
1

The Novel Model of Object-Oriented Data Warehouses

J. C. Shieh and H. W. Lin
Department of Informatics

Fo Guang University
160, Linwei Rd., Jiaushi, I-Lan, Taiwan

jcshieh@mail.fgu.edu.tw

Abstract
With the variety of analysis tools and heterogeneous data sources, it is getting

more important to apply object-oriented techniques to approach data warehouse
designs. In this paper, we propose a novel data model for constructing the
object-oriented data warehouses from various data sources. The model generates the
classes of the objected-oriented data warehouse according to the views of users’
requirements and the original structures. Especially, it preserves the original
inheritance relationships of objects, which has never been done well before.

Keywords: Object -oriented data warehouse, inheritance hierarchy.

1. Introduction
A data warehouse (DW) is defined as a subject oriented, integrated, nonvolatile,

and time variant collection of data in support of management decision-making process
[20]. In applications, it is a central repository of significant data collected from an
enterprise's various business systems. According to the requirements of users’
decision-makings, a data warehouse can aggregate data from heterogeneous data
sources with different points of views.

The dimensional fact mode (DFM) [11] was first proposed to develop a
complete and consistent methodology for designing data warehouses in relational
databases environments. In most relational database management systems, the
multidimensional data warehouses are constructed by star schemes [13] with a set of
dimension tables and a central fact table. Dimension tables are strongly de-normalized
and used to select the facts of interest based on the user queries [10] by data cubes. In
the relational DW, we can regard data cubes as the view sets. In order to reduce the
overall response time, materialized views [12, 8] are commonly used to pre-compute
the information that can be useful to answer frequent queries. Because of storing the
extracted data in the data warehouse, it is necessary to consider that the consistency of
data and view maintenance [2, 21, 22].

In the past, researches on data warehouse primarily focus on relational data
models. By the data multiplications, users’ requirements are more complicated to

Workshop on Databases and Software Engineering

2

spark off reduplicating data cubes. It is not only to add the cost of building relational
data warehouses but also to increase the difficulty of maintaining the consistency of
relational data warehouses. Recently the data warehouse researchers have realized the
advantages [5] of applying the object-oriented approach to build data warehouses.
Based on object-oriented software engineering [4], an object-oriented approach to
transform a start schema of a legacy data warehouse into a dimensional object model
[7] was proposed [1]. Some scientific literatures [3, 6, 14] about the design of
object-oriented data warehouses only pay efforts on specific issues. However, the
complete framework of constructing object-oriented data warehouses is absent. Chen,
Hong and Lin [16, 17, 18, 19] had proposed data models to transform the data stored
in object-oriented databases to the object-oriented data warehouses. But all the above
literatures were without retaining the inheritance relationships from data sources to
the data warehouses and pondering on the roles of applied methods. In this paper,
we will propose a novel framework to construct object-oriented data warehouses with
“inheritance” property and “include” relationship reserves. Section 2 points out the
problems of current object-oriented data warehouse designs. Our model is introduced
in Section 3. The last section comes with the conclusions.

2. Current Data Warehouses
With the complicated real environments, relational data models cannot

completely sustain some advanced internal data structures directly, such as objects
composed of other objects, multi-valued attributes, set-valued attributes, and the
relationship of generalization and specialization. Consequently, an appropriate
extension of object-oriented approaches makes data warehouse with flexibility,
extensibility, and reliability. It emphasizes the independence between objects so that
the corresponding data warehouse can provide multi-combinations to fit in with
different requirements. To cite an instance, when we draw out a line and a circle with
the length of seven centimeters and radius of three centimeters respectively from data
source to data warehouse, we can form a new cylinder object easily to satisfy the
query of portico. As a result, the notion of object-oriented components enables the
data warehouses to get information rapidly and elastically.

