
1 

(1) Workshop: Workshop on Databases and Software Engineering 

 
(2) Title: An Efficient Approach to Discovering Repeated Sequential Patterns in Large 
Transaction Databases 
 

(3) Abstract: Data mining, also known as knowledge discovery, is recognized as an area of 
promising research. It can be defined as the efficient discovery of interesting patterns from a 
large database. Mining sequential patterns involves discovering patterns in sequences of 
events with a user-defined minimum support. The support of a pattern is the number of 
data-sequences that include the pattern. The previous approach, the GSP（generalized 
sequential patterns）algorithm, checks whether a data-sequence contains a specific sequence 

for counting candidates requiring alternates between the forward and backward phases until 
all the items are found. The higher complexity of operations is performed repeatedly to detect 
certain particular items. In this paper, a DRSP algorithm using two additional Order list and 
Check list data structures is proposed, to reduce the complexity of sequence search. The 
proposed approach can also discover the repeated sequential pattern, which include several 
overlapped items. Experimental results indicate that the proposed searching approach 
outperforms GSP algorithm. 
 

(4) Author: 

(A) Chien-I Lee, 
Addr: Institute of Information Education, National Tainan Teachers College Tainan, 

Taiwan 700, R.O.C. 
E-mail: leeci@ipx.ntntc.edu.tw 
Tel: (886)6-2133111 ext. 777 
Fax: (886)6-2144409 
 

(B) Meng-Sung Wu, 
Addr: Department of Computer Science and Information Engineering,  
National Cheng Kung University, Tainan, Taiwan, R.O.C 
E-mail: :wums@csie.ncku.edu.tw 
TEL:06-2089349 
 

(5) Name of the contact author:  Chien-I Lee 
 

(6) Keyword: Data mining, Sequential Patterns 

 



2 

An Efficient Approach to Discovering Repeated Sequential Patterns in Large 

Transaction Databases 

 

Chien-I Lee1, Meng-Sung Wu2 

1 Institute of Computer Science and Information Education, 

National Taiwan Teachers College, Tainan, Taiwan, R.O.C.  

E-mail:leeci@ipx.ntntc.edu.tw 

2 Department of Computer Science and Information Engineering,  

National Cheng Kung University, Tainan, Taiwan, R.O.C. 

E-mail:wums@csie.ncku.edu.tw 

 

Abstract. Data mining, also known as knowledge discovery, is recognized as an 

area of promising research. It can be defined as the efficient discovery of 

interesting patterns from a large database. Mining sequential patterns involves 

discovering patterns in sequences of events with a user-defined minimum support. 

The support of a pattern is the number of data-sequences that include the pattern. 

The previous approach, the GSP（generalized sequential patterns）algorithm, checks 

whether a data-sequence contains a specific sequence for counting candidates 

requiring alternates between the forward and backward phases until all the items 

are found. The higher complexity of operations is performed repeatedly to detect 

certain particular items. In this paper, a DRSP algorithm using two additional 

Order list and Check list data structures is proposed, to reduce the complexity of 

sequence search. The proposed approach can also discover the repeated sequential 

pattern, which include several overlapped items. Experimental results indicate that 

the proposed searching approach outperforms GSP algorithm. 

 



3 

1 Introduction 

Data mining can be defined as the process of discovering hidden and potentially useful 

information in an extremely large database. As an important part of market analysis and an 

important use of the Internet, data mining is used in many applications in which interesting 

rules can be extracted from large collections of data. Discovering sequential patterns from a 

large database of sequence is an area of active researches into data mining. The purpose of 

mining sequential patterns is the detection of all sequences whose support exceeds the 

user-defined minimum support. A sequential patterns is represented as <s1s2…sn>, where sj is 

an itemset. An itemset (a set of items) is denoted as <i1i2…im>, where ij is an item. The 

support counts for a sequence defined as the fraction of all data-sequences that ‘include’ this 

sequence. An example of such a sequential pattern is that customers bought ‘Camera’, then 

‘Camera and Negative’, and then ‘Digital Camera and Memory Card’. Most researchers focus 

not only on improving the effectiveness of data mining but also developing various algorithms 

to determine various kinds of sequential patterns for mining. Previous research [1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11, 12, 13] has almost attached importance to execute efficiency and a relation of 

sequence. 

