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Abstract 

Techniques for 3D model alignment 

and retrieval are proposed in this paper. 

Since the techniques of 3D modeling and 

digitizing tools are in great demand, the 

expectations of 3D models alignment and 

retrieval are increasingly. We propose an 

algorithm for 3D model alignment, which 

gets the affine transformation between two 

3D models. The main idea of our 3D 

alignment algorithm in rotation is to search 

the similarity of projected 2D shapes from 

each viewing aspect of two models. Then, 

we apply the technique to match two 3D 

models after recovering the affine 

transformation. 

1. Introduction 

The problem of 3D objects recognition, 

retrieval, clustering and classification is a 

traditional research topic during previous 

decades in computer vision, mechanical 

engineering, medical imaging and molecular 

biology. The research topic is important in 

computer graphic because the techniques of 

3D modeling and digitizing tools are in 

great demand. Many tools of digitized and 

constructed 3D objects are getting more and 

more popular, for example, 3D model 

acquisition systems [14], 3D model 

capturing systems [17], 3D freeform design 

systems [12] and sculpting systems [13]. 

Therefore, 3D objects can be digitized and 

modeled easier, faster and less expensive. A 

large number of free 3D models can be 

accessed all over the world via the Internet, 

such as in [15, 16]. Although text-based 

search engines are ubiquitous today, 

multimedia data such as 3D models lack 

meaningful and semantic description for 

automatic matching. The MPEG group aims 

to create an MPEG-7 international standard, 

also known as “Multimedia Content 

Description Interface”, for the description of 

the multimedia data, including image, video, 

audio, 2D shapes and 3D objects [11]. 

However, there is currently only one 

descriptor for 3D model. This has 

highlighted the need for developing efficient 

techniques of content-based retrieval for 3D 

model. 

The problem of 3D model retrieval can 

be stated as follows: given a 3D model, the 

retrieval system compares it with all other 

3D models from the database, and shows 

ranked similar models. In short, the problem 

is to determine the similarity between two 

given 3D models. The most important issue 

is to extract suitable features for matching. 

The feature should represent the 

characteristics of different 3D models, and 

should be invariant to translation, rotation 

and scaling, and robust against re-meshing, 



subdivision as well as simplification, noise 

and deformation. The second important 

issue is to define a meaningful distance 

metric, which should be efficient. 

Most previous works of 3D model 

retrieval focus on finding a good feature for 

matching [1~10]. Most of those are based 

on either statistical properties, such as 

global shape histograms, or the skeletal 

structure of 3D model. Zhang and Chen [2] 

propose an algorithm to efficiently calculate 

features, such as volume, moments, and 

Fourier transformation coefficients. In many 

applications, there is a high demand to 

calculate these important features for a 3D 

model. Volume-surface ratio, aspect ratio, 

moment invariants and Fourier 

transformation coefficients [3] are often 

used in 3D model retrieval. In their current 

system, they simply normalize the features 

and use Euclidean to measure the similarity. 

The total number in their database is around 

2,000 models, which are in VRML format. 

Osada et al. [5, 6] propose and analyze 

a method for computing shape signatures for 

arbitrary (possibly degenerate) 3D 

polygonal models. The key idea is to 

represent the signature of an object as a 

shape distribution sampled from a shape 

function measuring global geometric 

properties of an object. The primary 

motivation for this approach is to reduce the 

shape matching problem to the comparison 

of probability distributions, which is simpler 

than traditional shape matching methods 

that require pose registration, feature 

correspondence, or model fitting. More 

specifically, they have experimented with 

five different shape functions, and the D2 

shape function can classify 3D objects better 

than the other shape functions. The D2 

shape function is defined as follows: 

measures the distance between two random 

points on a surface. In addition, the entire 

shape distribution is scaled based on the 

mean in order to deal with the scaling 

problem. Finally, they examine that the PDF 

L1 norm performed the best for comparing 

shape distributions. In their experimental 

results, they achieve 60% accuracy with a 

diverse database of degenerate 3D models. 

They also compare D2 shape distribution 

method against surface moments, and find 

the D2 shape distributions outperform 

moments for classification of 3D models. 

The approach is simple and fast, and robust 

to scaling, rotation, mirror, noise, re-mesh, 

simplification, deleting and inserting 

polygon. They test the algorithm using 133 

models now, and they will test for larger 

database in the future. 

