
 1

Mining Complete User Moving Paths in a Mobile Environment

Shin-Mu Tseng W. C. Chan

Department of Computer Science and Information Engineering
National Cheng Kung University, Tainan, Taiwan, R.O.C.

tsengsm@mail.ncku.edu.tw

Abstract. In a mobile computing environment, analyzing the moving patterns of the
mobile users can help understand the behavior of the users. Although a number of re-
searches have been done on the analysis of moving patterns of users, they focused pri-
marily on location tracking or discovering the cyclic moving patterns. However, in real
applications, there exist more types of user moving patterns that have not been explored
yet. In this paper, we propose a new data mining method that can discover complete
moving paths of the users, which include the cyclic, non-cyclic and backward patterns in
terms of user’s movement records.

1 Introduction

With the rapid development of the wireless communication techniques, more and more users

subscribe various kinds of mobile services in a mobile environment due to the advantages of

easy accesses. When a user is roaming in a mobile environment, the information relevant to

the movement of the user will be recorded in the system log. From the business standpoint,

valuable information regarding the user’s moving behavior may exist in the system log.

Therefore, it is an important topic to discover the moving patters of the mobile users from

the system log, such that personalized services could be provided by utilizing the discovered

moving behavior of users. In past studies, some methods had been proposed for mining the

users’ moving patterns. In [5], a probability-based approach was proposed to build a model

for predicting the movement of users. Moreover, a data delivery strategy was developed

based on the prediction model such that the latency for the mobile users to access the inter-

ested information could be minimized. However, the probability-based approach will en-

counter the efficiency problem when the input database becomes very large.

In recent years, data mining techniques have been developed rapidly and applied in a wide

range of applications since they can efficiently discover valuable information hidden in large

databases. Some well-known data mining techniques including association rules discovery [1,

 2

4] and sequence patters discovery [2, 8, 10] have been applied successfully to various kinds

of applications like basket analysis and navigation pattern analysis for web browsing. How-

ever, few studies have used data mining techniques to analyze the moving patterns of mobile

users.

To our best knowledge, one of the few studies working on mining user moving patterns

was done by Peng et al. [9]. An algorithm named LM was proposed to discover cyclic mov-

ing patterns of users, which mean the cyclic paths an user go through with the same starting

and ending location. Although the LM method proposed in [9] was useful for finding users’

cyclic moving patterns, there exist more types of patterns to be discovered from users’ mov-

ing log in a mobile environment.

Consider a network as shown in Figure 1, in which each node represents a base station.

Table 1 lists four example moving sequences of mobile users. For example, the moving se-

quence MS1, <g, b, f, i, f, g>, means the sequence an user starts from g, moving through b, f,

i, and backward to f and g consecutively. By using LM method [9] to analyze the moving

sequences as listed in Table 1 (setting the threshold ξ= 50%), some cyclic moving patterns

can be found as shown in Table 2. Although this provides useful information regarding

user’s moving behavior, some problems arise. First, in addition to the cyclic moving patterns,

there exist frequent moving paths that are the superset of the cyclic moving patterns. Second,

although Peng et al. [9] pointed out the backward pattern problem as incurred in [2], this

problem was not resolved in LM method. For example, the discovered moving patterns MP1,

{g, b} in Table 2, actually comes from the moving sequences MS1 and MS3 as in Table 1.

However, it was not differentiated that the moving path g → b was a forward movement in

MS1 but a backward movement in MS3.

 Figure 1. A network architecture.

 3

In this paper, we propose a new data mining method named CMP (Complete Moving

Path)-mining, which can resolve the problems mentioned above. CMP-mining uses a special

data structure named CMS-tree to efficiently discover complete moving paths of users,

which contain all of cyclic, non-cyclic and backward patterns. Through empirical evaluation,

CMP-mining was also shown to have good performance in terms of efficiency and scalabil-

ity.

The rest of the paper is organized as follows: In section 2, we describe the definition of

the studied problem; our new data mining method is introduced in Section 3; empirical

evaluation results for the proposed method is described in Section 4; a conclusion is made in

Section 5.