Many techniques have been proposed for mining sequence patterns. The GSP algorithm 

[2] have considered the time gap between adjacent items of the sequences, however, when a 

sequence is too long, it is inefficient to do several switching between forward and backward 

processes until all the items are found in searching a specific sequence.  

On the other hand, the DSG (Direct Sequential pattern Generation) algorithm [11], which 

uses the graph architecture to find sequence patterns, needs to scan the database only once. 

Although the algorithm reduces the cost of accessing I/O, it increases the cost of accessing the 

main memory. As the database expands, it may not be fit in the memory. Accordingly, Zaki 

[13] proposed the SPADE (Sequential Pattern Discovery using Equivalence classes) algorithm 

to solve the problem. This algorithm used a lattice-theoretic and simple intersection method 



4 

that decomposed the original search space into smaller pieces that can be fit in the memory. 

However, these main-memory algorithms are unsuitable when the potential sequence patterns 

are so large that the graph architecture cannot be fit in the memory. Jiawei Han et al. [5] 

presented the FP-tree method, which also involves scanning the database only once. The 

method does not need to generate which candidates, and the supports can be obtained from 

the constructed FP-tree. Even so, it is the same problem with DSG, which a large amount of 

memory space needs is taken by the constructed FP-tree. 

Therefore, in this paper, we propose an efficient searching heuristic algorithm to 

discover sequential patterns, the DRSP (Discovery Repeated Sequential Patterns) algorithm, 

which is modified from the GSP algorithm and considered with time constraints to remedy the 

performance bottleneck in searching a specific sequence using check-table structures. The 

repeated sequential pattern is a group of several overlapped items in the sequential pattern. An 

example of such a pattern is that customers bought ‘Camera’, then ‘Negative’, and then 

‘Digital Camera’, and then ‘Negative’. Thus, it can be seen that the ‘Negative’ is an 

overlapped item in the sequence. The experimental results show that newly proposed 

searching approach outperforms the GSP algorithm 

The rest of the paper is organized as follows. Section 2 describes the problem of mining 

generalized sequential patterns. Section 3, we present the proposed searching heuristic 

approach to discover frequent occurring sequential patterns. In Section 4, we evaluate the 

performance of the proposed approach. Conclusions and areas for future research are finally 

made in Section 5.  

 

 

 

 



5 

2 Mining Generalized Sequential Patterns 

Mining sequential patterns involve finding sequence of transaction data. All of a customer’s 

transactions can be viewed as a sequence, the list of transactions, and orders by increasing 

transaction-time corresponding to a sequence. At the same time, the customer doesn’t have the 

same transactions. 

The GSP algorithm [2] as shown in Fig. 1 has to scan the database in multiple passes. 

Throughout mining, many candidate sequences must be counted to determine the frequently 

occurring sequences. The sliding window relaxes the restriction so the items in the sequential 

pattern don’t have to come from the same transaction. The time constrains can avoid a time 

period too far or too close between the adjacent items in a pattern. Thus, there are two 

parameters, max-gap, and min-gap, are proposed to deal with these time constraints. The 

max-gap denotes that the time gap between sets of item no more than maximum time gap 

constraint, and the min-gap denotes that the time gap between adjacent sets of item no less 

than minimum time gap constraint. For illustration purpose, we use the simple example 

shown in Tab. 1 is used to explain the process of the GSP algorithm. Each record is a {SID, < 

T-Time, Items >} pair, where SID is the identifier of the corresponding sequence, T-Time is the 

transaction time of purchasing, and Items is the element in the sequence. The minimum 

support, Min-sup, represents the minimum number of a sequence has to appear in order to be 

qualified as a frequently sequence. In this example, Min-sup is set to 2. After the database of 

data-sequence in Tab. 1 is scanned, the frequently 1-sequential pattern is found in the database 

as shown in Tab. 2. Then, in the for-loop process, the frequent occurring sequences LK-1 (k≧2) 

from the previous pass are used to generate the candidate sequences CK and then their support 

is counted. The support of the candidates is used to determine whether they are the frequent 

sequences (such that the support ≧ Min-sup). This for-loop process is repeated until no 

candidate sequence is generated or no more frequent sequence is found. 