2.1 Uncompressed Data Model
In [15] [16], the uncompressed model was proposed to store the materialized

views of users’ requirements in an object-oriented data warehouse that maintaining
the original structures. This model replicates all the attributes and relations of
necessary classes and instances from the object-oriented data sources based on the
structures of views. The views are defined in the data warehouses and the related

3

objects are reproduced from the original object-oriented data sources.
Let C be the set of classes defined in the source databases. That is

C= },...,,{ 21 nccc , where ic is a class, ni ≤≤1 . Let ID be a set of identities, A be a set
of symbols called attribute names, T be a set of data types allowed for A, and M be a
set of processing methods. A class in an object-oriented database can be formally
defined as follows:

Definition 2.1.（CLASS）：

A class c is quadruple },,,{ cmctcacid , where >=<∈ ncacacaIDcid ,...,, 1 ,

with Acai ∈ and ni ≤≤1 , >=< nctctct ,...,1 with Tct j ∈ and nj ≤≤1 , and

Mcm ⊆ .

By referring to a class and inheriting characteristics from the classes, an instance
is created. Similarly, each instance is associated with a unique instance identifier, a set
of attributes, and a set of procedures called method.

Definition 2.2. （Instance）：

An instance },,,,{ cidtmtvtatidt = is created and inherits from a certain class
},,,{ cmctcacidcid = such that },...,,{,, 21 ntvtvtvtvcataIDtid ==∈ , with Utvi ∈

U be a set of value, and itv being of type ict ni ≤≤1 , and tm=cm.

The relationships among the classes and instances in the example can be
represented by a graph as shown in Figure 1, where a shaded circle represents a class,
a circle represents an instance, a solid line links an instance to its attribute and a
dashed line stands for an instance generated from a class.

Figure 1. A graphical representation of relationship among classes and instances in the

data source

4

A unique view identifier, a set of attribute names, a set of attribute types and a
query sentence characterize a view. The number of attributes is equal to that in the
query sentence. Formally, a view can be defined as follows:

Definition 2.3. （View）：

A view v in an object-oriented data warehouse is a quadruple
},,,{ vsvvvavid such that },...,,{, 21 nvavavavaIDvid =∈ with Avai ∈ and ni ≤≤1 ,

Tvv ⊆ , and vs is a query statement (Select S, From F, Where W), where
>=< nsssS ,...,, 21 with Asi ∈ and ni ≤≤1 , WCF ,∈ denotes the query

conditions, and Sva = .

Figure 2 gives an example of two view definitions, FreshMan and ClassList.

Figure 2. An example of views’ definitions

After the views are defined, the attributes and the relationships of the necessary
classes and instances (according the views) with their original structures are copied
from the data sources to the object-oriented data warehouses.

Definition 2.4. （Uncompressed Data Warehouse）：

An object-oriented data warehouse W is a triple {C, V, I }, where C is the set of
classes, V is the set of views, and I is the set of instances generated according to C.

Figure 3 shows an example of object-oriented data warehouse with
uncompressed data model. According to the views, as shown in Figure 2 and the data
source citing an instance in Figure 1, there are only six instances that satisfy the view
definition conditions. These six instances are thus copied to the data collector, and
saved in the object-oriented data warehouse.

5

Figure 3. A graphical representation of relationships among classes and instances in

the data warehouse

The uncompressed data model can easily provide object-oriented data
warehouse clearly when any modification is needed. Since the results of queries are
needed to recalculate, its query performance is limited. In other words, the
uncompressed model can only maintain the relationships among the instances easily
and keep the completeness of data utterly, it has to face up to the fact of poor response
time.

2.2 Compressed Data Model

The compressed data model [17, 18] combines all the attributes of different
classes defined in a view into a single newly generated class. The instances are
produced and stored in the data warehouse according to the new class.

Definition 2.5. （Compressed Data Warehouse）：

An object-oriented data warehouse W is a triple { V, VC, I }, where V is the set
of view definitions, VC is the set of classes, },...,,{ 21 ncccVC = ,where ic is a new
class from a certain view, ni ≤≤1 ; I is the set of instances generated according to
VC and V .That is, },...,,{ 21 miiiI = where ii is an instance kept in the data warehouse,

mi ≤≤1 .
As above mentions, the data warehouse creates new classes to represent the

satisfied the views. Each new class is named by a string beginning with the
character ”C” and concatenated by its view identifier. The attributes of new classes
are formed in the definition of the views, va and vv. As shown in Figure 4, two new
classes in the data warehouse, CFreshMan and CClasses are derived from the two
views in Figure 3. The class CFreshMan corresponding to the va of the FreshMan
view has three attributes, DeptName, FirstName, and LastName.