Hilaga et al. [1] propose a technique in 

which similarity between polyhedral models 

is quickly, accurately, and automatically 

calculated by comparing the skeletal and 

topological structure. Therefore, their 

algorithm can handle the global and local 

properties simultaneously. The skeletal and 

topological structure decomposes to a 

one-dimensional graph structure. The graph 

is invariant to translation, rotation and 

scaling, robust against connectivity changes 

caused by simplification, subdivision and 

re-meshing, and resistant against noise, 

certain changes due to deformation, such as 



an articulated object change its posture. 

Their search key is a multi-resolutional 

structure of the graph, so that the 

comparison can simply and fast. Their 

experiments made use of 230 different 

polyhedral meshes. In their experimental 

results, the search key for a mesh of 10,000 

vertices can be calculated in approximately 

15 seconds with a Pentium II 400MHz 

processor. The average search time is about 

12 seconds, that is, it took only 0.05 second 

in average to calculate one similarity. 

In general, features of 3D models 

should be invariant to affine transformations, 

since each 3D model has its own coordinate 

axis for different use. In contrast, we 

propose an algorithm to recover translation, 

scaling and rotation between two 3D models, 

and then extend the technique to measure 

the similarity. Furthermore, the function of 

3D model alignment can not only be used in 

3D model retrieval, but also in many other 

applications, such as mesh watermarking, 

3D model morphing, 3D animation, and so 

on. 

The main idea of our 3D alignment 

algorithm in rotation is to render 2D 

silhouettes from each viewing aspect of two 

models, and get rotation which has 

minimum error summing from all viewing 

aspect using 2D shape matching algorithm. 

Our approach of 3D model retrieval takes 

the minimum error as the similarity between 

two 3D models. The remaindered part of 

this paper is organized as follows. In 

Chapter 2, we propose an algorithm to do 

3D model alignment. We detail rotation 

alignment in Chapter 3. The experimental 

results of 3D model alignment are 

represented in Chapter 4. 3D model retrieval, 

one application of 3D model alignment, is 

proposed in Chapter 5. Finally, the paper is 

Fig. 1 The order of 3D models alignment. 



summarized and concluded in Chapter 6. 

2. Flow of 3D Model Alignment 

The order of 3D model alignment is as 

follows: TS  Rc  TS  Rr  TS. 

Where TS denotes the translation and 

scaling alignment of two models; Rc denotes 

the coarser rotation alignment and Rr refine 

the rotation. All TS apply the same operator, 

that is, translate to the same origin and scale 

to the same size between two models. The 

purpose of first two TS is to let two models 

be roughly in similar position and of the 

same size, which will make it easier to get 

the correct rotation Rc and Rr. Once the 

correct rotation is recovered, the last TS will 

be easier to get the correct translation and 

scaling. Fig. 1 shows an example of the five 

steps. 

The approach of translation and scaling 

is very simple. The translation T=(Tx,Ty,Tz) 

assigns the middle point of the whole model 

to be the new origin. The scaling is isotropic, 

and normalizes according to the maximum 

distance from x, y and z axes of the whole 

model. That is, 
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where the MaxCoori  and MinCoori  are the 

maximum and minimum coordinate value of 

i axis, respectively. 

An intuitional thought of recovering 

the rotation from two models is to rotate 

model to all possible viewing angles, and 

get the rotation that has minimum error 

from all viewing angles. We take Fig. 2 as a 

typical example to explain the idea. There 

are two models, pig and cow, with different 

rotations, and both models have been 

applied coarser translating and scaling (TS) 

alignment. To recover the rotation from 

model cow to model pig, a set of cameras 

surrounding a model to render 2D shapes 

from each viewing angle. Those cameras are 

put on the surface of a sphere and scatter 

viewing angles all over the sphere. Fig. 2 (a) 

shows a set of cameras surrounding the 

model pig, where each intersection point 

indicates a camera position. Then, apply 

those camera set to the model cow, as 

shown in Fig. 2 (b), and calculate the 

difference of 2D shape for each camera pair. 

We define the error of the two models in a 

specific rotation as summing the difference 

of 2D shapes for all camera pairs. Therefore, 

the goal is to find a rotation that has the 

minimum error from all rotation angles of 

the camera set. That is,  

models obewteen twpair  camera:
set camera  theof anglerotation :
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where ShapeDiff denotes the difference of 

two 2D shapes. Fig. 2 (b)~(f) show various 

rotation angles of a camera set, and we 

suppose that Fig. 2 (e) will get the minimum 

error, since the rotation matrix of the two 

models can be calculated from the rotation 

of the two camera sets between Fig. 2 (a) 

and (e). 