 



6 

Fig. 1. The GSP algorithm  

 

Tab. 1. The database of data-sequence 

SID < T-Time, Items > 

S1 <(A, 10), (B, 25), (C, 30), (A, 45), (D, 55), (B, 60), (E, 70), (D, 75), (C, 90)> 

S2 <(A, 15), (D, 20), (B, 25), (F, 40), (D, 65)> 

S3 <(C, 5), (A, 15), (B, 30), (C, 55), (F, 75), (G, 80), (D, 85)> 

S4 <(B, 15), (A, 25), (D, 40), (C, 65)> 

 

Tab. 2. The supports of frequent 1-sequence 

Frequent 1-sequence Support 

A 4 

B 4 

C 3 

D 4 

F 2 

Algorithm GSP 

L1={frequent 1-sequential pattern}； 

For ( k = 2; Lk-1≠0; k++) do 

 Ck = New candidates generated from Lk-1  (see procedure Join) 

 For each data-sequence in the database do 

  For each Ck do  

  Check out whether data-sequence contains Ck with the time constraints 

   If yes then the count of Ck is increased by 1 

  Endfor  

 Endfor  

 Lk = Candidates in Ck with count ≧ Min-sup 

Enddo 

 All frequent sequences = L1∪L2∪…∪Lk 



7 

During a pass, the GSP algorithms read one data-sequence at a time and increase the 

support count of candidates contained in the data-sequence. Thus, given a set of candidates 

sequence and a data-sequence, all sequences in the candidate sequences contained in a 

data-sequence must be found. The GSP algorithm alternates between the forward phases and 

backward phases to check whether a data-sequence contains a specific sequence,. The 

algorithm starts in the forward phase from the first element. An example illustrates the 

process. Suppose the dataset, DS = <A, B, C, D, E, F, G> includes seven items and consider a 

user’s data-sequence as shown in Tab. 3. Consider the case when max-gap is 20 time units, 

and min-gap and the size of the sliding-windows are zero. For the candidate sequence <A, B, 

E>, first find “A” at transaction-time 10, then find “B” at transaction-time 15. Since the 

max-gap constraint between “A” and “B” is satisfied, it continues to move forward. Then, 

find “E” at transaction-time 45, since the gap between “B” and “E” (30days) exceeds 

max-gap, and discards “B”. Then, moves backward. Because end-time (“E”) = 45 and 

max-gap is 20, then searches for the first appearance of “B” after transaction-time 25. Found 

“B” at transaction-time 35. Check whether the max-gap constraint between “B” and the 

previous item “A” is satisfied, because “B” is not the first item. The max-gap constraint 

between “B” and “A” is more than max-gap (i.e., time (“B”) - time (“A”) = 35 –10 = 25), so it 

moves forward, to search for the first occurrence of “A” at time 55. Because “A” is the first 

element, we do not need check whether the max-gap constraint is satisfied. Then continues to 

move forward and found “B” at transaction-time 60. Repeated this procedure, until all the 

items are found. Finally, found the sequence <A, B, E> for which the corresponding 

transaction-time is (65, 80, 95). Throughout the procedure, the GSP algorithm takes 11 

comparisons to find the sequence <A, B, E>, as shown in Fig. 2. When a data-sequence is long 

in mining sequential pattern process. Checking out whether a data-sequence contains a 

specific sequence using the GSP algorithm is inefficient. The following section proposes an 

efficient approach, called the DRSP algorithm, to solve this problem. 



8 

Tab. 3.  A data-sequence 

Item C A B C B E A B A B D B E 

Transaction-time 5 10 15 30 35 45 55 60 65 70 75 80 95

 

C A B C B E A B A B D B E 

  

 

○1  

○5  

 

 

○2  

  

 

○4  

 

 

○3  

 

 

○6

○10

 

 

○7  

 

 

○11

 

 

 

  

 

○9  

 

 

○8  

Fig. 2. Using the GSP algorithm to search sequence pattern <A, B, E> 

 

3 The DRSP Approach  

This section propose the DRSP algorithm as shown in Fig. 3, which is modified from the GSP 

algorithm to search whether a data-sequence includes a specified candidate sequence. 

Additionally, the process of discovering repeated sequential patterns. 

During a pass, searching for the candidate sequences contained in a data-sequence 

involves checking whether a data-sequence contains a specific sequence and the counting of it. 

