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Abstract 

This paper presented a design method of modular scalable HMM-based continuous speech 

recognition / convolutional decoder IP.  This IP includes three major functions: (i) Hidden Markov 

Model based continuous speech recognition (ii) convolutional decoder of error control coding (iii) 

modular scalable IP design. Since the recognition kernel of HMM-based speech recognition system 

and the decoding kernel of convolutional coding system are similar, we integrate the two functions 

in one IP by working with same hardware modules. Besides, in order to satisfy the number of 

recognizable words requirement of most speech recognition applications, we develop the modular 

scalable IP architecture that one can increase the number of recognizable words by cascoding 

connection with speech recognition IPs and extension modules. 
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1. Introduction 

A wide variety of approaches to the problem of recognizing a spoken utterance have been 

proposed and evaluated. An approach based on Hidden Markov Models (HMM) helps recognizers 

to deal with most of the variability in the way people speak. Since the HMM technology is 

well-consolidated and its effectiveness is well proved, many current speech recognizers use the 

technique of HMM for pattern matching. An HMM is a type of model based on a doubly stochastic 

process in which there is an unobservable Markov chain. It provides a way of dealing with both 

temporal structure and the variability within speech patterns representing the same perceived 

sounds. 

Convolutional coding with hard- and soft-decision Viterbi decoding can be used for error 

detection or error detection and correction. It has found application in many diverse systems such 

as majority- logic decoding, burst-error correction, concatenated coding system, and satellite 

communication systems, etc. The Viterbi algorithm provides a maximum likelihood decoding 

procedure that is practical for decoding short constraint length Convolutional codes. 

When we observe the relation between HMM-based speech recognition and Convolutional 

codes, it is easily to find out that these two applications have the same computing kernel-Viterbi 

algorithm. Hence, we design a general architecture that can work for both applications without any 

conflict to increase the practical utilization of IP’s functionality. 

The remainder of this paper is organized as follows. In Section 2, we describe the design of 

modular scalable IP. In Section 3, the combination design of speech recognition and convolution 

decoder is presented. Then, the hardware/software (HW/SW) co-verification of this IP is introduced 

in Section 4, and the experiment results are presented in Section 5. Finally, we give the conclusion 

in Section 6.  
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2. Design of Modular scalable Speech Recognition IP  

Generally, the number of recognizable words in one speech recognition IP is designed in 

constant. If one integrates speech recognition IP into his applications but the number of 

recognizable words is not enough to satisfy the requirements of system, the only one solution is 

adjusting its application to overcome this limitation.  

In our modular salable IP design, one can cascode IPs with extension modules to increase the 

number of recognizable words and does not need to re-code the IP hardware description language. 

Fig. 1 shows n IPs cascoding connection with related extension modules and the extension modules 

are shown in Fig. 2. 
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Figure 1  N speech recognition IPs cascading connection with extension modules. 
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Figure 2  The architecture of extension modules. 

The Extension module is described as follow: 

ACSEM : The ACSEM compare two minimum paths from different IPs and send the minimum 

word with its related candidate word back to each IP.  

SMEM : The SMEM switches extending control signals with And/Or gate among IPs. 

IP_DC: The IP_DC Replaces the 6 bits output of IP to 8 bits output. Hence, the number of 

recognizable words is increase to 28=256 words. 

IP_FIX: When we cascode connection more than one IP, we must add one IP_FIX to fix the 

recognized word tag. For example, if IP is connected in the fifth situation, the output of 

IP must connect five IP_FIX to fix the tag.  

IP_SEL: The IP_SEL is utilized to combine the output of two IPs into one output when the number 

of cascoded connection IPs is over two. 
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3. Combinational architecture design of speech recognition and 

Convolutional decoder 

The block diagram of IP architecture shown in Fig. 3 is divided into four major units. The 

Pipelined Transition Metric Unit (PLTMU) is only for speech recognition mode to compute 

transition metric in each state. The Hard-decision Branch Metric Unit (HDBMU) is only for 

convolutional decoding mode to compute branch metric in each state. Since these two operations 

are definitely distinct, we implement them in different hardware units. We can select convolutional 

decoding function or speech recognition function by switching these two units to work with the R/V 

signal. 