When rotating the camera set to a new 

orientation, all 2D shapes should be 

rendered from all new cameras position, and 

the similarity of 2D shapes between each 

camera pair have to be calculated. This will 

cause large amount of calculation, and is 

time consuming. Therefore, we put the 

camera set in the vertices of a regular 

convex polyhedron, so that the number of 

rendering 2D shapes and calculating the 

similarity between them will be greatly 

reduced. 

There are only five regular convex 

polyhedrons, which are named as Platonic 

bodies, and was known to the ancient 

Greeks. The fact can also be proved using 

Euler’s theorem. The five regular convex 

polyhedrons are tetrahedron, hexahedron or 

cube, octahedron, dodecahedron, and 

icosahedron. We take vertices of 

dodecahedron, which has the maximum 

vertices from five regular convex 

polyhedrons, as the position of the camera 

set. There are 20 scattering viewing aspects 

for each 3D model. The set of 20 2D shapes, 

rendered from the 20 cameras, is a basis for 

each 3D model to align between two 3D 

models, and contains knowledge from 

various viewing aspects for a 3D model. Fig. 

3 explains the reason that we can reduce the 

number of calculation from rendering and 

2D shapes matching by using the 

dodecahedron. Fig. 3 (a) shows a camera set 

of model pig, and the same camera set 

applying to model cow shows in Fig. 3 (b). 

That is, the indices of camera set are all the 

same between Fig. 3 (a) and (b). In addition, 

we can rotate the dodecahedron resulting in 

the camera set is at the same position. For 

instance, rotate edge (1,2) from Fig. 3 (b) to 

position of edge (1,3) and (1,4), which show 

in Fig. 3 (c) and (d), respectively. Since a 

dodecahedron has 20 vertices and each 

(a)                     (b)                      (c) 

(d)                     (e)                      (f) 

Fig. 2 A typical example to show our algorithm. 



vertex connects 3 edges, there are 60 kinds 

of different rotation, which share the same 

20 camera positions. Table 1 shows the 

number of rendering and 2D shapes 

matching for 60 different rotations with and 

without using dodecahedron. Without using 

dodecahedron, one model should render 20 

times for a camera set, and another model 

should render 60 camera sets, that is, 1200 

times. The number of rendering can reduce 

to 40 times by using dodecahedron, 20 times 

for each model. On the other hand, 

calculation of 2D shapes matching requires 

1200 times without using dodecahedron, 20 

times for each rotation. The number of 2D 

shapes matching is 400 by using 

dodecahedron, because there are 20 shapes 

for each model. The table shows the reason 

why we use dodecahedron. 
 

For testing 60 
kinds of 
different 
rotation 

Number of 
rendering 

Number of 
2D shapes 
matching 

Without using 
dodecahedron 

20 + 20 × 
60 = 1220 

20 × 60 = 
1200 

Using 
dodecahedron 

20 + 20 × 1 
= 40 

20 × 20 = 
400 

Ratio 30.5 3 
Table 1 Number of rendering and 2D shapes 

matching for 60 different rotations with and 

without using dodecahedron. 

There are 60 different rotations to test 

by using one camera set of dodecahedron 

for both models. However, it’s usually not 

enough to recover rotation from the best 

solution of the 60 candidates for the coarser 

rotation alignment, Rc. The coarser rotation 

alignment should provide a good initial, so 

that the refined rotation alignment, Rr, can 

easily get the best result from the local 

estimation. Therefore, we can use more 

camera sets from different dodecahedrons. 

There will increases 60 different rotations 

when adding one camera set of 

dodecahedron. If apply one dodecahedron to 

first model and apply ten dodecahedrons to 

another, there will be 600 different rotations. 

Furthermore, we can also apply more then 

one camera set of dodecahedron. That is, 

when applying m dodecahedron to first 

model and n dodecahedron to another, there 

will be 60×m×n kinds of different rotation. 

However, the more dodecahedrons are used, 

the more computation is. Table 2 shows the 

number of rendering and 2D shape matching 

by using different dodecahedrons. In our 

current implementation, we use m=10 and 

n=10, that is, we take the best one from 

6000 different rotations as the coarser 

(a)               (b)               (c)               (d) 

Fig. 3 We can reduce the number of calculation from rendering and 2D shapes matching by 

using the dodecahedron. 
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rotation alignment, Rc. The algorithm of 

rotation alignment, Rc and Rr, will detail in 

next chapter. 