The GSP algorithm [2], is repeated, switching between the backward and forward phases until 

all the items are found. However, when a data-sequence is long, it is inefficient. Therefore, an 

approach is improved to improve this problem using two additional data structures, called the 

Order list and the Check list, respectively. Let P = < p1, …pm > be the set of the all items in 

the transaction database. For a candidate sequence s = < s1, …sn > with N items, there creates a 

1 x N array Op of the Order list. Each cell is corresponding to an item in alphabetical order. 

Let the value of Op(si) = i, ni ≤≤1 and the value of the other Op(j) = -1, where j ∉ s. For 

the candidate sequence s = < s1, …sn >, there creates a n x n array Cs of the Check list, where 

the initial values of all cells are –1.  



9 

Fig. 3. The DRSP algorithm  

 The proposed efficient approach to checking out a specific sequence is summarized as 

follows: For the data-sequence, check whether an Order list contains the item of 

data-sequence. If the item exists, check the difference between the time of the item just found 

and the previous item. If the difference satisfies the gap constrains, then store the values of 

time that correspond to the position of the Check list, and then reproduced the values of all the 

previous specified items. Repeat this process until all the items of a specific sequence are 

found and the time constraint is always satisfied. That is, when the value of Cs(n, n) is 

changed from –1 to the T-time of the last item sn in the data-sequence, the answer of the 

sub-sequence in the data-sequence that contains the candidate-sequence s = < s1, …sn > will be 

< Cs(n, 1), Cs(n, 2),…Cs(n, n)>. On the other hand, no answer is found when Cs(n, n) is 

still –1 after the last item of the data-sequence is scanned. 

Tab. 4. The Order list for the candidate sequence <A, B, E> 

si A B C D E F G 

Op(si) 1 2 -1 -1 3 -1 -1 

L1={frequent 1-sequential pattern}； 

For ( k = 2; Lk-1≠0; k++) do 

 Ck = New candidates generated from Lk-1  (see procedure Join) 

 For each data-sequence in the database do 

  Create the corresponding Order list and the Check list  

For each Ck do  

  Check whether the Order list contains the item of Ck 

Check whether Ck is satisfied with the time constraints in the Check list 

If yes then the count of Ck is increased by 1 

  Endfor  

 Endfor  

 Lk = Candidates in Ck with count ≧ Min-sup 

Enddo 

 All frequent sequences = L1∪L2∪…∪Lk 



10 

Tab. 5. The initial Check list for the candidate sequence <A, B, E> 

A -1 -1 -1 

A->B -1 -1 -1 

A->B->E -1 -1 -1 

The same example as shown in Tab. 3 is considered here, The max-gap = 20 time units, 

and min-gap = sliding-windows size = zero. For the candidate sequence <A, B, E>, we 

generate the Order list with N = 7 items as shown in Tab. 4, and an initial 3 x 3 array of Check 

list as shown in Tab. 5 are generated. For the data-sequence as shown in Tab. 4, if at first item 

“A” is scanned at transaction-time 10 and position 1 in the Order list, then the values of the 

time that correspond to the position of the Check list can be stored, as shown in Fig. 4-(a) (i.e., 

Cs (1, 1) = 10). Then item “B” can be scanned at transaction-time 15 and position 2 in the 

Order list (i.e., Cs (2, 2) = 15). The value of Cs (2, 1) is set to the value of Cs (1, 1) since the 

max-gap constraint between “A” and “B” is satisfied (i.e., 15 - 10 < 20),. Then, item “C” is 

scanned; and can be discarded since it is absent from the Order list (i.e., Ps (C) = -1). For the 

next scanned item “B” at transaction-time 35, because the gap between “B” and “A” (25days) 

is more than the max-gap, and so is discarded after “B”. Item “E” continues to be scanned at 

transaction-time 45, and then the values of time that correspond to the position of the Check 

list are stored, as shown in Fig. 4-(c) (that is, Cs (3, 3) = 45). Next, item “A” is scanned at 

transaction-time 55, and the record of pre-item “A” that corresponds to the position of the 

Check list is overwritten, as shown in Fig. 4-(d) (that is, Cs (1, 1) is updated to “55”). 

