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Abstract

Recently, the demand for multimedia service is increasing dramatically, but this service

may cause the bottleneck of Internet due to the bandwidth requirement and storage constraint

of multimedia data. Streaming proxy server, much similar to general proxy server, is a useful

architecture that can ease the load of original video server and shorten the response time while

serving clients. However, existing techniques for caching documents in general proxy server

is not appropriate for caching multimedia data that requires much more storage size. Hence,

in this paper, we propose a streaming proxy architecture that stores portions of each video

program according to its popularity. Additionally, we use Fibonacci function to divide the

video data into variable-sized segments to speedup the data allocation and cache replacement.

During the transmission of video data for each session, we also propose a transmission rate

control mechanism based on exponential function to achieve higher bandwidth utilization and

lower data loss rate. According to our preliminary analysis and simulation results, our

techniques have positive results compared with other conventional methods.
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1. Introduction

Recently, the demand for multimedia service is increasing dramatically [4]. It not only

requires much network resources, but also increases the loads of web sites. To reduce the

response time and bandwidth usage due to the multimedia application, a streaming proxy is

needed for forwarding and caching video data just like conventional proxies. However,

existing techniques for caching documents in web is not appropriate for multimedia data with

much more storage size. To improve the performance of the streaming proxy, it needs an

effective cache replacement mechanism. Thus, in this paper, we propose a streaming proxy

architecture that stores portions of video programs according to its popularity, and use

Fibonacci function to divide the video data to speedup the data allocation and cache

replacement. We also Our main goals are to increase the byte-hit ratio in the streaming system

and decrease the amount of data migrations. Meanwhile, the execution time for making

replacement decision should be acceptable compared with other methods.

Besides issues for cache replacement, we also consider the problem of transmission rate

control during each service session. Due to the large amount of data transmitted in each

session, increasing bandwidth utilization and decreasing data loss rate become much

important. To improve conventional rate control methods, we propose an Exponential rate

control mechanism to adjust the transmission rate of video data. Using this mechanism we can

increase bandwidth utilization and decrease data loss rate.



The remaining part of our paper is organized as follows. In section 2, we give related

work about cache replacement and rate control. In section 3, we describe our system service

flow and replacement scheme in detail. In section 4, we show how to improve the

transmission rate control scheme by using an exponential function. We also give preliminary

analyses of our replacement mechanism. The simulation environment and evaluating results

are illustrated in section 5. Finally, we give some conclusions and future work in section 6.

2. Fundamental Background and Related Work

In this section, we give a brief survey about some related works of streaming caching

techniques and rate control problem during actual data transmission.

2.1 Survey of Replacement Methods

In this subsection, we first introduce FGS (Fine-Grained Scalable Video Coding), which

is the video coding method used in the MPEG-4 standard [10]. Next, we introduce the prefix

caching mechanism and some replacement schemes based on it.

Because of the wide variation of available bandwidth over Internet, there is a need for

scalable video coding methods and corresponded flexible streaming approaches that are

capable of adapting to changing network conditions in real time. FGS framework strikes a

good balance between coding efficiency and scalability while maintaining a very flexible and

simple video-coding structure. FGS encoding technique is designed to cover any desired

bandwidth range while maintaining a very simple scalability structure.



Due to the video objects with much larger size, there should be come new mechanisms

to increase the hit rate and reduce the start-up delay of each request. Sen et al. [5] proposed an

idea that network service providers deploy proxies that cache the initial frames of popular

videos. Upon receiving a request for the stream, the proxy initiates transmission to the client

and simultaneously requests the remaining frames from the original video server. This

approach assumes that users see the video from the beginning and few users view the media

playback till the last segments.

Lim et al. [6] assumes that every video object in the proxy has a caching utility, which is

derived by the popularity divided by the amount of data stored in the storage. The popularity

of a stream is the total amount of data played back by clients during a time interval. Caching

or replacement of each stream data is performed in granularity of fixed size segment based on

the popularity. When the size of remaining storage is not enough, the video with smallest

caching utility is replaced.