6

Figure 4. A graphical representation of data warehouse classes

After the new classes are created through a data collector, the data warehouse
acquires the needed data to generate their corresponding instances. The class identifier
plus “_” and the identifier of the instance name the new instance in the data source.
The graphic representation of the data warehouse is shown in Figure 5:

Figure 5. A graphical representation of compressed data warehouse

The performance of its queries will be better than that of the uncompressed
model since the classes and instances are stored according to the views’ definitions.
Since the referential relationships of the classes are hidden in the data warehouse, the
compressed model does not record the relationships of original classes and has a
higher security than the uncompressed data model. Comparatively, the procedure of
maintaining views with the compressed data model is a little more complex than that
with the uncompressed data model since the instances are more complicated.

2.3 Composite Data Model

The composite data model [19] has the advantages of both previous data models.

7

The data warehouse not only stores instances that are according to the new classes but
also copies necessary class structures from data sources.

Definition 2.6. （Composite Data Warehouse）：
An object-oriented data warehouse W is a quadruple {V, C, VC, I}, where V is

the set of view definitions, C is the set of classes defined in the source database, VC is
a set of classes, and I is the set of instances sent from data sources and generated from
the source databases according VC, V and C .

Assume that the “select“ part of view FreshMan definition in Figure 2 are
changed as below:
Select

StudClass.ClassID
StudName.

According to the composite data model, all the attributes of different classes defined
in a view are copied into the specific class and partially keep necessary classes
hierarchy relationships, as shown in Figure 6.

Figure 6. A graphical representation of composite data warehouse

The query performance and security are equal to the compressed model since
the classes and instances are stored with respect to the views’ definitions. Moreover,
the data model keeps the original structures partially; the data completeness and
maintenance performance are thus better than that of the compressed data model.

Undeniably, the object-oriented data warehouses proposed by Chen, Hong and
Lin [15, 16, 17, 18, 19] really provide object-oriented environments with innovative
and serviceable frameworks. Nevertheless, none of the data models can cope with the
inherited data well. For real application considerations, it is impossible to ignore such
important role which “inheritance” plays. Here is an inheritance example of an

8

object-oriented database schema as depicted in Figure 7. In the figure, each node
represents a class. A node is sub-divided into three levels containing the name of the
class, the attributes and the methods respectively. The methods and attributes in the
rectangles are inherited from super-classes by means of the bold arcs. Evidently, the
previous data models of constructing object-oriented data warehouses are incapable of
dealing with the inheritance issues caused by “Researcher_Student” class. Thus, the
models will result in incomplete object-oriented data warehouses. In the next section,
we will propose a novel one to resolve the problems.

Figure 7. An example of inheritance hierarchy in the data source

9

3. The Novel Data Model

Let C be the set of classes defined in the source databases. That is
C= },...,,{ 21 nccc , where ic is a class, ni ≤≤1 . Let CID be a set of class identities, A
be an attribute set of class set, T be a set of data types allowed for A, and M be a set of
processing methods, CP is a set of parent IDs’. We formally define a class in an
object-oriented database as follows:

Definition 3.1.（Class）：

A class c is quintet >< cpcmctcacid ,,,, , where CIDcid ∈ ; CAIcaca i Υ=

with Acai ∈ ni ≤≤1 , and }__{ CPofattributesCAI Υ= , CATctct j Υ= with

Tct j ∈ and nj ≤≤1 , and }___{ CPoftypeattributeCAT Υ= , Υ means

“combination”; CMIcmcm i Υ= , with Mcmi ∈ ni ≤≤1 , and
}__{ CPofmethodsCMI Υ= },...,{ 21 ncidcidcidcp = with CIDcidi ∈ and

ni ≤≤1 .