Similarly, after item “B” is scanned, Cs (2, 2) is set to 60 and the value of Cs (2, 1) is set to the 

value of Cs (1, 1) as shown in Fig. 4-(e). The candidate sequence <A, B, E> can be found by 

analogy. Then, the checking process is stopped and the count of <A, B, E> is increased by one 

for all the items of the candidate sequence <A, B, E> which are involved in the final row of 

the Check List whose values still satisfying the time constraint. The proposed heuristic is used 

to search sequence <A, B, E>, using nine comparisons, as shown in Fig. 4. 



11 

 

Fig. 4. The values of the Check list Cs during the process of checking out a specific sequence 

A 10 -1 -1  A 10 -1 -1 

A->B -1 -1 -1  A->B 10 15 -1 

A->B->E -1 -1 -1  A->B->E -1 -1 -1 

 (a) after scanning A 

 

  (b) after scanning AB 

A 10 -1 -1  A 55 -1 -1 

A->B 10 15 -1  A->B 10 15 -1 

A->B->E -1 -1 45  A->B->E -1 -1 45 

 (c) after scanning ABCBE 

 

  (d) after scanning ABCBEA 

A 55 -1 -1  A 65 -1 -1 

A->B 55 60 -1  A->B 55 60 -1 

A->B->E -1 -1 45  A->B->E -1 -1 45 

 (e) after scanning ABCBEAB

 

  (f) after scanning ABCBEABA

A 65 -1 -1  A 65 -1 -1 

A->B 65 70 -1  A->B 65 80 -1 

A->B->E -1 -1 45  A->B->E -1 -1 45 

 (g) after scanning 

ABCBEABAB 

  (h) after scanning 

ABCBEABABDB 

A 65 -1 -1      

A->B 65 80 -1      

A->B->E 65 80 95      

 (i) after scanning 

ABCBEABABDBE 

   



12 

Tab. 6. The Order list for the candidate sequence <A, B, A, D> 

Fig. 5. The values of the Check list Cs during the process of checking out a specific sequence 

si A B C D E F G 

Op(si) 1 2 -1 -1 -1 -1 -1 

Op(si) 3 -1 -1 4 -1 -1 -1 

A 10 -1 -1 -1  A 10 -1 -1 -1 

A->B -1 -1 -1 -1  A->B 10 15 -1 -1 

A->B->A -1 -1 -1 -1  A->B->A -1 -1 -1 -1 

A->B-> A->D -1 -1 -1 -1  A->B-> A->D -1 -1 -1 -1 

 (a) after scanning A   (b) after scanning AB 

A 55 -1 -1 -1  A 55 -1 -1 -1 

A->B 10 15 -1 -1  A->B 55 60 -1 -1 

A->B->A -1 -1 -1 -1  A->B->A -1 -1 -1 -1 

A->B-> A->D -1 -1 -1 -1  A->B-> A->D -1 -1 -1 -1 

 (c) after scanning ABCBEA   (d) after scanning ABCBEAB 

A 55 -1 -1 -1  A 55 -1 -1 -1 

A->B 55 60 -1 -1  A->B 55 70 -1 -1 

A->B->A 55 60 65 -1  A->B->A 55 60 65 -1 

A->B-> A->D -1 -1 -1 -1  A->B-> A->D -1 -1 -1 -1 

 (e) after scanning ABCBEABA   (f) after scanning ABCBEABAB

A 55 -1 -1 -1       

A->B 55 70 -1 -1       

A->B->A 55 60 65 -1       

A->B-> A->D 55 60 65 75       

 (g) after scanning 

ABCBEABABD 

   



13 

However, when the sequential patterns include several overlapped items, as in the 

sequence <A, B, A, D>, the GSP algorithm cannot find it. Therefore, based on the proposed 

heuristic approach, the M x N array Order list must be generated, where M is the number of 

the overlapped items. As in the above example, for the candidate sequence <A, B, A, D>, we 

create a 2 x 7 array Op of the Order list, as shown in Tab. 6, and an initial 4 x 4 array of 

Check list are created. If item “A” is first scanned, then the values of time that correspond to 

the position of the Check list can be stored, as shown in Fig. 5-(a) (that is, Cs (1, 1) = 10). 

Then item “B” can be scanned at transaction-time 15 and position 2 in the Order list (that is, 

Cs (2, 2) = 15). The value of Cs (2, 1) is set to the value of Cs (1, 1) since the max-gap 

constraint between “A” and “B” is satisfied (that is, 15 - 10 < 20). Then, item “C” is scanned; 

can be discarded since it is absent from the Order list (that is, Ps (C) = -1). The above 

approach implement, until all the items are found. On the other hand, when searching the 

second “A” at transaction-time 55, is the need to check end-position 3 in the Order list. 