In order to increase the efficiency of cache replacement decision, Yu [7] introduced the

exponential distribution approach for data placement. Blocks of a media object received by

the proxy server are grouped into variable-sized, distance-sensitive segments. The segment

size increases exponentially from the beginning segment. The purpose of this segmentation

mechanism is that it can quickly discard a big chunk of a cached media object that was once

hot but has since turned cold. Compared to the fix-sized allocation scheme, this method is



more efficient. On the other hand, because the quickly increasing of block size for each block,

it may reduce the refinement of caching replacement.

2.2 Survey of Rate Control Techniques

The adjusting schemes of transmission rate in TCP network nowadays mostly follow the

Additive Increase / Multiplicative Decrease (AIMD) mechanism [8]. This mechanism

generates great fluctuation and possible poor user perspectives when applying to transmitting

multimedia data. To improve the effect of AIMD, Chung et al. [9] proposed a new mechanism

to smooth the variation of transmission rate. If there is no congestion in the network, the

server gradually increases the transmit rate until the packet loss rate exceed the predefined

threshold. When network congestion occurs, the client goes into the congestion mode and

sends feedbacks to the server to decrease the transmission rate. Although this approach can

smooth the variation of rate when closing to the link bandwidth, it may still cause bandwidth

usage fluctuation and lower bandwidth utilization when the loss rate exceeds the threshold.

3. Fibonacci Replacement Scheme

3.1 Basic Service Flow

The operations of our streaming proxy server are quite similar to conventional proxy

servers, but with some differences that we will state here in detail. The service flow diagram

is shown in Figure 1. When a client wants to view a video program V1, it sends a request to

the proxy. If the proxy containing V1 is stored in its storage, it can send the data to the client
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Figure 1. System flow.

directly. If the client continues to request the remaining data that is not stored in the proxy, the

proxy can send the data to the client by “pre-fetch”. If the prefix of video data is not stored in

the storage, the proxy forwards the request to original video server. Upon redirecting the

video data to the client, the proxy decides if it is worthy to evict some data of victims and

allocate the space for V1 if necessary.

3.2 Fibonacci Replacement Scheme

In this subsection we illustrate our Fibonacci replacement scheme in detail. It contains

three steps. At first we explain why do we need a different allocation scheme and how to

divide the video data into variable-sized segments. The second one shows how to calculate

the popularity of each video title appropriately. The last step is to devise the replacement

scheme according to above two principles.
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Figure 2. Example of media segmentation.

3.2.1 Data Placement

In our data placement scheme we use variable-sized segmentation because it can reduce

the number of segments and the time for replacement decision. On the other hand, we have

explained that Yu’s segmentation approach may loss the refinement. We choose Fibonacci

function as the size distribution function to enhance the performance of Yu’s method. The

definition of Fibonacci function, Fib(), is shown as follows [11]:

Fib(i)=1 i=1,2
Fib(i)=Fib(i-1)+Fib(i-2) i>2

The function value of Fibonacci function of each index i grows as i grows, but is not as

fast as that of Exponential Distribution used in Yu’s approach. Figure 2 shows an example of

segmenting the media data into Fibonacci series. While a video object will be stored, the

segment with smaller ID is cached first. On the other hand, the last segment is evicted first

when the video object becomes the victim of replacement. There are two advantages of this

segmentation. First, this approach allows the cache to quickly discard a big trunk while

performing replacement. Second, it retains the precision and refinement of calculating the

popularity and replacement.

3.2.2 Popularity Function

Good estimation of popularity function makes the replacement scheme perform



correctly and properly. Unlike traditional caching mechanism, we concern about not only
whether the video object is requested or not at some time but also the duration of that request
session. At first, we calculate the popularity according to the summation of duration of
playback during a time interval. And then, we give higher qualities to the requests recently.
Assume that we consider the last n requests. The popularity function in our scheme can be

defined by formula (3-1).