The survivor data extraction tasks in the trellis diagram of each state and the survivor path 

back tracking tasks in memory accessing operation in convolutional decoding procedure and speech 

recognition procedure are similar. Hence, the survivor data extraction tasks implemented in Parallel 

Add-Compare-Select Unit (PACSU) and survivor path back tracking tasks implemented in Survivor 

Memory Unit (SMU) are designed in general architecture that can correctly work with both 

applications.  
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Figure 3  The architecture of speech recognition/Convolutional decoder IP 
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3.1 Pipelining design of PLTMU architecture 

In speech recognition tasks, we first enumerate the probability )( λOP  of the observation 

sequence ) ,, ,( 21 ToooO K= , given the model λand can be approximated as: 
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where M is the number of Gaussian mixtures, D is the order of MFCC parameters, ijC  is the 

weight of cluster j in state i, ijkµ  is the k-th order mean vector in cluster j of state i and 2
kkσ  is the 

element [k,k] of covariance matrix.  

In order to reduce the complexity for hardware design, equation (2) is simplified as 
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Then, we take the negative logarithms in equation (2) and obtain the observation probability as: 
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Finally, by adding the observation probability and transition probability (ai,i and ai,i+1), the 

output of PLTMU, transition metric ii,φ  and 1, +iiφ , can be obtained. 
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We draw the data flow of one state in Fig. 4 accord to the Eq. (5) and the computation 

elements of one state in PLTMU include 2 multipliers, 5 adders/subtractors and 1 comparator. 
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(a)                (b) 

Figure 4  (a) The architecture of PLTMU including 10 STMU 

computation elements  (b) The data flow of STMU 

As shown in Fig. 4, if we use fully parallel architectures to design PLTMU with S state in each 

HMM to reduce the clock cycles of transition metrics computation, the number of states in PLTMU 

is 10*S. Hence, the totally number of computation elements of IP need 10*S*2 multipliers, 10*S*5 

adders and 10*S comparators.  

Consider an example with the number of states in each HMM is 4 and design the architecture 

with fully parallel techniques, there will be 40 states in one IP and the computation elements 

include 80 multipliers, 200 adders and 40 comparators. This shows that the fully parallel 

architecture design is not efficient in IP area saving.  

In order to achieve an efficient IP design with lower area utilization, we utilize one state 

computation element set to compute one HMM with S states computations. Hence, there are 10 

computation elements called STMU in PLTMU architecture shown in Fig. 4(a). 
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Besides, for improving the computation performance of STMU, we utilize the pipelining 

technique to break the summing and minimizing operation loops. The architecture of STMU can 

partition into PE1 and PE2 modules shown in Fig. 5.  
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Figure 5  STMU pipeline scheduling 

The PE1 and PE2 of STMU pipeline scheduling is drawn in Fig.6. 
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Figure 6  (a) PE1 pipeline scheduling (b) PE2 pipeline scheduling 

In PE1, the original D summation loop takes D*3 clock cycles can be reduced to D+3 clock 
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cycles after using pipeline techniques. The same improvement occurs in PE2, the original M loops 

take 2*(M+1)*(D*3) clock cycles and can be reduced to (M+2)*(D+3) clock cycles. It really more 

effect than the design without using pipeline techniques.  

 

3.2 HDBMU architecture design 

The function of HDBMU is to compute branch metrics in each state of the trellis diagram of 

convolutional decoder. The architecture of HDBMU includes one register, two inverters and four 

adders shown in Fig. 7 can be used in any code-rate-1/2, hard-decision convolutional decoder.  
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Figure 7  The architecture of HDBMU 

The branch metric equations bm00, bm01, bm10 and bm11 is illustrated as 
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3.3 PACSU architecture design 

The PACSU accumulates path metrics by adding the transition metric from PLTMU or the 

branch metrics from HDBMU with previous time step path metrics for all possible paths in trellis 

diagram and find the matching path with minimum error, which is also called survivor path, of each 

state. The data flow of each state is shown in Fig. 8.  
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Figure 8  The data flow in each state. 

Because the computing speed requirement is more important in convolutional decoder designs, 

we design the PACSU with parallel techniques to reduce the performance diminishing of feedback 

loop latency as shown in Fig. 9. 
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Figure 9  Parallel design of PACSU architecture.  

In Fig. 9, the transition metrics generated by PLTMU or branch metrics generated by HDBMU 

and previous path metric from ACSM-IF will send to TMACS-IF module and distribute to related 

ACSs according to its own trellis diagram. The architecture of ACS shown in Fig. 10 includes two 

adders, one comparator and one multiplexer. Two pairs of branch inputs in one state are compared 
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to find the minimum path metric and survivor path information. 
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Figure 10  The architecture of ACS module. 