Example 3.1.
As shown in Figure 7, there are six classes, which are Person, Researcher,

Consultant, Student, Researcher_Part_Time and Researcher_Student. That is CID=
{Person, Researcher, Consultant,Student, Researcher_Part_Time, Researcher-
_Student}, A={{name,date_of_birth}, {specialization,salary}, {specialization},
{faculty}, {percentage_time}, {} }. As the class “Person” in this example, cid =
Person, ca= {name, date_of_birth}, ct= {STRING, DATE}, cm= {age()} and cp={}; in
addition, the class Researcher, cid = Researcher, cai= {specialization, salary} and
CAI={name, date_of_birth} , therefore ca={specialization, salary, name,
date_of_birth}, ct= {STRING, NUMBER, STRING, DATE}, cmi= {monthly_salary()},
CMI= {age()}, CM= {monthly_salary(), age()} and cp={Person}.

Similarly, by referring to a class, each instance is created and inherits the
characteristics from it.

Definition 3.2. （Instance）：

An instance >=< tmtvtacidtidt ,,,, is created and inherits characteristics from a
class >=< cpcmctcacidcid ,,,, such that },...,,{,, 21 ntvtvtvtvcataTIDtid ==∈ ,
where Utvi ∈ , U be a set of value, and itv being of type ict , ni ≤≤1 . That is, itv
denotes the value of attribute ica and if ica is a simple attribute, then itv consists
of a set of elements from U; or if inii cacaca ,....,1= is a composite attribute, then itv

10

consists of a set of the form],...,[1 ini tvtv , where each component inikitvik ≤≤1, is
defined as 1, and tm=cm.

Example 3.2.

There are two instances created by referring to the class “Person”. One is called
PO1 with attribute values (Mike, 1973/03/11), that is, tid= PO1, cid=Person, ta= ca=
{name, date_of_birth}, tv= {Mike, 1973/03/11}. The other is called PO2 with values
(Susun, 1983/05/21). Thus, there are three instances RO1, RO2, RO3, referring to the
class “Researcher”; two instances, CO1, CO2, referring to the class “Consultant”; four
instances, SO1, SO2, SO3, SO4, referring to the class “Student”; three instances, RPTO1,
RPTO2, RPTO3, referring to the class “Reserarcher_Part_Time”; two instances, RSO1,
RSO2, referring to the class “Researcer_Student”. Similarly, the RO1, RO2, RO3 are
with attribute values (Michael, 1953/01/17, Computer, 40000), (Robert, 1963/02/15,
Finance, 37000), (Peter, 1975/12/25, Finance, 23000) respectively. Continuously, the
values of RPTO1, RPTO2, RPTO3, are (Michelangelo, 1973/01/11, Computer, 20000,
70%), (Christina, 1975/01/01, Computer, 25000, 90%), (Floe, 1972/11/21, Computer,
10000, 20%). Finally, two instances, RSO1, RSO2, are created as below:
<RSO1, Researcher_Student, {name, date_of_birth, specialization, salary,
percentage_time, faculty}, {May, 1980/11/21, Computer, 25000, 100%, MIS},
{age(),month_salary()}>
<RSO2, Researcher_Student, {name, date_of_birth, specialization, salary,
percentage_time, faculty}, {Amy, 1979/05/21, Computer, 10000, 20%, IE},
{age(),month_salary()}>

Definition 3.3. （View）：

A view v in an object-oriented data warehouse takes on as the form:
View vid

{ Select S

From [only] F | all F[(except [all] F’)]
[Where H]};

where ,VIDvid ∈ >=< nsssS ,...,, 21 with casi ∈ and ni ≤≤1 , CFCF ∈∈ ', ,
H denotes the query conditions.

If we designate ‘all’ in the ‘From’ sentence, it signifies that we should search
not only F but also its subclass. By contraries, ‘only’ means that we should select F
purely. On the side, if we desired to select from all F but a subclass is in the inherited
hierarchy, ‘except’ is added. It deserves to mention that the instances that meet the
“Where” conditions for views must be drawn out under the local class hierarchy.