Py - % |(playback _time _of _kn_req.)*Wi]...(3-1)

k=Nj—(n-1)
Py : Popularity of stream i at time j
N; : The number of requests at time j

Wy: The weighting value in the ky, request

3.2.3 Replacement Scheme
After introducing two steps above, we start to illustrate the replacement method in detail.

First, we define the caching utility of video V" as the popularity of J divided by the amount of
data stored in the cache. Figure 3 shows the cache update and replacement procedures
formally. The unit of allocation and replacement is variable-sized segment. When the
available size of storage is not enough, the proxy check that if there are enough victims with
smaller caching utility. If yes, the proxy will perform cache replacement. Otherwise, the
allocation of cache storage is not changed.
4. Exponential Rate Control Scheme and Preliminary Analysis

In this section, we introduce our rate control scheme during each data transmission

session. In the first subsection, we divide our rate control algorithm into four steps and



Procedure UpdateCache
Input:
Video : P
Segment ID : iSegID
The free space of cache storage : iRem_Size
Program:
Set iAmount equal to the size of the segment
if(iAmount<=iRem_Size) store the video directly
else {
if (object P is referenced for the first time) return
else ReplaceDecision(P,iSegld)

Procedure ReplaceDecision
Input :
Video : P
Segment ID : iSeglD
The free space of cache storage : iRem_Size
Program:
Set iFree to be iRem_Size
while(iFree<Seg Table[iSegld]){
find object Q with minimum caching utility
if(the caching utility of P is larger than Q)
put the last segment of Q into victim list and add free space
else break
H
if(free space is enough)Perform actual replacement
else recover the replacement

Figure 3. UpdateCache and Replacement Decision procedures.

explain them clearly. In the second section, we give a preliminary analysis of our replacement

scheme and compare with other schemes.

4.1 Exponential Rate Control Scheme

We have introduced that a better rate control mechanism can increase the bandwidth

utilization and decrease the data loss rate. There are four steps in our scheme and we illustrate

them in detail as follows.



4.1.1 Available Bandwidth Prediction

In order to avoid the fluctuation of transmission rate, we predict the maximum available

bandwidth at first. Many existing tools can be used to perform this prediction and we choose

Iperf among them to achieve this goal. Iperf [12] is a tool to measure the maximum TCP or

UDP bandwidth between two hosts. It can report bandwidth, delay jitter, and datagram loss.

Generally, we assume that the available bandwidth will not change rapidly in a short time

interval. Thus, the prediction result can be used as reliable information. We show how to

adjust our transmission scheme dynamically as follows.

4.1.2 Upper Bound Selection

After predicting the available bandwidth, the proxy can select the appropriate upper

bound of transmission rate according to the predicting result. If the available bandwidth does

not vary rapidly, the transmission rate will not go beyond this threshold and cause severe data

loss. In our method, the upper bound is chosen to be 90% of the available bandwidth. Its

advantage is that while the network condition has small variation, the transmission rate will

not exceed the maximum available bandwidth soon.

4.1.3 Video Quality Adaptation

In this subsection, we introduce how to choose the lower bound of transmission rate. If

the available bandwidth is smaller than this lower bound, the client will receive video

programs with much lower quality, even the ejection of service. AIMD and receiver-based
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mechanism only transmit the whole quality version of video data. The video data cannot be
transmitted smoothly as long as the available bandwidth is lower than the total bit rate
requirement of video data. In our design, we adopt FGS because it provides the scalability of
coding bit rate. The lower bound of transmission rate will depend on which layer the proxy
wants to provide. We compare the available bandwidth B with all bandwidth requirements Ri
for video layer i, 1 <1< m, and find i such that Ri < B < Ri+1. Thus, i is the number of layer
we want to transfer.
4.14 Design of Our Exponential Rate Control Mechanism

We have illustrated how to predict the available bandwidth and use the predicting result
to select both upper bound and lower bound. In the following, we introduce our transmission
scheme that uses exponential-like functions to control the transmission rate. We divide the
transmission into ascending mode and descending mode. The transmission rate V' in each

mode is obtained using formulas (4-1) and (4-2).