2 Problem Descriptions

In this work, the architecture for the mobile system is based on the two level standard of

IS-41/GSM [7], and the two-tier architecture including HLR (home location register) and

VLR (visitor location register) is used for database management. For each mobile user, the

relevant information and the current location are stored in the HLR databases via the regis-

tration operation. Whenever a registration operation is performed in reflecting the movement

of a user, a moving record is recorded in the “moving log” with the form of (VLRold,

VRLnew), which indicates that the user has moved from the VLRold to VRLnew. The old VLR

is initialized as NULL for a new user task. Hence, the complete moving sequences of all

users can be obtained from the moving log.

MSid DMS

MS1 <g, b, f, i, f, g>

MS2 <g, k, o, l, k,

MS3 <b, f, i, f, g, b>

MS4 <f, k, o, l, k, f>

Table 1. Example moving sequences.

MPid Moving Pat-

MP1 {g, b}

MP2 {k, o, l, k}

MP3 {b, f, i, f, g}

Table 2. Discovered moving patterns by LM.

 4

Under this architecture, the problem we want to resolve is to discover the maximal com-

plete moving path, which is different from those discovered by MF algorithm [2] or MM

algorithm [9]. Consider the example of user movement in Figure 2, in which the user starts

from location a, and moves to b and c, then backward to b and a, finally moves to e as end

stop. By using MF algorithm, the discovered moving sequence will be {abc, ae} since the

backward movement will not be taken into considerations. If the MM algorithm is applied,

the moving sequence discovered will be {abcba} since it focuses on finding the cyclic mov-

ing patterns. Being different from the previous approaches, we will discover the frequent

complete moving path, which will be {abCBae}, where the upper case indicates a backward

movement. This contains all of the non-cyclic, cyclic and backward moving patterns.

Figure 2. Example moving behavior.

3 Proposed Method

We propose a new method, namely Complete Moving Path (CMP)-mining, for discover-

ing the complete moving paths of mobile users as described in Section 2. The CMP-mining

method is based on the concept of WAP (Web Access Patterns)-mining [8] and augmented

with several new ideas. The CMP-mining method consists of three steps: 1) Construction of

Complete Moving Sequence (CMS)-tree: A special data structure named CMS-tree is con-

structed to record the moving sequences of all users by reading from the moving log, 2) Min-

ing of complete moving paths: Discover the frequent complete moving paths based on the

constructed CMS-tree and the specified minimum support, 3) Generation of the maximal

complete moving paths: Collecting and integrating the frequent moving paths discovered in

Step 2 and generate the maximal complete moving paths as the final output. It is obvious that

 5

Step 3 is trivial once step 2 is done. For example, suppose four frequent complete moving

paths namely {Ae, cg, Gh, cGh} were discovered in step 2, only {Ae, Gh, cGh} will be gen-

erated as the maximal complete moving paths since cg is the substring of cGh. Hence, we

will describe only the details of step 1 and step 2 in the following sections.

3.1 Construction of CMS-tree

The main purpose of constructing CMS-tree is to aggregate the user’s moving records in

the moving log into the complete moving sequences such that the task of discovering fre-

quent complete moving paths can be done efficiently. The segment range in the moving log

to form a complete moving path is application dependent and can be determined by the sys-

tem administrator. The main advantage of CMS-tree is that all information for mining the

maximal complete moving paths will be stored into it after one database scan of the original

moving log. There exist some basic properties in constructing the CMS-tree:

1. The moving log will be scanned once only to transform the needed information into the

CMS-tree.

2. For a moving record <VLRold, VRLnew>, the movement is considered as a backward if

VLRold appears later than VRLnew in the current moving sequence segment.

3. The backward information will be recorded in the parent node of the CMS-tree.

4. A header table is used to record the starting location of a moving sequence. When a

node is inserted into the CMS-tree initially and linked to the header table, there is no

need to consider the backward information of that node. This is because there will be no

further information to be recorded back for the last node in a moving sequence.

