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Abstract 

Conspicuous outermost silhouette edges reveal the peculiar portrayal of model, and it is 

useful for applications, such as motion blur, morphing, simplification, skeletonization, etc. 

We propose a practical and effective approach to approximately extract the outermost 

silhouette edges from polygonal models under arbitrarily perspective views. All 

facet-normals and edges are encapsulated into a hierarchical tree in the preprocessing phase 

to facilitate the extraction of outermost silhouette edges. A two-stage extraction procedure is 

used at run-time. The first stage prunes edges, hardly to be recognized as the outermost 

silhouette edges using the inclusion relationship. The remaining edges are then used to 

approximate the outermost silhouette edges with respect to the intersection tests in the second 

stage. Experimental results show that our approach is effective and sufficient to most 

applications. 
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1. Introduction 

 Silhouette is salient perceptible cues that humans use to estimate and recognize objects. 

For years, a number of graphics and visualization applications have been utilized them to 

assist further processing, such as model simplification [4, 5, 16], image-based rendering [14], 
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non-photorealistic rendering [2, 8, 10], calibration [13], model registration [11], shadow 

computation [11], skeletonization [17], motion blur [2], etc. 

Much attention has been devoted to silhouette edges extraction [1, 3, 7, 12, 15]. 

Benichou and Elber [1] deal with this problem under orthogonal projection. The authors 

mapped the normals of all polygons onto the Gaussian sphere as associated arcs with polygon 

edges and furthermore projected the sphere onto a unit cube. Then, the silhouette edges 

extraction problem has been reduced into finding the intersection of line segment on the plane. 

This approach only works on orthographic view; however, most applications require the use 

of perspective view. 

Buchanan and Sousa [2] propose a fairly compact data structure, edge buffer, for 

silhouettes rendering. The edge buffer stores flags of vertex, front-facing, and back-facing. 

Initially, the flags of vertex are established according to the dependence of vertex with edges 

and the flags of front-facing and back-facing, FB flags, are set to zero. At each frame, the FB 

flags for the edges are updated, XOR a 1 value, depending on whether the polygon is 

front-facing or back-facing. The rendering of silhouette edges can be done by checking the 

FB flags. Although the edge buffer is easy to implement, explicitly examining all edges can 

not be avoided. 

Barequet et al. [12] solve this problem based on a point-plane duality in three 

dimensions. Their approach applied dual transform to a viewpoint and edges. In this case the 

silhouette edge occurs when the point dual of edge intersects the plane dual of viewpoint. 

Finding the silhouettes edges is then equivalent to finding which segments are intersected by 

a query plane. For reducing silhouette edges computations, they stress the silhouettes update 

between consecutive frames. That is, segments cross the wedge plane defined by the two 

positions of the viewplane, and silhouette edges occur when exactly one of whose endpoints 

is in the wedge. Thus their algorithm obtains silhouettes from a sequence of view points 

under perspective projection. Obviously, answering the query for the first time requires a 



3 

brute-force computation of all the edges on the silhouette. 

Johnson and Cohen [7] develop a data structure, the spatialized normal cone hierarchy 

and apply it for model silhouette edges extraction, local minimum distance computations, and 

area light source shadow boundary determination. An edge is said to be a silhouette edge if 

the span of the two neighboring facet-normals over an edge contains a vector orthogonal to 

the view vector. Hereby, the silhouette edge can be determined by computing the angle 

between the normal cone and view cone axis. This data structure emphasize that it 

interactively solve seemingly disparate problem, so the silhouettes extraction is not quite fast. 

Sander et al. [15] extract the silhouette edges from an anchored cone of normals in a 

search tree. Anchored cones provide conservative bounds on the front-facing and back-facing 

regions of a set of faces. By locating a viewpoint, they can cull the faces involved in the node 

which are completely front-facing or back-facing. The extracted silhouette edges are further 

formed exterior silhouette in the stencil buffer and then used for clipping coarse mesh which 

is larger than the original one. The exterior silhouette is similar to outermost silhouettes, but 

in the image space. Hence, they have no information about which silhouette edges are 

exterior. 