Because the gap between “B” and “A” (40days) exceeds max-gap, the values of time that 

correspond to position 1 of the Check list can be stored, as shown in Fig. 5-(c) (that is, Cs (1, 

1) = 55). Next, item “B” is scanned at transaction-time 60, and the record of pre-item “B” that 

correspond to the position of the Check list is overwritten, as shown in Fig. 5-(d) (that is, Cs 

(2, 2) is updated to “60”). Similarly, after item “A” is scanned, Cs (3, 3) is set to 65, and the 

value of Cs (3, 1) and Cs (3, 2) are set to the value of Cs (2, 1) and Cs (2, 2) respectively, as 

shown in Fig. 5-(e). To continue, item “B” is searched and only the record of pre-item “B” is 

overwritten, as shown in Fig. 5-(f). Finally, the candidate sequence <A, B, A, D> can be found 

using the proposed heuristic to searching sequence <A, B, A, D>, using seven comparisons, as 

shown in Fig. 5. 

 

 

 



14 

4 Performance Study 

In this section, compare the performance of our DRSP algorithm with the GSP algorithm. We 

refer to [1] to generate the synthetic database. The synthetic data generation program takes the 

parameters as shown in Tab. 7. The number of data-sequences was set to D = 250,000. We 

generated datasets by setting Ns = 5000, Ni = 25000 and N = 10000. Tab. 8 shows the datasets 

with their parameter settings. 

Tab. 7.  Parameters 

| D | 

| C | 

| T | 

| S | 

| I | 

Ns 

Ni 

N 

Number of customers (= size of Database)  

Average number of transaction per customer 

Average number of items per transaction 

Average length of maximal potentially frequent sequences 

Average size of Itemsets in maximal potentially frequent sequences 

Number of maximal potentially frequent sequence 

Number of maximal potentially large itemsets 

Number of items 

 

Tab. 8.  Parameter settings (Synthetic datasets) 

Name | C | | T | | S | | I | Size(MB) 

C10-T2.5-S4-I1.25 

C10-T5-S4-I1.25 

C10-T5-S8-I2.5 

10 

10 

10 

2.5 

5 

5 

4 

4 

8 

1.25 

1.25 

2.5 

23.8 

25.1 

26.2 

C20-T2.5-S4-I1.25 

C20-T2.5-S8-I2.5 

20 

20 

2.5 

2.5 

4 

8 

1.25 

2.5 

36.1 

36.5 

 

On the synthetic databases, each graph shows the results as the minimum support 

changes from 1% to 0.2%. Assume the sliding-window’s size is zero, without minimum and 



15 

maximum gap constrains. Fig. 6 shows the relative execution times for the DRSP, AprioriAll 

and GSP algorithms, on C10-T2.5-S4-I1.25 synthetic dataset given in Tab. 8. From Fig. 6, we 

observe that the GSP algorithm is faster than the DRSP algorithm. The reasons is that GSP 

algorithm doesn’t have to check whether a data-sequence contains a specific sequence, but 

our approach still needs time to create the Order list and Check list. Hence, without time 

constrains, the GSP algorithm is outperforming the DRSP algorithm. Certainly, the GSP 

algorithm is better than the AprioriAll algorithm as proved in [2].  

To see the effect of the sliding windows and time constrains in performance, we tested 

the DRSP algorithm and the GSP algorithm on the four datasets. The sliding window was set 

to zero. Similarly, the max gap was set to more than the total time-span of the transactions in 

the datasets and the min gap was set to 2 time units. Fig. 7 shows that the DRSP algorithm 

outperforms the GSP algorithm. The main reason is that the numbers of specific candidate 

sequence counting for the DRSP algorithm are fewer than the GSP algorithm. The GSP 

algorithm has to check whether a data-sequence contains a specific sequence by switching the 

forward and backward phases alternately. Thus the number of scanned items increases. 