11

Example 3.3.
View Count_Salary

{Select name, salary, percentage_time
 From all Person

Where salary>25,000};
The ‘salary’ attribute is the local attribute in the ‘Researcher’ class. In other words,
the instances that we have selected from the data source should be the instances
inherited from the local class, “Researcher”, or from the subclasses,
“Researcher_Part_Time” and “Researcher_Student”. In this example, the instances
RO1, RO2, RPTO2, RSO1 satisfied the conditions are selected.

After having the view’s definition, the data warehouse can be constructed as
follows:

Definition 3.4. （Object-Oriented Data Warehouse）：

An object-oriented data warehouse W is a triple < V, I, VIC >. Let V be the set of
view definitions; I be the set of instances generated from a certain view, and VIC be
the set of new classes referring to the views selected from the attributes and original
structures.

The difference between Chen et al.’s model and the proposed model is what the
roles the selected instances play. Whether a compressed or a composite data model is
proposed, the data warehouse is built un-completely until the new classes’ attribute
values are copied by the data collector from the data sources to the data repository.
That is, the first process is to create all new classes by congregating attributes that
come from different classes referenced by selected views. Then, using these new
classes, the data collector can filter and copy the relative instances’ attribute values
from the data sources. Obviously, the new classes or instances created from the data
warehouse are more complex and haphazard. However, our proposed data warehouse
instead makes use of the “Where” conditions of the views to select the qualified
instances initially and then employs the selected instances to match the original class
structure of each instance. Thus we can construct a new inherited architecture to meet
every kind of view. We conclude the following steps to construct it:
Step 1: Find out the instances that satisfy the where conditions.
Step 2: List all attributes that the instances select.
Step 3:According to the classes that the instances belong to, classify these instances

and assign each attribute by inherited structures to construct the relationships
of classes in the data warehouse.

Step 4: Store the values of the instances in accordance with new hierarchies.

12

Example 3.4.
In Example 3.3, the instances RO1, RO2, RPTO2, RSO1 satisfy the selected

“Where” conditions. So there are four instances and twelve attributes (RO1.name,
RO1.salary, RO1.pertantage_time, RO2.name, RO2.salary, RO2.pertantage_time,
RPTO2.name, RPTO2.salary, RPTO2.pertantage_time, RSO1.name, RSO1.salary,
RSO1.pertantage_time) in the data warehouse. Notice that some attributes’ values may
be ‘NULL’. In order to keep the inherited relationships, the data warehouse is built by
referring to the hierarchical frameworks in the data sources. If the value of instance
attribute is not ‘Null’, we congregate the attributes in the super-classes. Similarly, the
attributes of the subclasses are massed except the attributes of parents’. Therefore, the
local attributes in the “C_Researcher” class are name and salary; the attribute in the
“C_Researcher_Part_Time” is production_bouns that in the “C_Researcher_Student”
is ‘NULL’. Figure 8 shows the inheritance hierarchy in the data warehouse.

Figure 8. An example of the inheritance hierarchy in the data warehouse

The novel model can manifest the hierarchy in the data warehouse to make
complicated data well regulated. Through redefining the relationships of classes and
their attributes, the proposed data warehouse deals with not only inheritance
hierarchies but also the issues of derived attributes.

4. Conclusion
In this paper, we have proposed a novel data model for constructing an

object-oriented data warehouse importantly to preserve the original inherited
hierarchies of the data sources. It also makes the data warehouses concise and simple

13

thus improves the efficiency in data retrieval. We expect that the model can built the
object-oriented data warehouses more complete.

Reference
[1] Aluizio Haendchen Filho, Hercules A. Prado, Simao S. Toscani, ”Evolving a

Legacy Data Warehouse System to an Object-Oriented Architecture”, The
International Conference on Computer Science Society of the Chilean 2000,
pp.32-40

[2] D.A., A.EI, A.Abbadi Singh and T.Yurek, “Efficient View Maintenance at Data
Warehouses”, ACM SIGMOD AZ USA, 1997.