Silhouette edges are attractive features, but the outermost silhouette edges are even more 

representative than it in sketching models. The appearance of the outermost silhouette edges 

of an object is one of the strongest visual cues regarding the shape and the main feature of the 

model. For a given light source, the shadow of a given model is formed with darkened area 

where polygons sheltered from streams of light. Between the obscure and bright area, that 

will form an outline of model corresponding to the light source. Turning the light source into 

a view point, the outermost silhouette edges consist of projected silhouette edges contributing 

to the outline of model. Although many studies have been published concerning all silhouette 

edges extraction, little information is available on delineating a given model using the least 

amount of silhouette edges while retaining the features of the model. 
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In this paper, we propose an approach to extract outermost silhouette edges for a given 

model. In the preprocessing phase, given a polygonal mode, we construct an OBBTree of the 

model and record necessary information for each node. In the run-time phase, for a given 

viewpoint and some constrained parameters, we determine candidate silhouette edges from 

the OBBTree according to the inclusion relationship, and then extract outermost silhouette 

edges from these candidate silhouette edges with respect to the inclusion test efficiently and 

effectively.  

In this paper, we have a number of contributions as follows: 

 Propose an idea of extracting outermost silhouette edges, a sharp feature of polygonal 

models under arbitrary perspective views. 

 Propose an approach for outermost silhouette edges extraction based on the pruning 

strategy first and then incrementally approximating outermost silhouette edges. 

 A demonstration that the outermost silhouette edges produce glamorous motion blur of 

a given model in an interactive environment. 

The organization of this paper is as follows. In section 2, our approach is specified. In 

section 3, we demonstrate experimental results that show the effectiveness of the proposed 

approach. Furthermore, one practical application is exhibited. Finally, the conclusion of this 

work and some possible improvements in the future are stated in section 4. 

 

2. Approach 

 Our approach consists of two phase: a preprocessing phase and run-time interaction 

phase. In the preprocessing phase, we construct an OBBTree and compute parameters stored 

in each node. In the run-time interaction phase, we set proper conditions and use OBBTree to 

facilitate the outermost silhouettes extraction. Notice that our work is based on the 

assumption that all facet-normals face outward from the model, every edge is bordered by 

exactly two faces, and breaks in the mesh are not allowed. 
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2.1 OBBTree 

 The OBBTree was introduced by S. Gottschalk et al. [6], and used for efficient and exact 

interference detection among complex models undergoing rigid motion. An oriented 

bounding box, OBB for short, is a box whose faces have normals or axes that are all mutually 

orthogonal. For a given polygon soup, the OBBTree is constructed from top to down by 

fitting a box to a group of triangles and partitioning them into two subgroups. Applying the 

process recursively creates a tree with leaf nodes containing a triangle. The boxes will tend to 

align with the geometry of a flat surface patch. Furthermore, the interference of two OBBs is 

determined by 15 potential separating axes test. Although the original purpose of the 

OBBTree was to assist collision detection, we will show that it was also useful for outermost 

silhouettes extraction. 

2.2 Run-time 

 Intuitively, the outermost silhouettes extraction can be achieved by finding all silhouette 

edges and eliminating inner silhouette edges which are completely covered by other objects 

in a projected plane, but this method has some drawbacks. Too many silhouette edges need to 

be examined; moreover, the cost of determining whether a silhouette edge is an outermost 

silhouette is high. Instead, our approach is to reduce silhouette edges, and we decrease the 

cost of outermost silhouettes extraction. The run-time algorithm consists of two stages: a 

candidate silhouettes extraction stage and an outermost silhouettes extraction stage. 

2.2.1 Polygon Inclusion 

 Before we discuss the actual approach, we first define an inclusion relationship between 

polygons of a sub-mesh. Consider a two-manifold polygonal object in which each polygon 

accompanies some adjacent polygons. For a given polygon and view point,V  , the inclusion 

occurs when the polygon and the adjacencies are all front-facing or back-facing. More 

formally, let a geometric polygon P with normal N
v and the adjacent polygons, 
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,,...,,, 321 nPPPP with facet-normals, ,,...,,, 321 nNNNN respectively. A polygon P is 

inclusion if the following holds. 
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where V  the vector from any vertex lying on the polygon to the viewpoint.  