After finished the survivor path information computed by parallel ACSs architecture, the 40 

survivor bits output from 40 ACSs will be combined into one survivor word before sending to 

SMU in ACSM-IF module. Simultaneously, current path metric in each state will update and send 

back to TMACS-IF module. Besides, in speech recognition function mode, the candidate word 

information in each time step will be sent to SMU with the survivor path information, too. 

 

3.4 SMU architecture design 

The survivor path can be regarded as a circular N block of memory as shown in Fig. 11. We 

can break the memory into four blocks, M1, M2, M3, M4 and these blocks corresponds to different 

processes of traceback called Survivor Data Write (SDW), TraceBack Read (TBR), and DeCode 

Read (DCR) describe as follows.  

1. Survivor Data Write (SDW) 

Decision bits of all states from the PACSU combined into one word are written in one of the 

memory blocks M1, M2, M3 or M4 that are used cyclically. 

2. TraceBack Read (TBR)  

The TBR processing is performed in one of the memory blocks. An arbitrary state Sn at time n 

is chosen and recalls the trellis connections in the reverse order that they were stored to trace the 



 13 

corresponding survivor path. The decision bit nS
nD  for Sn is obtained from survivor memory using 

Sn as the selection signal. The previous state of Sn in the survivor path can be computed by 

)1(|1 >>=− n
S
nn SDS n . This process will be repeated for 2*D iterations to reach the convergence 

state of survivor paths. Hence, we obtain 2*D bits of the surviving path corresponding to starting 

state Sn. These bits are not used for the output, but the oldest bit is the starting state for a DCR 

process in the next period. 

3. DeCode Read (DCR)  

The DCR is performed in one of the memory block. The output bit of DCR process is the 

correct input sequences can be decoded. In fact, the DCR and TBR processing involve the same 

memory read operation. The difference is the 2*D bit traceback outputs from TBR are the selected 

path, but the traceback outputs from DCR are the reverse order of decoder actually read out results. 
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Figure 11  Survivor memory organization. 

The dynamic scheduling among four RAM blocks for 10 periods of the traceback procedure is 

shown in Fig. 12. The horizontal axis of Fig.12 represents the time in terms of the clock cycles, and 

the vertical axis represents the column address of the memory. During SDW procedure, one 

decision path (40 bits) is written to survivor memory and a WR point is used to keep track of its 

position. Simultaneously, the RE pointer is used to keep track of the position of TBR and DCR 
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operations. The WR pointer accesses the memory in the increasing order but the RE pointer 

accesses in the opposite direction. Note that in the traceback processes, all bits in the same column 

of the memory are accessed during write operation, but only one bit needs to be accessed during 

read operation; the memory access time for both pointers is the same, but the RE pointer moves 

three times faster than the WR pointer. 
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Figure 12  Survivor memory scheduling. 

We design the SMU with survivor memory as shown in Fig. 13.  
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Figure 13  The architecture of SMU 
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4. Hardware and Software Co-Design 

The rapid hardware prototyping system is built based on hardware/software co-design methods. 

The complete co-verification environment includes, software program run in a PC, hardware 

module (IP) implemented in FPGA target board and communicate between hardware and software 

with ISA bus architecture. Since software programs can access input/output data of hardware 

module through the memory map read/write scheme of ISA, one can send test patterns generated by 

software program to hardware module and observe the simulation result to verify the functionality 

of IP. 

We draw the configuration of the prototyping board in Fig. 14.  
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Figure 14  Configuration of prototyping system. 
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4.1. Continuous Speech Recognition System 

The block diagram of the speech recognition system is shown in Fig. 15. It is separated into 

two parts, software and hardware parts. The software part is implemented with C code running on a 

PC including speech data collecting, front-end processing and parameters modeling for HMM 

training tasks. The hardware part (IP) is implemented in the FPGAs prototyping board including 

observation probability estimation and Viterbi processing computations. 
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Figure 15  The block diagram of Speech recognition system.  

 

4.2. Convolutional Coding System 

The block diagram of the Convolutional coding system is shown in Fig. 16. The software 

running on a PC includes convolution encoding and AWGN channel simulating. The encoded 

sequence is then sent to the IP on the FPGAs target board to begin the Convolutional decoding 



 17 

procedure.  
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Figure 16  The block diagram of Convolutional coding system . 