We illustrate how CMS-tree is constructed by using a running example. Suppose a mov-

ing log is obtained as in Table 3 under the network architecture as in Figure 1. First of all, a

root node is created for the CMS-tree and its identifier is set as NULL. Then, the moving log

is scanned record by record. For each moving record <VLRold, VRLnew>, a new task is initi-

ated and the last task is terminated if the value for VLRold is NULL (as the assumption in

 6

Section 2). Each moving record is thus transformed into a path in the CMS-tree. Hence, a

moving path <g, f, K, f, e> will be generated first in the CMS-tree, where the upper-case

letter represents a backward information. Then, three moving paths <g, f, K, g, h>, <b, g, k,

F, g> and <b, f, K, F, b> will be generated into the CMS-tree consecutively. Finally, a com-

plete CMS-tree is constructed as shown in Figure 3. The algorithm for constructing CMS-

tree is as shown in Figure 4.

Table 3. A moving log file.

(VLRold, VRLnew) (VLRold, VRLnew)
(NULL, g) (NULL, b)

(g, f) (b, g)
(f, k) (g, k)
(k, f) (k, f)
(f, e) (f, g)

(NULL, g) (NULL, b)
(g, f) (b, f)
(f, k) (f, k)
(k, g) (k, f)
(g, h) (f, b)

Figure 3. Constructed CMS-tree for Table 3.

 7

Algorithm CMS-tree
Input: a moving logs (ML).
Output: a complete moving sequences tree, CMS-tree.
Method:

Procedure CMS-tree (ML)
{

/*
Y is used to keep the current maximal moving sequence. Y and tempC to NULL for ini-
tialization.
*/

 create a root node for CMS-tree;
 let ptr point to the root node of CMS-tree;
 for each moving pair (oi, ni) on ML {
 set A = oi and B = ni;
 if (A == NULL) {
 if (tempC == NULL) {
 set tempC = B;
 }
 else {
 insert_tree (tempC, ptr);
 let ptr point to the root node of

CMS-tree;
 set Y = NULL and tmpC = B;
 }
 }
 else {
 set P = appearance (A, Y);
 set Q = appearance (B, Y);
 if (P > Q) { /* A backward to B */
 A = upper_case (A);
 append A to string Y;
 insert_tree (A, ptr);
 }
 else {
 append A to string Y;
 insert_tree (A, ptr);
 }
 tempC = B;
 }
 }
}

 8

Procedure. appearance
Input: node p and string Y.
output: return L.
Method: call appearance (p, Y).

Procedure appearance (p, Y)
{

/*
L is the index for the first position p in Y. If p doesn't appear in Y, then L = |Y| + 1
*/

 set L = 1;
 for each element yi in Y {
 if (p == yi) {
 return L;
 }
 add 1 to L;
 }
 return L;
}

Procedure. insert_tree
Input: node p and the pointer of one node in CMS-tree, prt.
Output: NULL.
Method:

Procedure insert_tree (p, prt)
{
 if (ptr has a child N and N.id == p.id) {
 add 1 to N's count;
 }
 else {
 create a new node N with count 1;
 insert N into the header table (without care about backward);
 }
 let ptr point to N;
}

Figure 4. CMS-tree algorithm.

3.2 CMP-Mining

The algorithm of CMP-mining is as shown in Figure 5, which finds out the frequent com-

plete moving paths from the constructed CMS-tree and the specified minimum support by

using a recursive approach.

 9

Algorithm CMP-mining
Input: CMS-tree constructed based on Algorithm 1 and a minimum support s
Output: the set of frequent complete moving path CMP
Method:

Procedure CMP-mining (Tree, α) {
 for each ai in the header of Tree {
 If (ai.support≧s) {

generate pattern β = ai∪α with support = ai.support;
construct β's conditional pattern base and then β's conditional CMS-tree Treeβ;

 if (Treeβ≠null) {
 call CMP-mining(Treeβ, β);
 }
 else {
 add α to CMP;
 } } } }

Figure 5. CMP-mining algorithm.