The major strategy of candidate silhouettes extraction is to reduce silhouette edges, 

while containing outermost silhouettes. When we apply the inclusion test to all polygons in 

an exhausted manner, we can find all silhouette edges. This result contains the outermost 

silhouettes, at the expense of high computation cost, especially for models with too many 

silhouette edges. Our idea was from the polygon inclusion relationship which could preserve 

the outermost silhouettes, and pruning interior polygons. Furthermore, we want to reduce 

inner silhouette edges as much as possible; hence, we extend the inclusion relationship to a 

polygon cluster or bounding volume. When we approximate the collection of polygons with a 

bounding volume of similar dimensions and orientations, the candidate silhouettes would be 

more accurate. As S. Gottschalk et al. [6] mentioned that an OBB is a tight-fitting bounding 

volume and aligns itself with the geometry. Hence, we take advantage of OBBs for clustering, 

and entering the polygons into a hierarchical clustering tree, or more precisely, an OBBTree. 

2.2.2 Neighboring OBBs 

The neighboring OBBs play the same role of adjacent polygons in the inclusion 

relationship. To choose appropriate neighboring OBBs is important, since they dominate the 

result of inclusion test. Now we assume that an OBBTree is a complete binary tree, the 

sibling nodes would represent almost equal dimensions of polygons. The sibling nodes are 

candidates of neighboring OBBs, since they could be close to the circumstance of a sub-mesh. 

In other words, the result of inclusion test would not easily to be affected by a fraction of 

polygons. We use the interference method, as mentioned in OBBTree, to quickly determine 
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neighboring OBBs of an OBB. 

 In practice, an OBBTree is not always a complete binary tree. When the places of sibling 

nodes in the complete binary tree corresponding to the OBBTree are empty, then their parents 

become candidates. This will ensure that an OBB is surrounded by neighboring OBBs, in 

other words, no breaks on the boundary of OBB. Figure 1 illustrates the spatial relationship 

between an OBB and its neighboring OBBs. 

 

A B 

Figure 1: A: an OBB of sub-meshes placed at center with its neighboring OBBs. B: an 

OBB and its neighboring OBBs located on the portion of model.  

2.2.3 Candidate Silhouettes Extraction 

Now we describe our candidate silhouettes extraction method using an OBBTree. Since 

our approach is similar to silhouettes detection, we will determine a normal and a view 

direction for each OBB. The normal of an OBB should correspondingly represent the 

orientation of underlying geometric polygons. This is done by finding an average normal, the 

representative normal, from facet-normals contained in the node. Since the center of OBB is 

the centroid of polygons, the view direction is determined by the view point and center of 

OBB. 

 For a given view point and an OBBTree, we traverse the tree from top to bottom, while 

applying inclusion test to nodes. The polygons attached to edges contained in a node and in 

all of its descendants. If we determine that a node is entirely inclusion, then none of edges 

contained in the node’s subtree could be the outermost silhouettes, and thus depth-first 

traversal skips subtree below the node. 
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 In order to choose the suitable nodes, the orientation of normal vectors contained in an 

OBB should not be drastically varied; in other words, we must at least avoid opposite normal 

vectors. Let the maximal variation angle, MVA, be the maximal angle between the 

representative normal, RN , and 1,2,...,ni,Ni = be the normal vectors corresponding to 

polygons contained in a node, MVA is defined as 

)(min
...1 ini

NRNMVA •=
=

,           

The maximal variation angle limits the variation of normal vectors, but it can not restrict 

the topology of polygons of sub-meshes. High curvature of polygons still causes inaccuracy, 

so we measure the flatness of each polygon cluster. The flatness is considered as. 

EEflatness max/min= ,          

where the minE is the minimal extent and the maxE is the maximal extent of an OBB. 

