Efficient skeletonization of volumetric objects,” IEEE Trans.

on Visualization and Comput. Graphics, 5(3), 195–206, 1999.

17

Bunny Beethoven Buddha Cow Dragon

Figure 2: Five tested models.

Model Vertices Facets Edges
Bunny 34837 69664 104499
Beethoven 25005 50000 75003
Buddha 25129 49999 75294
Cow 25029 50037 75070
Dragon 25362 50000 75616

Table 1: Complexities of tested models.

 Bunny Beethoven Buddha Cow Dragon
Candidate silhouettes extraction stage

#SE 3445 2462 5270 2451 4790
#CE 2366 1860 4600 2221 4277
culling% 31.32 24.43 12.71 9.41 10.70
error% 7.41 3.20 1.37 2.01 0.89

Outermost silhouettes extraction stage
#BOMS 969 489 576 930 654
#OMS 870 454 541 858 595
#eOMS 98 35 35 71 59
error% 10.16 7.18 6.07 7.67 9.03
BOMST 516.94 415.76 936.72 369.22 942.54
OMST 165.80 154.66 431.78 157.48 325.98
speedup 3.12 2.69 2.17 2.34 2.89

Constrained parameters
Flatness 0.271731 0.255534 0.200803 0.154298 0.212615
MVA 3.58868e-006 5.00005e-006 5.00015e-006 4.99635e-006 5.00005e-006
DL 4 4 2 2 2

Table 2: Comparison of our outermost silhouettes extraction approach and the brute-force

approach.

18

Figure 3: Bunny. Outermost silhouettes of the brute-force approach.

Figure 4: Bunny. Outermost silhouettes of our approach in which intersection objects are

OBBs. The value of DL is four.

Figure 5: Beethoven. OMS of our approach in which intersection objects are OBBs. The

value of DL is four.

Figure 6: Buddha. OMS of our approach in which intersection objects are OBBs. The value

of DL is two.

19

Figure 7: Cow. OMS of our approach in which intersection objects are OBBs. The value of

DL is two.

Figure 8: Dragon. OMS of our approach in which intersection objects are OBBs. The value of

DL is two.

Figure 9: Motion blur of Bunny in which coarse outermost silhouettes create glamorous

visual effect.

20

Bunny

0

200

400

600

800

1000

1200

10000 20000 30000 40000 50000 60000 70000
#faces

#e
dg
es

0

100

200

300

400

500

600

m
s

#BOMS #eOMS BOMST OMST

Figure 10: Comparison between our approach and brute force approach in different level of

bunny.