Since we use more than one 

dodecahedron, the way to scatter the 

dodecahedrons is also consideration. The 

purpose is to scatter the camera sets to 

whole rotation space, so that any possible 

rotation will close to a candidate. If n 

dodecahedrons should be scattered, we use 

iterative approach to get the best one by: 

∑∑
n j

jnMinDist ),(max  (4) 

where j is index of dodecahedron vertex, 

and MinDist(n,j) return the minimum 

distance from j vertex of n dodecahedron to 

all vertices of other dodecahedrons. That is, 

iteratively rotate each dodecahedron from 

larger to smaller rotation angle, so that all 

vertices of all dodecahedrons are as 

scattering as possible. The approach is not 

effective, however, the pre-processing stage 

only need to be run once. 

In the end of this chapter, we detail the 

operative flow of both models. There are 

two 3D models A and B, and the operations, 

which translate, scale and rotate 3D model B 

to align 3D model A, show in the follows: 

A’ = A · TA · SA 

B’ = B · TB · SB 

Rc = RotateCoarse(B’, A’) 

B” = B’ · Rc · TB · SB 

Rr = RotateRefine(B”, A’) 

A’ ~ B” · Rr · TB · SB 

A · TA · SA ~ B’ · Rc · TB · SB · Rr · TB · SB 

A ~ B · TB · SB · Rc · TB · SB · Rr · TB · 

SB · SA
-1 · TA

-1 

where RotateCoarse and RotateRefine 

recover the coarser and refined rotation, 

respectively, and detail in next chapter. 

3. 3D model Alignment in Rotation 

This chapter details our approach to 

align rotation from two models. The rotation 

alignment divides into two parts: coarse and 

refined alignment. The coarse alignment 

gets the approximate rotation from all 

possible orientation between two models. 

(m-n) 1-1 1-10 1-20 1-40 10-10 
Number of rendering 

(20×m+20×n) 
40 220 420 820 400 

Number of 2D shape 
matching (20×m×20×n) 

400 4000 8000 16000 40000 

Number of different 
rotations (60×m×n) 

60 600 1200 2400 6000 

Vertices of scattering 
dodecahedrons 

     
Table 2 Number of rendering and matching 2D shapes are calculated by mapping m to n 

different dodecahedrons. 



The refined alignment adjusts approximate 

to accurate rotation from neighbor 

orientation. Since the position and size of 

both models are approximate, not exactly 

the same, the approach should be invariant 

to translation and scaling.  

We align rotation between two models 

by matching 2D shapes form camera set of 

dodecahedron. Fig. 4 shows the flow of 

rotation alignment. First, 2D shapes should 

be rendered from camera set of 

dodecahedron for both models. For each 2D 

shape, feature can be extracted for matching 

later. The operation of rendering and feature 

extraction do 40 times respectively, if using 

1-1 dodecahedron, that is, one camera set of 

dodecahedron for both models. Then 2D 

shapes of each camera pair are matched, and 

the operation does 400 times if using 1-1 

dodecahedron. Next, get minimum error 

form different rotations, as defined in Eqn. 

(3). Finally, once two camera sets of 

dodecahedron with minimum error are 

determined, the rotation matrix of two 

models can be obtained by the rotation of 

the two dodecahedrons. The main flows of 

coarser and refined rotation alignment are 

the same. 

The character of 2D shape depends on 

which matching algorithm is used. We use 

OpenGL to render 2D silhouette by putting 

camera to vertex of dodecahedron and 

facing to origin. The size of 2D silhouette is 

256 by 256 pixels. Since 3D models should 

be translated, T, and Scaled, S, before 

rotation alignment, it’s easier to make sure 

that whole 3D models will be rendered into 

2D silhouette, that is, no clipping happen. 

Fig. 5 shows a typical example of 2D 

silhouettes from a camera set of 

dodecahedron. In our implementation, we 

render to screen by perspective projection, 

and then use glReadPixels() to copy 2D 

silhouettes to memory. 

To measure the similarity between two 

shapes, we use region-based shape 

descriptor of the MPEG-7 [11] to match. 