Ascending mode: V = (UB—LB)(1-2"""")+LB —-(4-1)
Descending mode: ¥ = Vio(1—0.1%2¢7") ——-=(4-2)
UB: Upper Bound
LB: Lower Bound
t: The current time

t0: The initial point of the function

Notice that the short-term available bandwidth variation will affect our transmission rate,
and long-term variation will affect not only the transmission rate but also video quality. The

change of lower bound means that we adjust the quality of the transmitted data.

11



4.2 Preliminary Analysis of Replacement Decision

In this subsection, we give a preliminary analysis of our replacement scheme. We
consider storage and time complexities in our analysis. Once a request comes, the proxy
aligns the duration of the request into segments. The number of segments and the amount of
data depend on the allocation scheme used in the proxy. Assume that it requests for video title
V1 with N blocks. Let Pi denotes the probability that the client views the video program from
the beginning and stops viewing at the iy, block, /=1, 2, ... N. By Zipf law, we can express it
as formula (4-3):

Pi=(i*- (i-1)*) / N* —(4-3)
where £ indicates the parameter of Zipf law. For example, if we specify that for each video,
60% of requests access 40% of video blocks from the beginning, then & equals to 0.6. As soon
as we get the popularity of each block, we can calculate the average amount of requested
blocks from the beginning for each request on the video by formula (4-4):

S =pl*1+p2*2+..+PN*N ---(4-4)

Thus, we can find the minimum number of blocks that are more than S and are aligned
into integral segments. Assume that the summation of blocks of the n/ segments is larger than
S in Yu’s approach. We can use the summation of exponential series to obtain n/ by formula

(4-5) directly.

2"-1)>S
nl>log,(S+1)  ----(4-5)
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The smallest integer n/ indicates the minimum number of segments that are needed to
cover the S blocks. That is, n/= |_10g oS+ 1)—‘ After obtaining n/, the amount of blocks that
will be aligned is 2"'—1.

In fix-sized allocation like Lim’s approach, the number of segments equals to ’_%—|
Therefore, the amount of blocks that is aligned is |—%—‘ *10.

Finally, in our Fibonacci allocation scheme, assume that there is n2 segments to cover S
blocks. We have

iFib(i)>S - (4-6)
P

G+45 )(“2‘/5)"2 G- ﬁ)(l‘f)"z
>

_ -1>8
245 ’
=> n2>log((S+1)x 32_:/55) / log(1 +2«/§)

The smallest integer of n2 is | og((5 +1)x 2‘/5_) /log(“‘/g)—l. After obtaining n2, the
3+4/5 2

n2
amount of blocks is regarded as ZF ib(Q) .
i=1
From the viewpoint of increasing storage utilization, the amount of blocks that the proxy
aligns should be close to the actual amount of blocks that the client requests. Assume that the
amount of blocks regarded as in Yu’s method, our method, and Lim’s method is s/, s2, and s3,
respectively. We can derive that s/ > s2 > s3 > S when S > 20.
As to analyze the time complexity of each method, we find the more the number of

segments is, the more time the cache will take to perform allocation and replacement. From

formulas above we can see that the number of segments divided for N blocks in these three

13
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Figure 4. The structure of our simulator.

allocation schemes is n/,n2, and ’_%_I , respectively. Thus, their time complexities are
corresponded to O( ﬂog oS+ 1)—|), O( hog oS+ 1)—|), and O( ’_%—‘ ), respectively. Furthermore,
we can derive that n3 > n2 > nl when S > 100.
5. Simulation Environment and Performance Evaluations

In this section, we introduce our simulation environment and evaluating results of our
schemes in some detail.
5.1 Simulation Environment

Figure 4 shows the overall structure of our simulation environment. Video objects in our
simulation follows MPEG-4 standard. The sizes of video object and the cache storage are
expressed in terms of number of media blocks. We assume that the popularity of each video

title follows Zipf distribution. The simulation parameters are shown in Table 1. We set the

14



Table 1. Simulation parameters.