To illustrate how CMP-mining algorithm works, suppose the minimum support is set as

50% and the CMS-tree has been constructed as in Figure 3. Since the counts of node f ex-

ceeds the minimum support, we may want to find out the complete moving paths with node f.

This can be easily done by tracking the node link in the header table and the CMS-tree.

Consequently, the following five moving sequences can be obtained: <g:2>, <g:0, f:1, K:1>,

<b:1, g:1, k:1>, <b:1> and <b:0, f:1, K:1>, where the number following “:” represents the

counts of that node. Then, a conditional CMS-tree is built by using the obtained moving

sequences in a way similar to constructing CMS-tree. The only differences are as follows:

1. Since the final output must be complete moving paths, only the parent nodes of the

nodes tracked in CMS-tree or conditional CMS-tree are qualified for insertion into the

header table. In the above example, these nodes are <g>, <K>, <k>, and <K>.

2. To differentiate the forward and backward movement, two different nodes will be cre-

ated in the header table for the same location identifier if they contain forward and

backward movement information, respectively.

Figure 6 shows the conditional CMS-tree based on node f. After the recursive execution of

CMP-mining algorithm, give frequent complete moving path will be discovered, namely {g,

 10

f}, {f, K, f}, {K, f}, {g, f, k} and {f, k}. Take the path {f, K, f} as example, it indicates that

mobile users are likely to start a task from location f, moving through location k, and return

to f. Table 4 also shows the final moving paths after executing the step of generating the

maximal complete moving paths.

Figure 6. f-based conditional CMS-tree.

Table 4. Maximal complete moving paths.

Maximal complete moving paths
{f, K, f}
{K, f}

{g, f, k}

4 Empirical Results

Several experiments were conducted to evaluate the performance of the CMP-mining

method. The main focus is on evaluating the scalability of the CMP-mining method through

simulations.

4.1 Simulation Model

Table 5 shows the parameters used in the simulation model. For simplicity, we model the

mobile computing system as a 4*4 mesh [11], where there exists a server (VLR) in each

node. Since our focus is on discovering complete moving paths from moving log, it suffixes

 11

to consider only the number of input moving sequences and ignore the modeling of number

of mobile users. The number of moving sequences is modeled by parameter D, and the pa-

rameters minlen and maxlen control the minimal and maximal lengths of moving path for a

mobile user. We use a probabilistic model to simulate the moving behavior of the mobile

users. Initially a node server is chosen randomly as the starting location, then an user is as-

sumed to move backward to the last location with probability Pback, which is in exponential

distribution with unit mean. Moreover, the users are assumed to move forward to other loca-

tions with probability Pother, which is equal to (1- Pback) / (N-1).

Table 5. Parameters for the simulation model.

Parameter Meaning
Network Architec-

ture 4×4 mesh

minlen minimal length of moving path
maxlen maximal length of moving path

Pback backward probability for user movement
Pother forward probability for user movement
N number of reachable server
D number of moving sequences

Table 6 shows the base settings for the simulation parameters. We varied some major

parameters in following experiments for evaluating the performance of the proposed algo-

rithm under different system conditions. Section 4.2 describes the results by varying the data

size; the effects of varying the value of minimum support on execution time and the number

of discovered paths are given in Section 4.3 and Section 4.4, respectively.

Table 6. Base parameters.
Parameter Default value

minlen 6
maxlen 10

Pback Exponential distribution
Pother （1－Pback）/（n-1）

n 4

 12

4.2 Effect of Varying Data Size

In this experiment, we measure the execution time of CMP-mining under different data

size by varying the number of logged moving paths from 200K to 1000K. The other parame-

ters are set as in Table 6 and the minimum support value is set as 0.25%. Figure 7 shows the

experimental results, with both the execution time for CMS-tree construction and CMP-

mining. It is observed that our method executes scaleably under increased data size, in both

part of CMS-tree construction and CMP-mining.