[3] H.A..Kuno and E.A. Rundensteiner, “Incremental Maintenance of Materialized
Object-Oriented Views in MultiView : Strategies and Performance Evalution”,
IEEE Transactions on Knowledge and Data Engineering, Vol.10,No.5, Oct.1998.

[4] Ivar Jacobson, “Object-Oriented Software Engineering: a Use Case Driven
Approach”, Addison-Wesley, New York, 1992.

[5] Joseph M. Firestone, “A system approach to Dimensional Modeling in Data
Marts”, Executive Information Systems, Inc., 1997. http://dkms.com/
DataWarehousing.htm

[6] Joseph M. Firestone, “Object-Oriented Data Warehousing”, White Paper No. 5.
Executive Information Systems, Inc., 1997. http://dkms.com/OODW2.htm

[7] Joseph M. Firestone, “Dimensional Object Modeling”, Executive Information
Systems, Inc., 1998. http://dkms.com/DOM.htm

[8] J. Yang, K. Karlapalem, Q. Li, “A Framework for Designing Materialized View in
Data Warehousing Environment”, IEEE, May, 1997.

[9] M. Golfarelli, D. Maio, and S. Rizzi, “Conceptual design of data warehouse from
E/R schemes”, Proc. Hawaii International Conference on System Sciences-31,
VII, Kona, Hawaii, 1998, pp334-343.

[10] M. Golfarelli, D. Maio, and S. Rizzi, “The Dimensional Fact Model: A
Conceptual Model for Data Warehouse”, Invited Paper, International Journal of
Cooperative Information Systems, vol. 7, n. 2&3, 1998.

[11] M. Golfarelli, S. Rizzi, “A Methodological Framework for Data Warehouse
Design”, Proceedings ACM First International Workshop on Data Warehouse and
OLAP（DOLAP）, Washington, 1998.

[12] M. Indulska, “Shared Result Identification for Materialized View Selection”,
IEEE, July, 1999.

[13] R. Kimball, “The data warehouse toolkit”, John Wiley & Sons, 1996.
[14] William A. Giovinazzo, “Object-Oriented Data Warehouse Design”, PH PTR

ISBN 0-13-085081-0, April 2000.

14

[15] W. C. Chen, T. P. Hong and W. Y. Lin, "View maintenance in an object-oriented
data warehouse", Proceedings of the Fourth International Conference on
Computer Science and Informatics, North Carolina, USA, 1998, pp353-356.

[16] W. C. Chen, W. Y. Lin and T. P. Hong, "Object-oriented data warehousing and its
incremental view maintenance", Proceedings of the Ninth Workshop on
Object-Oriented Technology and Applications, Kaohsiung, Taiwan, 1998,
pp139-144.

[17] W. C. Chen, T. P. Hong and W. Y. Lin, “Using the compressed data model in
Object-oriented data warehousing", IEEE SMC’99 Conference on proceedings
1999, pp768-772.

[18] W. C. Chen, T. P. Hong and W. Y. Lin, "Three maintenance algorithms for the
compressed object-oriented data model", International Journal of Computers and
Applications, 2000.

[19] W. C. Chen, T. P. Hong and W. Y. Lin, "A Composite Data Model in
Object-Oriented Data Warehousing", The 31st International Conference on
Technology of Object-Oriented Languages & Systems, 1999, pp. 400-406.

[20] W.H. Inmon. “Building the Data Warehouse”, Second Edition, Wiley Comp,
ISBN n 0471-14161-5, USA, 1996.

[21] Y. Zhuge, H. Garcia-Molina and J.L. Wiener, “The Strobe Algorithms for
Multi-Source Warehouse Consistency”, Proc. Conference on parallel and
Distributed Information Systems, Miami Beach, FL, 1996.

[22] Y. Zhuge, H. Garcia-Molina and J.L. Wiener, “Consistency algorithms for
multi-source warehouse view maintenance”, Journal of Distributed and Parallel
Databases, Vol. 6, No.1, 1998, pp7-40.