Simulation Parameter Default Value
Zipf Distribution for Each Video Title 0.6
Total Cache Capacity 300
Video Size 200
Number of Video Titles 200
Zipf Parameter for Video Popularities 0.8

Zipf distribution parameter as 0.8, which means 80% of all requests reference 20% of video

duration from the beginning for some video data.

5.2 Performance Evaluations

After illustrating the architecture of our simulation environment and parameters, we

evaluate the results of our replacement and rate control schemes separately.

5.2.1 Evaluation of Replacement Scheme

In this subsection we compare our Fibonacci replacement scheme with methods

proposed by Lim and Yu. When evaluating the performance of replacement scheme, we focus

on the following metric: byte hit ratio, execution time, and the amount of data replaced.

We first compare results of these methods under different number of client requests.

Figure 5, 6, and 7 contain their results. From Figure 5, we can find that when the number of

requests increases, the execution time to perform replacement increases. Furthermore, when

the number of requests is more than 8000, the execution time of our scheme lies between

other two schemes. In average, the execution time of our method is faster than Lim’s about

88%, and the execution time of Yu’s method is faster than ours about 54%.

15
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Figure 6 shows the byte-hit ratio of these methods by varying the number of requests.

We can see that the fix-sized allocation scheme like Lim’s provides higher precision when

performing data replacement, so it can achieve higher byte-hit ratio. The byte-hit ratio of our

method is a little lower than Lim’s method and is much higher than Yu’s method.

In the design of a video proxy system, it is important that the system cannot cause lots of

data migration and replacement. Otherwise, it will increase the disk loading of the proxy
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server. The amount of data replaced for different number of requests is shown in Figure 7. In
Yu’s method, the overestimation of request duration causes frequent data migration and
increases the disk loading. Although this approach can reduce the replacement decision time,
it causes large amount of data migration while the number of requests increases. Thus, it is
not appropriate to be used for a large multimedia proxy system.
5.2.2 Evaluation of Rata Control Scheme

In this subsection we show the comparison of our exponential rate control scheme with
other methods. We focus on evaluating bandwidth utilization and loss rate during
transmission of some video layers. Figure 8 and 9 show the bandwidth usage compared with

AIMD and receiver-based method when the variance of available bandwidth is 10%. We find
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that the transmission rate in our scheme increases rapidly and slows down when it

approximates the upper bound we select. It can achieve high bandwidth utilization in the

ascending mode. In the descending mode we uses an exponential-like function to control the

decreasing of transmission rate. Therefore, the bandwidth utilization in the descending mode

is still higher than AIMD. According to our simulation results, we outperform AIMD and

receiver-based method about 85% and 43%, respectively. Besides, the loss rate of our method

is much smaller than that of AIMD.

6. Conclusion and Future Work

In this paper, we use the Fibonacci function to our allocation scheme, and calculate the

popularity function according to LFU and LRU principles. Our effective replacement scheme

with Fibonacci data allocation scheme achieves higher byte-hit rate compared with

conventional replacement mechanism. Besides, it can reduce the amount of data migration

caused by cache replacement. During the actual data transmission in each session, we also

propose the exponential transmission rate control mechanism to adjust the transmission rate.

This mechanism achieves not only higher bandwidth utilization but also lower data loss rate.

In addition to previous features, there are still several promising issues in future work.

First, if we increase the number of proxies, how to share the load to every video proxy server

in balance under storage and timing constraints becomes an important issue. Second, we may

integrate multicast technique to serve clients when they want to view the same video title.

18



Last, we assume that there is no limitation of the buffer size at the client side. Thus we can

transmit the video data as much as possible. To extend our mechanism to more realistic

solution, we should take the buffer size at the client side into consideration.
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