Figure 7. Effect of varying data size.

4.3 Effect of Varying Minimum Support

 In this experiment, we measure the execution time of CMP-mining and the number of

discovered paths under different settings of minimum support, which was varied from 0.01%

to 0.3%. The other parameters are kept the same as in Table 6. Figure 8 shows the experi-

mental results. It is observed that the execution time of CMP-mining increases when the

support threshold becomes smaller. In particular, there exists a sharp rise when support

threshold is changed from 0.1% to 0.02%. By examining the properties of discovered mov-

ing paths, we found that their lengths decrease under smaller support threshold (the average

path length varies from 4 to 2 when the support threshold is decreased from 0.1% to 0.02%).

Meanwhile, as shown in Figure 9, the number of discovered moving paths increases with

 13

support threshold decreased. In overall, our method still shows scalability under different

settings of support threshold.

Figure 8. The run time under varied support threshold.

Figure 9. The number of moving paths under varied support threshold.

5 Conclusions and Future Work

A new method, namely CMP-mining, is proposed in this research for discovering the com-

plete moving paths of users in a moving environment. By using a special data structure

named CMS-tree, the moving sequences of all users can be recorded by reading the dataset

 14

only once, and the frequent complete moving paths can be discovered efficiently based on

the constructed CMS-tree. Through empirical evaluation, the proposed method was shown to

deliver good scalability under different system conditions like varied data size and support

threshold. In future work, we will explore two further issues: 1) The memory problem in

constructing CMS-tree when the dataset is extremely large, 2) More detailed performance

evaluation of CMP-mining under various conditions in a mobile system.

References

1. R. Agrawal and R.Srikant, “Fast Algorithm for Mining Association Rules in Large Data-
base” In Proceedings of International Conference on Very Large Data Bases, pp.478-
499, 1994.

2. Ming-Syan Chen, Jiawei Han, and Philip S. Yu, “Data mining : An Overview from a
Database Perspective.” IEEE Transactions on Knowledge and Data Engineering,Vol. 8,
No.6, December 1996.

3. M. S. Chen, J. S. Park and P. S. Yu. “Efficient Data Mining for Path Traversal Patterns”
IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 2, pp. 209-221,
1998.

4. J. Han, J. Pei, and Y. Yin, “ Mining Frequent Patterns without Candidate Generation“, In
Proceedings 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00),
2000.

5. C. Lee and C. C.Chen, “A Data Delivery Strategy in Ubiquitous Computing Systems” In
Proceedings of the 7th International Conference on Database Systems for Advanced
Applications (DASFAA 2001),p.p. 210-217,2001.

6. Y.-B. Lin. “Modeling Techniques for Large-Scale PCS Networks.” IEEE Communica-
tion Magazine, 35(2):102-107, February 1997.

7. ELA/TLA, “Cellular Radio Telecommunication Intersystem Operations”, 1991.
8. J. Pei, J. Han, Mortazavi-Asl, B., and Zhu, H. “Mining Access Pattern efficiently from

Web logs” In Proceedings of the 2000 Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 396-407, 2000.

9. W. C. Peng and M. S. Chen, “Mining User Moving Patterns for Personal Data Allocation
in Mobile computing System” in Proceedings of the Proceedings of the 2000 Interna-
tional Conference on Parallel Processing.

10. M. K. Shan and H. F. Li,“Fast Discovery of Structural Navigational Patterns from Web
User Traversals”In Proceedings of SPIE on Knowledge Discovery and Data Mining,
vol. 4730, 2002.

11. N. Shivakumar, J. Jannink, and J. Widom. “Per-User Profile Replication in Mobile Envi-
ronments: Algorithms, Analysis and Simulation Results,” ACM Journal of Mobile Net-
works and Applications, pp. 129-140, 1997.

12 O. Wolfson, S. Jajodia, and Y. Huang. “An Adaptive Data Replication Algorithm,” ACM
Transactions on Database Systems, pp. 253-314, 1997.