 

5. Experiment Result 

5.1  Synthesis Result 

Fig. 17 and Table 1 show the layout diagram and utilization rate of resource for our IP in 

Xilinx xcv1000 FPGA chip respectively.  

 

Figure 17  FPGA Layout diagram (Target: Xilinx xcv1000 BG580). 
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Table 1  Resource utilization of speech recognition IP.  

Resource USED MAX available %  USED 

Number of Slices 8,446 12,288 68% 

Total Number Slice Flip Flops 4,722 24,576 19% 

Total Number 4 Input LUTs 14,469 24,576 58% 

Number of bounded IOBs  41 404 10% 

Number of Block RAMs 26 32 81% 

Number of GCLKs 1 4 25% 

Number of GCLKIOBs  1 4 25% 

Total equivalent gate count 600,756 

Additional JTAG gate count for IOBs  2,016 

Minimum period 69.412ns (Maximum frequency: 14.407MHz) 

Maximum net delay 16.119ns 

 

The resource utilization listed in Table 1 shows that the maximum operating clock rate is 

above 14 MHz and available to process about 14 million trellis steps per second. 

 

5.2  Speech Recognition Rate Analysis 

In order to analyze recognition rate in our speech recognition system, we gather 200 random 

generated sentences include 1370 digits to be recognized by 10 users. The random generated 

sentences are listed in Table 2 and the analyzed results are shown in Table 3. The experimental 

results show that the average speech recognition rate is above 90%. 

  Table 2  Random generated test sentences. 

8182 6603 8012 50947 83512 

01640 618984 143988 087783 8371073 

4965109 9683484 99255333 74380880 68198973 

282890781 586124258 626539246 1821197629 5200391819 
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Table 3  Recognition rate for 10 users 

Insertion Deletion Substitution

User1 15 67 53 90.15

User2 17 60 65 89.64

User3 18 55 61 90.22

User4 16 59 58 90.29

User5 17 61 60 89.93

User6 16 57 66 89.85

User7 18 65 55 89.93

User8 15 56 60 90.44

User9 16 64 57 90.00

User10 17 57 59 90.29

Recognition Errors Word Error Rate
(%)

Samples

 

 

5.3  Bit Error Rate Analysis 

We draw the bit error rate simulation results for a (2, 1, 5) convolutional coding on an AWGN 

channel with hard-decision FPGA simulation decoding, soft-decision software simulation decoding, 

and uncoded result of our convolutional coding system. 

Figure 18  Simulation results for a (2, 1, 5) convolutional coding on an AWGN 
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channel. 
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6. Conclusion  

This speech recognition IP integrates diversity function includes continuous speech 

recognition, convolutional decoder of error control coding and IP function scalable extension. 

General architecture of module design methods make two different application domains, speech 

recognition function and convolutional coding function can work together without any conflict. 

Besides, the concept of modular scalable IP implementation overcomes the limitation of IP 

function extension. This modular scalable IP design method simultaneously releases the IP user 

from the utilization overhead in many applications. We can call it an originative design in speech 

recognition filed. 

The hardware/software co-verification prototyping system ensures the reliability of IP design. 

Of course improves the completeness of IP design with system integration. Therefore, we built the 

continuous speech recognition system and the convolutional coding system to emphasize the 

advantage of easy to integrate with our designed IP. 

 

Reference 

[1] S.-H. Choi, J.-J. Kong, “State parallel Viterbi decoder soft IP and its applications,” in Proc. of 

IEEE Region 10 Int. Conf. Electrical and Electronic Technology, TENCON, Vol. 1, pp. 

355-358, 2001. 

[2] R.V.K. Pillai, P.  D'Arcy, “On high speed add-compare-select for Viterbi decoders,” in Proc. of 

Canadian Conf. Electrical and Computer Engineering, Vol. 2, pp. 1193-1198, 2001. 

[3] F.L.Vargas, R.D.R. Fagundes, D.B. Junior, “A FPGA-based Viterbi algorithm implementation 

for speech recognition systems,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal 

Processing, Vol. 2, pp.1217-1220, 2001. 

[4] M.P.C. Fossorier, Shu Lin, “Differential trellis decoding of Convolutional codes,” in IEEE 

Trans. Information Theory, Vol. 46, Issue 3, pp.1046–1053, May 2000. 

[5] C.-W. Wang, Y.-N. Chang, “Design of Viterbi decoders with in-place state metric update and 

hybrid traceback processing,” in IEEE Workshop on Signal Processing Systems, pp. 5–15, 

2001. 