The matching algorithm can be invariant to 

translation, scaling and rotation in 2D 

shapes, and allowable of minor non-rigid 

deformations. The region-based shape 

descriptor makes use of all pixels 

constituting the shape, so that it can describe 

complex shape including holes and several 

disjoint regions. The descriptor utilizes a set 

of ART (Angular Radial Transform) 

coefficients to describe the shape. The ART 

is a 2D complex transform defined on a unit 

disk in polar coordinates. Twelve angular 

and three radial functions are used, and 35 

2D shapes are rendered from each viewing 
aspect of camera set for both models 

Feature extraction for each 2D shape 

2D shapes matching for each camera pair 

Get minimum error from different rotations 

Rotation matrix from camera pair that has 
minimum error 

Fig. 4 The flow of rotation alignment 



ART coefficients of 2D shapes are used for 

matching. 

There are several notices for using the 

2D shape matching to our approach. In 

general, in order to invariant to translation 

in pure 2D case, the center of mass in 2D 

shape should be aligned to the center of the 

unit disk. However, our final alignment is in 

3D case, so it’s no reason to align the center 

for each 2D shape. Since translating 3D 

model to origin has applied before rotation 

alignment, we use center of rendered 2D 

shape as the center of the unit disk. 

Furthermore, in order to invariant to scaling, 

linear interpolation is applied to align 

between rendered 2D shapes from each 

viewing aspect and the unit disk. The same 

as translation, each 2D shapes in a camera 

set should have the same scaling. Finally, 

quantization is applied to the ART 

coefficients for 2D shapes matching. 

However, we didn’t quantize the ART 

coefficients for more accurate. 

After feature extraction for each 2D 

shape, shape matching for each shape from 

two models is calculated. Number of feature 

extraction is the same as rendering, but the 

number of shape matching is much more. In 

general, the computation of matching is 

much less than that of feature extraction in 

order to speedy retrieval from a large 

database, since feature can be previously 

calculated and saved to database. The 

region-based shape matching algorithm use 

simple L1 distance to measure similarity: 

( ) ∑ −=
i

BA iArtMiArtMBAShapeDiff ][][),( (5) 

Fig. 5 A typical example of 2D silhouettes from a camera set of dodecahedron. 



where ArtM is the ART coefficients, 

ShapeDiff is the same in the Eqn. (3); A and 

B are two 2D shapes for matching; i is index 

of ART coefficients. Therefore, the 2D 

shape matching is speedy. 

Next, get minimum error from different 

rotations of dodecahedron, as defined in 

Eqn. (3). The error between different 

rotations is defined as summing distances 

from all 2D shapes pair of dodecahedron. 

For each camera set of dodecahedron pair, 

there has 60 different rotations. However, 

there is a little difference in this stage 

between coarser and refined rotation 

alignment. In coarser rotation alignment, we 

use 10-10 dodecahedrons, that is, there are 

100 kinds of dodecahedron pair, so that 

6000 different rotations are tested. In refined 

rotation alignment, we use iterative 

approach to close the best solution. We start 

from 10° and step half for each iterative 

until less than 1°. In each iterative, we 

adjust rotation of one axis and fix that of 

another two axes in the order of X, Y and Z 

axis, respectively. When adjusting rotation 

of one axis, we rotate the dodecahedron to 

the direction, which has less error, until no 

improvement. Therefore, we can align the 

rotation with error less than 1°. 

Finally, rotation matrix between 

camera set of dodecahedron pair, that has 

minimum error, should be calculated. The 

rotation matrix is then applied to one model 

in order to align rotation to another. The 

problem of solving the rotation matrix can 

be considered as aligning an edge between 

two dodecahedrons, because all edges are 

aligned if one edge is aligned. We utilize the 

function of coordinate conversion between 

the Cartesian and an arbitrary coordinate 

system to obtain the rotation matrix. We use 

Fig. 6 to explain our approach. Fig. 6 (a) 

and (c) are the dodecahedron pair of model 

A and B, respectively. The rotation matrix 

aligns edge (1,2) in Fig. 6 (c) to that in (a). 

The vector 1o  and 2o  can form a unique 
coordinate frame, defined as follows: 
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where “×” denotes cross produce. The 

notation FA and FB denote the coordinate 

system of model A and B, respectively, and 

FC denote the Cartesian coordinate system. 

Therefore, the rotation matrix is the 

coordinate conversion from FB to FA, that is, 

FBA. However, 3D models are in Cartesian 

coordinate system, FC, so we cannot apply 

FBA to model B directly. Model B should be 

converted to FB coordinate system first and 

back to Cartesian coordinate system after 

applying FBA. The rotation matrix is defined 

as: 

FCB · FBA · FBC 
=FCB · FAC · FCB · FBC 

=FCB · FAC 

The FBA can be obtained by FAC · FCB, 

and FCB · FBC can be eliminated, so the 

rotation matrix from model B to model A is 

FCB · FAC. 