Fig. 6. Performance Comparison: (without time constrain) 

 

C 10 - T 2.5-S4 - I 1.25

0

2

4

6

8

10

12

14

16

1 0.5 0.33 0.25 0.2

Min - Sup(%)

T
i
m
e
(
m
i
n
) GSP

AprioriAll

DRSP



16 

Fig. 7. Performance Comparison: (with time constrains) 

 

5 Conclusions  

In this paper, proposed and studied efficient method for mining frequent repeated sequential 

patterns in large sequence database. The DRSP algorithm, which is modified from the GSP 

algorithm, to search whether a data-sequence contains a specified candidate sequence by 

using two additional data structures, called the Order list and the Check list. From the 

experimental study, we compared our DRSP algorithm with the GSP algorithm, and the result 

shows that our algorithm outperforms the GSP algorithm. The main reason is that the GSP 

algorithm has to do several switching between forward and backward processes until the 

C 10 - T 5-S4 - I 1.25

0

10

20

30

40

50

1 0.5 0.33 0.25 0.2

Min - Sup (%)

T
i
m
e
(
m
i
n
) GSP

DRSP

C 10 - T 5 -S8- I 2.5

0

10

20

30

40

50

1 0.5 0.33 0.25 0.2

Min - Sup (%)

T
i
m
e
(
m
i
n
) GSP

DRSP

C 20 - T 2.5-S4 - I 1.25

0

10

20

30

40

50

1 0.5 0.33 0.25 0.2

Min - Sup (%)

T
i
m
e
(
m
i
n
)

GSP

DRSP

C 20 - T 2.5 -S8- I 2.5

0

10

20

30

40

50

1 0.5 0.33 0.25 0.2

Min - Sup (%)

T
i
m
e
(
m
i
n
)

GSP

DRSP



17 

entire items are found in searching a specific sequence. On the other hand, the DRSP 

algorithm scans all the items in the data-sequence at one time. We have been studying how to 

further improve the performance at discovering repeated sequential patterns, how to mine 

efficiently cyclic-sequential patterns, and how to incorporate user-specified constraints at 

mining such patterns. The application of sequential pattern mining in Weblog analysis and 

DNA analysis are also interesting topics for future research. 

 

References 

1. R.Agrawal, R.Srikant. Mining Sequence Patterns. Proceedings of the 11th International 

Conference on Data Engineering (1995) 3-10. 

2. R. Agrawal, R. Srikant. Mining Sequential Patterns: Generalizations and Performance 

Improvements. Proceeding of the Fifth Int'l Conference on Extending Database 

Technology (EDBT) (1996) 3-17. 

3. Y. Bengio. Probabilistic neural network models for sequential data. IJCNN (2000). 

4. M.-S. Chen, J.-S. Park, & P. S. Yu. Efficient Data Mining for Path Traversal Patterns. IEEE 

Transactions on Knowledge and Data Engineering (1998) 209-221, 10(2). 

5. J. Han, J. Pei, & Y. Yin. Mining frequent patterns without candidate generation. 

Proceedings of the ACM SIGMOD on Management of data (2000). 

 

6. N. G. Minos, R. Rajeev, S. Kyuseok. Sequential Pattern Mining with Regular Expression 

Constraints. Proceedings of 25th International Conference on Very Large Data Bases 

(1999) 

7. B. Mobasher, N. Jain, E.-H. Han., J. Srivastava. Web Mining: Pattern Discovery from 

World Wide Web Transactions. Department of Computer Science University of 

Minnesota Minneapolis (1996). 

8. M. Oglhara. Scalable feature mining for sequential data. IEEE Intelligent Systems [see also 



18 

IEEE Expert] (2000) Volume: 15 48-56 

9. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: 

Mining sequential patterns efficiently by prefix-projected pattern growth. In ICDE 

(2001).  

10. F. Qin, X.-B. Yang. A high efficient algorithm of mining sequential patterns. Proceedings 

of the 3rd World Congress on Intelligent Control and Automation (2000) 

11. S.-J. Yen, Arbee L.P. Chen. An Efficient Approach to Discovering Knowledge from Large 

Database, PDIS (1996) 8-18. 

12. S.-J. Yen. Mining Frequent Traversal Patterns in a Web Environment. In Proceeding of 

International Symposium on Intelligent Data Engineering and Learning (1998) 219-224. 

13. M. J. Zaki. Efficient Enumeration of Frequent Sequences. CIKM (1998) 68-75.  

 

 