Here, we summarize the data structure of an OBB node and the procedure of inclusion test as 

follows: 

Struct node { 
vector OrthogonalBasis // normalized eigenvectors of covariance matrix 
point OBBCenter // the centroid of polygons of OBB 
vector RepresentativeNormal //average normal of OBB 
float MVA 
float flatness 
NeighborhoodList Neighbors //neighboring OBBs 

} 
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Function Inclusion(Node n, Viewpoint p) 
if ((n.flatness, n.neighbors.flatness)＞flatness_threshold) &&  
((n.MVA, n.neighbors.MVA)＜MVA_threshold) 

return false //not a suitable node 
if (p∈ front-facing(n) && p∈ front-facing(n.neighbors)) || (p∈ back-facing(n) && 
p∈back-facing(n.neighbors)) //inclusion test 

return true  //skip this subtree 
else 

return false //not inclusion 

The candidate silhouettes extraction will produce a silhouette edge list, and that are less 

than the actual silhouettes, but containing the outermost silhouettes. The framework of the 

candidate silhouettes extraction is summarized below: 

Procedure CSE(Node n, Viewpoint p) 
if !Leaf(n) //check if n is leaf node 

if(!Inclusion(n, p)) //inclusion test 
CSE(n.LeftChild, p) 
CSE(n.RightChild, p) 

else 
FindSilhouetteEdges(n, p) //Find silhouette edges of the triangle with  

//respect to viewpoint p, that is,  
//candidate silhouette edges 

2.2.4 Outermost Silhouettes Extraction 

To extract the outermost silhouette edges of a polygonal object in a scene from a given 

viewpoint, we must solve the partial visibility problem so that only those parts of silhouette 

edges are extracted. 

Consider a polygonal object, O , composed of polygons, OTi ∈ . Every edge, ij TE ∈ , 

is shared by exactly two polygons )(1 jET and )(2 jET with facet-normals, NT1 and NT2 .An 

edge is a silhouette edge if one of its adjacent polygons is front-facing and the other is 

back-facing with respect to viewpoint, V . 
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Definition 1 An edge, jE  , is a silhouette edge if 0))(( 2211 <•• VPNTVPNT TT , 

in which 1TP  is any vertex of 1T and 2TP  is any vertex of 2T  

Every vertex, jk EP ∈ , is shared by polygons, )( kadj PT , that denoted the adjacent 

polygons of kP . 

Definition 2 A vertex, kP , is considered as an outermost vertex if the ray kVP is 

non-intersecting with iT except )( kadj PT . 

The set of all silhouette edges of O  will be denoted )(OS . Let ε  be the set of 

outermost vertices of jE . Every edge, jE  was the union of points, )( jEP , 

Definition 3 jE is an outermost silhouette edge if )(OSE j ∈  and ε∈∃ )( jEP . 

In object space, to decide an outermost silhouette edge is difficult and time consuming, 

since an edge is a series of continuous vertices. For speed up, we just sample one vertex of 

edge to verify whether it is an outermost silhouette edge. The extreme vertices of edge may 

share by a number of polygons; hence, they are excluded from sampling vertices. The 

remaining vertices of edge are bordered by two polygons; hence, they are all suitable. In our 

current implementation, the center of edge is the sampling vertex. We utilize the ray-casting 

technique to validate whether an edge is outermost silhouette edge. 

From the stage of candidate silhouettes extraction, we had obtained a set of edges and 

identified some nodes as inclusion case. For accelerating the state of an edge is quickly 

determined, the inclusion nodes, OBBs, are treated as polygons of model. Every candidate 

silhouette edge will associate a ray which is formed with viewpoint and the center of edge. 

For a given OBBTree and ray, we traverse the OBBTree in a level-order fashion. If the ray is 

non-intersecting with any inclusion node or polygon [10] except adjacent polygons, the edge 

is an outermost silhouette edge. In practice, the inclusion node or bounding volume is always 

larger than the underlying geometry polygons. That will cause missed outermost silhouette 
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edges, since the bounding volume is intersected by the ray easily. Therefore, we adopt its 

descendants as inclusion instances which are practical intersected objects as shown below: 

Procedure InclusionDownLevel(node n, downlevel L) 
if L is zero 
 mark the node n as inclusion instance 
else  
 L=L-1 
 if !Leaf(n) //check if n is leaf node 
  InclusionDownLevel(n.LeftChild, L) 
  InclusionDownLevel(n.RightChild, L) 
 else 
  mark the node n as inclusion instance 