 

 



4. Experimental Results of 3D 
Alignment 

In order to experiment with the 3D 

alignment algorithm, we use 445 models, 

downloaded from [15] and [16], for initial 

testing. The alignment algorithm should 

work well at least using the same models. 

So those models are randomly rotated, 

translated and scaled by another program, 

and then using our 3D alignment algorithm 

to test. Fig. 7 ~ Fig. 10 show the results, and 

most of them work well. Each model has six 

pictures. Picture 1 is the original model, and 

picture 2 is the destination model, which 

randomly translate, scale and rotate from 

original model. Picture 3 is the result of 

rotating the destination model to align the 

original model. To clearly look the relation 

of the two models, picture 4 put original and 

destination model together. So we can see 

the difference of translation, rotation and 

scaling between two models. Picture 5 and 6 

are the coarsely and refined alignment 

results between two models, respectively. 

Fig. 10 demonstrates our algorithm can also 

work well for many separated models. 

In the 445 models, there are 5274.4 

vertices and 10233.8 triangles in average. 

The average execution time for coarser and 

refined alignments are 25.7 and 39.2 

seconds, respectively, in a PC with Pentium 

III 800MHz CPU, 128MByte RAM and 

WinFast S680 VGA (S3 ViRGE GX2 chip). 

Next, we also test our algorithm by 

using different models. Those models are 

also randomly rotated, translated and scaled 

by another program first, and then using our 

3D alignment algorithm to test. Fig. 11 ~ 

Fig. 14 show the experiment results. All 

experiment results are available in the web 

pages: http://3dsite.dhs.org/~dynamic 

/3dAlign.html. 

5. 3D Model Retrieval 

We apply the technique of 3D model 

alignment to perform 3D model retrieval. In 

order to reduce the retrieval time, we move 

3D model alignment up to coarser rotation 

alignment stage. That is, the search key of 

3D models is the ART coefficients from 2D 

shapes of each camera set. We take the 

minimum error between two models as the 

similar measurement. All models are 
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z 1 
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y z 
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(a)                      (b)                     (c) 

Fig. 6 Rotation matrix is calculated between two camera sets. 



randomly rotated, translated and scaled by 

another program first, and then using our 3D 

model retrieval to test. The retrieval time is 

about 11 seconds in a PC with Pentium III 

800MHz CPU. Fig. 15 shows several 

experimental results of 3D model retrieval. 

The demo can be found in 

http://3dsite.dhs.org/~dynamic/cgi-bin/art/li

st.php. 

6. Conclusion and Future Works 

The paper presents an algorithm of 3D 

model alignment based on a set of 2D 

shapes, which are projected from a 3D 

position, and then applies the technique to 

3D model retrieval. The goal of 3D model 

retrieval is to recover coarser affine 

transformations first, and is robust against 

re-meshing, simplification, sub-division, 

and noise. In the future, other 2D shape 

matching algorithms can be applied to 

improve the 3D model alignment algorithm. 

In addition, other attributes, such as color 

and texture, can be introduced for 3D model 

retrieval. 
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Fig. 7 Results of an experiment by using the same model “3dcafe_ant” among different affine 

transformations. 

 

Fig. 8 Results of an experiment by using the same model “3dcafe_bicycle” among different 

affine transformations. 



 

Fig. 9 Results of an experiment by using the same model “3dcafe_orbit” among different 

affine transformations. 

 

Fig. 10 Results of an experiment by using the same model “3dcafe_fishbird” among different 

affine transformations. Our algorithm can work well for separated models. 



 

Fig. 11 Results of an experiment in aligning model “3dcafe_chair01” to model 

“3dcafe_chair”. 

 

Fig. 12 Results of an experiment in aligning model “3dcafe_cow” to model “3dcafe_pig”. 



 

Fig. 13 Results of an experiment in aligning model “3dcafe_man1” to model “3dm-mc_slim”. 

 

Fig. 14 Results of an experiment in aligning model “3dcafe_dc10” to model “3dcafe_a-10”. 



 
Fig. 15 Experimental results of 3D model retrieval. The first one of each row is the target to 

be queried. The top 7 similar models are ranked from left to right 