The state of inclusion instance should be resolved before the stage of outermost 

silhouette extraction; hence, the pseudo code of candidate silhouette extraction is modified as 

follows: 

int level //global variable 
Procedure CSE(node n, viewpoint p) 
 mark the node n as not inclusion instance 
 if !Leaf(n) //check if n is leaf node 
  if(!Inclusion(n, p)) //inclusion test 
   CSE(n.LeftChild)  
   CSE(n.RightChild)  
  else 
   InclusionDownLevel(n, level) 
 else 

    FindSilhouetteEdges(n, p) 

 The state of outermost silhouette edge is determined as shown in below: 

Function IsOMSEdge(Ray OMSRay) 
Queue<TreeNode *> q; 
TreeNode* CurrentNode=root 
while(CurrentNode) 
 if OMSRay intersect CurrentNode 
  //the default setting of polygons is inclusion instance 
  if CurrentNode is Inclusion Instance and not adjacent polygon 
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   return false //not outermost silhouette edge 
  else 
   q.Add(CurrentNode->LeftChild) 
   q.Add(CurrentNode->RightChild) 
 
 CurrentNode=*q.Delete(CurrentNode) //retrieve next node 
 

Return true //outermost silhouette edge 

 

3. Results and Discussion 

We have applied the proposed approach implemented in C++ to five polygonal models. 

Figure 2 illustrates the models with which we experimented. Table 1 shows the model 

complexity. All experiments were preformed on a PC with one 667MHz PentiumIII, 512 Mb 

of memory, using an Elsa Geoforce2GTS graphic card, and running the Windows 2000 

operating system. 

 Preprocessing a model consists of building an OBBTree, neighboring OBBs, flatness of 

OBBs, maximal variation angle of OBBs, and representative normals. This takes between one 

and fifteen minutes depending on the model complexity. 

 The exactly outermost silhouettes extraction algorithm was not presented to date. Hence 

the measurement of efficiency and accuracy was based on the fine primitive, triangle, with 

OBBTree. In other words, the intersection of OBBs are being substituted for triangles, and 

thus producing the optimal outermost silhouettes. We will call this a brute-force approach in 

the following discussions. 

 The run-time method was divided into two stages, the candidate and outermost 

silhouettes extraction. At the stage of candidate silhouette extraction, the parameters, 

maximal variation angle and flatness, will cause our approach to miss edges of outermost 

silhouettes. The choosing of descendants of inclusion node at the outermost silhouette 

extraction stage also causes missed edges. Hence, we compare acquired edges of each stage 
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with outermost silhouettes, obtained from brute-force approach, to measure the error ratio. 

For each model we ran the same experiments set up as follows. The viewpoint position 

was moved between 2.0 and 4.0 along z axis while x and y coordination were fixed to 0. The 

model was placed at the origin and rotated around three axes in equal momentum. In other 

words, almost all parts of a given model were examined in different viewpoints. We then 

recorded the number of edges and elapsed time at each frame. We first explain the meaning of 

abbreviation in tables here: 

#SE: silhouette edges 

#CE: candidate silhouette edges 

#BOMS: outermost silhouette edges of brute-force approach 

#OMS: outermost silhouette edges of our approach 

#eOMS: missed outermost silhouette edges 

error %: error ratio of missed edges to outermost silhouettes 

culling %: culling ratio of silhouette edges 

BOMST, OMST: outermost silhouettes extraction time of brute-force approach, and 

outermost silhouettes extraction time of our approach. The unit of measurement is in 

millisecond. 

DL: the level of descendant of inclusion node 

 Table 2 summarizes the differences between the brute-force and our approach. The 

culling ratio depends on the flatness of sub-meshes and variation of geometric shape of model. 

The errors of the stage of candidate silhouettes extraction were caused by the center of OBBs, 

representative normls, and the location of viewpoint. Figure 3 illustrate the optimal outermost 

silhouettes of models. The speedup factors of all tested models at stage of outermost 

silhouettes extraction are faster than the brute-force approach. In addition to errors of 

candidate silhouettes extraction, the other errors were caused by the OBBs, since they are 

larger than the underlying geometry polygons. But the appearance of outermost silhouette 
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edges is still obvious. Experimental results of the testing models are shown from Figure 4 to 

Figure 8 respectively. 

In all cases, our outermost silhouettes extraction time is lower than the brute-force 

approach. Figure 10 show the comparison of outermost silhouettes complexity for several 

simplified bunny meshes. The graph indicates that the time for our approach increases 

sub-linearly with respect to the number of silhouette edges in the model, whereas the 

brute-force approach increases linearly. 

The complexity of extracted outermost silhouette edges should be adapted to 

applications. That’s unnecessary to extract exactly outermost silhouette edges such as motion 

blur as shown in Figure 9, since the approximating outermost silhouette edges also retain the 

principal feature of a given model. 

 

4. Conclusions and Future Works 

We have presented a simple approach to interactively extract the approximating 

outermost silhouettes of polygonal models under perspective projection. All polygons of the 

input model are put into an OBBTree, and several necessary parameters are maintained in 

each node. At run-time, the approximating outermost silhouette edges are quickly extracted 

according to constrained conditions. The results reported here should be beneficial to 

researchers attempting to portray more fantastic visual effect of polygonal models. 

 In this work, we have selected an OBB for occlusion simplicity. Yet, one could expect a 

somewhat more accurate if a k-DOPs [8] will be used. Besides, the number of neighboring 

OBBs of OBB is fixed and almost equal size. This will limit the culling ratio of silhouettes. 

One could adopt adaptive neighboring OBBs. When the testing OBB is more front-facing or 

back-facing, the probability of becoming outermost silhouettes is to decrease. We can choose 

small size neighboring OBBs, since larger one could cause the representative normal tends 

towards opposite orientation with respect to testing OBB. Thus that would lead inclusion test 
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into failure, in other words, no culling occurs. 

We present a practical application, motion blur, which uses our approach to further 

processing and make pretty visual effect. We are continuing further research in these 

application areas to make the best use of outermost silhouettes. 
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Bunny Beethoven Buddha Cow Dragon 

Figure 2: Five tested models. 

Model Vertices Facets Edges 
Bunny 34837 69664 104499 
Beethoven 25005 50000 75003 
Buddha 25129 49999 75294 
Cow 25029 50037 75070 
Dragon 25362 50000 75616 

Table 1: Complexities of tested models. 

 Bunny Beethoven Buddha Cow Dragon 
Candidate silhouettes extraction stage

#SE 3445 2462 5270 2451 4790 
#CE 2366 1860 4600 2221 4277 
culling% 31.32 24.43 12.71 9.41 10.70 
error% 7.41 3.20 1.37 2.01 0.89 

Outermost silhouettes extraction stage
#BOMS 969 489 576 930 654 
#OMS 870 454 541 858 595 
#eOMS 98 35 35 71 59 
error% 10.16 7.18 6.07 7.67 9.03 
BOMST 516.94 415.76 936.72 369.22 942.54 
OMST 165.80 154.66 431.78 157.48 325.98 
speedup 3.12 2.69 2.17 2.34 2.89 

Constrained parameters
Flatness 0.271731 0.255534 0.200803 0.154298 0.212615
MVA 3.58868e-006 5.00005e-006 5.00015e-006 4.99635e-006 5.00005e-006
DL 4 4 2 2 2

Table 2: Comparison of our outermost silhouettes extraction approach and the brute-force 

approach. 
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Figure 3: Bunny. Outermost silhouettes of the brute-force approach. 

 

Figure 4: Bunny. Outermost silhouettes of our approach in which intersection objects are 

OBBs. The value of DL is four. 

 

Figure 5: Beethoven. OMS of our approach in which intersection objects are OBBs. The 

value of DL is four. 

 

Figure 6: Buddha. OMS of our approach in which intersection objects are OBBs. The value 

of DL is two. 
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Figure 7: Cow. OMS of our approach in which intersection objects are OBBs. The value of 

DL is two. 

 

Figure 8: Dragon. OMS of our approach in which intersection objects are OBBs. The value of 

DL is two. 

 

 

Figure 9: Motion blur of Bunny in which coarse outermost silhouettes create glamorous 

visual effect. 
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Figure 10: Comparison between our approach and brute force approach in different level of 

bunny. 

 


